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Abstract

This paper aims to improve a ®nite element model of a
golf club by using measured experimental natural fre-
quencies and mode shapes. Only the low frequency
dynamics of the club are considered, making the
improved model suitable for studies of the dynamics of
the swing. The shaft was modelled using beam elements
and the head was represented as a rigid body. The
natural frequencies of the club were measured and
compared to those predicted from the analytical model.
The ¯exibility properties of the shaft were modelled
using the generic parameter approach. These parameters
and the inertia properties of the head were estimated
from the measured data to produce an improved
analytical model. Subset selection was employed to
determine those characteristics of the club that were
poorly modelled. The inertia about the shaft axis and the
shaft ¯exibility, particularly the torsional stiffness, have
been identi®ed as the most likely to be in error.

Introduction

The quality of the dynamic response of a golf club can
have a considerable impact on the `feel' of the club and
the quality of the contact with the ball. Matching the
shaft to a player's swing may increase the impact
velocity, although in practice this effect is probably
small. The size and shape of the `sweet spot' is related to
the natural modes of the club: hitting the ball within the
`sweet-spot' will excite few modes of the club and leave
the golfer more satis®ed with his shot. Horwood (1994)
discussed the dynamics of the shaft in a qualitative
manner and described the in¯uence of shaft ¯exibility
and the mass distribution of the head during the swing.
The dynamics of the club relate directly to the shaft and
the mass and inertia properties of the club head. The low
frequency range is of most interest during the swing, and

within this range the head may be assumed rigid. Higher
frequencies will be of interest during the impact between
the club and the ball, but these are not considered
further here.

The modelling of the `static' club, that is when the grip
is stationary, is considered as a ®rst step to modelling its
dynamics through the swing. One dif®culty in the analysis
and testing golf clubs is the boundary condition at the
grip; if the analysis is required to simulate the club during
the swing then the interface between the grip and the
golfer must be considered. Mather (1996) and Swider
et al. (1994) tried to replicate this boundary condition in
static tests. The approach here is somewhat different since
the purpose of the current work is to validate the model of
the club. Thus, it is preferable to ®x the grip end of the
club so that the boundary condition is less uncertain. The
grip is removed so that the shaft is clamped directly. Once
the ®nite element model of the clamped club has been
validated, this model may be used in further studies by
modelling the golfer's grip over a range of stiffnesses. The
effect of different mass distributions of the club head or
shaft ¯exibility on the torsion and bending of the shaft
during the swing may also be simulated. These simula-
tions can also include the effects of gyroscopic stiffening
that may be included more accurately based on the
updated ®nite element model.

Finite element modelling and modal testing were
performed on two clubs, a wood and an iron, although
only the wood is considered in this paper. The club has a
TI Apollo Acculite steel shaft and a Bioedge series no. 1
wood head. The authors previously updated the ®nite
element model of both clubs using only the inertia
properties of the head as unknown parameters (Friswell
et al., 1996, 1997); this paper considers updating the
¯exibility properties of the shaft in addition to the inertia
properties.

Finite element modelling

A simple beammodel

One of the ®rst questions to be answered when modelling
golf clubs is the type of element that should be used.

B 0 1 9 0 0 0 1
Journal No. Manuscript No.

Dispatch: 25.5.98 Journal: Sports Engineering

Author Received: No. of pages: 9B

Correspondence:
Dr M. I. FriswellDepartment of Mechanical Engineering,
University of Wales Swansea, Swansea SA2 8PP, UK. Tel.:
01792 295217. Fax: 01792 295676. E-mail: M.I.Fri-
swell@swansea.ac.uk

Ó 1998 Blackwell Science Ltd · Sports Engineering (1998) 1, 000^000 1



Swider et al. (1994) used shell elements to model a
composite shaft and head, but while this makes the
incorporation of geometry changes relatively easy, it
should not be thought that this method will necessarily
produce an accurate model. First, the frequency range of
interest for the clubs is very low, and is determined by the
frequencies that have some effect on the club dynamics
during the swing and on impact with the ball. Within this
frequency range the modes will involve the bending of the
shaft and plate representations of the shaft are therefore
not really required. Similarly, within the frequency range
of interest, the head will act as a rigid body: the ¯exible
modes of the head will be at very high frequencies. The
accuracy of the shell and brick models rely on the
accurate measurement or estimation of the shaft thick-
ness and the geometry of the head. Iwata et al. (1990)
used three-dimensional brick elements to model the
impact between the ball and club. This approach may be
necessary during impact, although the deformation of the
ball is far larger than the deformation of the head.

The approach taken in this paper is to produce a
simple model of the shaft using beam elements for the
shaft and a rigid body (i.e. just the mass and inertia
properties used) for the head. Brylawski (1994) used a
similar approach, but modelled the shaft as a continuous
beam using partial differential equations, rather than the
®nite element modelling approach adopted here. The
uncertain parameters in this model will be identi®ed
from measured data.

The element matrices involve two nodes and six
degrees of freedom per node. The element matrices are
assembled from the standard bending elements in two
planes, the shaft torsion element and the axial extension
element (see, for example, Dawe, 1984). Within the
element it is assumed that there is no interaction
between these four vibration mechanisms. Shear effects
could be included in the bending elements, but are likely
to be small and are therefore neglected.

Estimating the inertia matrix

The main dif®culty with modelling the head as a rigid
body is the estimation of its inertia matrix with respect to
axes ®xed at the end of the shaft. The approach adopted
by Johnson (1994) was to measure the inertia matrix
directly. Measuring the inertia should produce reason-
able estimates, but is time consuming; it requires an
isolated club head and will inevitably still contain errors.
Since the inertia matrix is available for updating, it will
suf®ce to produce a reasonable estimate of the inertia.

This is readily available from a ®nite element model of
the club head (Iwata et al., 1990; Swider et al., 1994) or
from a CAD model (Mitchell et al., 1994). In this paper
we use an initial estimate of the inertia matrix based on
all the mass of the head being located at a single point.
This point will be slightly further away from the end of
the shaft than the centre of gravity. If the position of the
head mass from the end of the shaft is (xm, ym, zm) where
the x-axis direction is along the shaft, then the inertia
matrix is

m
y2

m � z2
m xmym xmzm

xmym x2
m � z2

m ymzm

xmzm ymzm x2
m � y2

m

24 35 �1�

where m is the mass of the head. The choice of the y and
z axis directions is arbitrary, save that they are perpen-
dicular to the shaft (the x-axis). The results from the
model will not depend on the choice of axis directions,
although symmetry in the club response can be retained
if the z direction is chosen to be along one of the
principal axes of the club head. In the model this implies
that ym � 0 and only one pair of the off-diagonal
elements in the inertia matrix is nonzero. By the
symmetry of the club there will be pure bending modes
in the x±z plane, and this will be demonstrated in the
example. In the experiment, the principal axes of the
head will not be known exactly, but can be roughly
estimated from its geometric properties. Slight errors in
exciting the club along the principal axis of the head will
excite modes in both planes, but the modes in the plane
closest to the excitation direction will dominate in the
response and may easily be identi®ed.

The finite element model of a golf club

Consider the model of a golf club with a TI Apollo
Acculite steel shaft and a Bioedge series no. 1 wood head.
The shaft was split into segments of constant diameter
and the thickness values were obtained by cutting open a
shaft specimen. Note that the ®rst shaft segment does
not include the length that is clamped. Similarly the last
shaft segment does not include the shaft incorporated
into the head. The head mass is taken to be 232 g,
located at a position (xm, ym, zm) � (40, 0, 20). This
gives an inertia matrix of

0:93 0 1:86
0 4:65 0
1:86 0 3:72

24 35� 10ÿ4 kg m2 : �2�
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This estimate of the head inertia is likely to be quite
inaccurate; a more accurate model could be obtained
from a detailed analysis of the head geometry. However,
the estimate is good enough to initialise the identi®cat-
ion process to be described later. The shaft was modelled
using beam elements based on a tube of constant
diameter and thickness for each element, using a total
of 26 elements and 156 degrees of freedom. The last
shaft segment was covered by a plastic sleeve that was
modelled as a metal shaft element whose bending
stiffness only was multiplied by 3, based on the approx-
imate thickness of the plastic and ratio of Young's
modulus of plastic and steel. Typical material properties
for steel were used, namely a Young's Modulus of
210 GN m±2, a density of 7800 kg m±3 and a shear
modulus of 80 GN m±2. The natural frequencies are
given in Table 1 and mode shapes are shown in Figs 1
and 2 for this model.

As expected, since the z direction has been assumed to
lie along a principal inertia axis of the head, there are
modes that just involve bending in the x±z plane. The
®rst bending mode in the x±y plane does not involve
much coupling with the torsional modes, but the higher
modes show great coupling between bending in the x±y
plane and torsion.

Errors in the finite element model

The ®nite element model was used to calculate the
measured outputs and also the sensitivity of those
outputs to changes in the unknown parameters. The
errors in the model of the club can arise from three main
areas which will now be described brie¯y.

Model structure errors
These errors occur when the governing physical equa-
tions or principles are uncertain or complex. For
example, the model may be assumed to be linear
although the actual structure behaves in a nonlinear
way. For the golf club, it may be that the beam and rigid
mass/inertia model is not suf®ciently accurate and that
shell and brick elements would be better. The end of the
shaft, where the grip would be, is assumed to be ®xed,
but some ¯exibility may be present in the experiment.
Damping is very dif®cult to model, and in many
numerical models is ignored completely.

Table 1 Initial, experimental and updated natural frequencies (Hz) of the wood. Note the axial mode was not used in the updating

Updated model for best parameter subsets of different sizes

Experi- Initial
Plane mental Model 1 2 3 4 5 6 7

z 4.45 4.53 4.53 4.53 4.52 4.52 4.52 4.48 4.46
y//x 4.50 4.53 4.53 4.53 4.53 4.53 4.53 4.49 4.46
y//x 49.0 49.0 44.3 48.5 48.1 47.7 49.0 49.2 49.1
z 49.5 52.6 52.6 52.6 52.4 50.0 49.4 49.9 49.4
y//x 66.0 90.8 67.7 66.8 67.2 67.1 66.0 66.1 66.0
z 132 131 131 131 130 130 130 131 132
y//x 156 230 162 152 153 152 157 158 157
z 267 286 286 286 274 275 273 273 273
y//x 299 452 311 304 290 291 293 293 293
axial 467 471 471 471 471 471 471 466 464

Fig. 1 Vertical modes from the initial ®nite element model of
the club (only the x-z plane is shown)
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Model parameter errors
Even if the underlying structure of the model was
correct, some of the parameters may be uncertain. For
example, if the boundary is assumed to be ¯exible it is
often dif®cult to theoretically estimate the stiffness of
the connection. In the case of the golf club, the inertia
of the club head is dif®cult to estimate accurately.
These errors are most amenable to correction by
model updating.

Discretization errors
Most numerical models of structures, including ®nite
element analysis, approximate the motion of the contin-
uous structure by a discrete system. If the level of
discretization, that is the number of degrees of freedom,
is insuf®cient then the model order will be too small to
accurately model the dynamics of the structure. The
requirements of model updating are considerably more
stringent than straightforward design analysis. The
natural frequencies should be fully converged, that is
the difference between the predicted frequencies, and
those for a model with a very large number of degrees of
freedom should be much smaller than the difference
between the predicted and measured frequencies. In this
paper we have ensured that enough elements are used so
that the discretization errors are small.

Experimental modal analysis

Experimental modal analysis (EMA) is now an estab-
lished technique for many industries, for example
automobile and aerospace applications. The idea is to
apply a force to a structure, and from measurements of
the force applied and the response, to estimate the
natural frequencies, damping ratios and mode shapes of
the structure. The purpose here is not to review EMA in
detail but to highlight the special features in testing and
updating golf clubs. Ewins (1984) gave more detail on
vibration testing and modal analysis.

Errors in experimental data

The quality of measured time series data has improved
considerably with the arrival of computerised data acqui-
sition systems. In the hands of an experienced operator,
the algorithms available to estimate the frequency
response functions and then the natural frequencies,
mode shapes and damping ratios are very accurate.
However, even with modern, sophisticated systems,
errors may still occur.

The data obtained from the structure under test will
be used to update the parameters of an analytical model.
It is therefore vital to predict, and if possible, eliminate
the likely errors in the measurements which may be
either random or systematic. Random errors may be
reduced by careful experimental technique, the choice of
excitation method and by averaging the data. Impact
excitation such as hammer excitation puts very little
energy into a structure and can produce noisy data.
Identi®cation, including modal extraction, work satis-

Fig. 2 Combined horizontal and torsional modes from the
initial ®nite element model of the club ) y is the horizontal
de¯ection and f is the torsion angle (the modes are scaled so
that the x and y directions have the same scaling and / is
between � 30°)
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factorily providing the noise is random, with a zero mean
and a large quantity of data used to identify a relatively
small number of parameters.

Systematic errors are dif®cult to remove from the data
and are a serious problem in model updating. These
errors arise from many sources, including inadequate
modelling of the mounting of the club, mass loading due
to the accelerometers, a poorly designed stinger and
leakage. Two major problems have to be considered in
the case of a golf club. The ®rst is that the mass loading
of the accelerometer will be signi®cant when the
accelerometer is placed on the shaft. Although the
accelerometer used only weighs 3.5 g, this compares to a
weight per unit length of 0.56 g cm±1 at the lightest part
of the shaft. This mass loading due to the accelerometer
makes the accurate measurement of mode shapes on the
club very dif®cult. A laser system could be used to
measure the response of the club, without any mass
loading, although the large de¯ections of the club may
cause problems. Strain gauges could also be used,
although the gauges will slightly increase the mass and
stiffness of the club. Using a shaker to apply the
excitation force, via a stinger, can add stiffness to the
structure. Only the axial force from the shaker is
measured and the assumption is that no other force is
transmitted to the club. Since the shaft is very ¯exible,
and many modes involve signi®cant bending, the re-
quirement that the stinger should be ¯exible in bending
is dif®cult to satisfy. An alternative is to excite the club
using an instrumented hammer. This works well at the
head, although the ¯exibility within the shaft makes
triggering the analyser very dif®cult on the shaft.

Errors in the measured data can never be eliminated.
The estimates of the natural frequencies are usually very
good, whereas mode shape and damping estimates
usually contain signi®cant noise. Although the individual
elements of the mode shape vector contain relatively
high levels of noise, the general shape of the mode will
be quite accurate. The object is to reduce the effect of
these errors by good experimental technique. There is
no substitute for high quality measured data.

Measurements from a golf club

The grip was removed from the clubs which were then
clamped using a purpose-made block. This block con-
sisted of a hole only slightly larger than the shaft
diameter and a slot to allow the club to be rigidly
clamped. The club was excited using hammer excitation
at the head and by measuring the response at the head.

The impact and response measurements were taken in
the same direction during each test and the tests were
repeated in two orthogonal directions. The club was
arranged so that the vertical, z, direction was approxi-
mately parallel to one of the principal axes of inertia of
the head. This would decouple the vertical modes from
the horizontal/torsional modes. Of course, the principal
axis could only be approximated and the alignment error
caused excitation of the vertical modes when the club
was excited horizontally, and vice-versa. In practice the
out of plane modes were visible as low level peaks in the
frequency response functions and were easily identi®ed.
Frequency bandwidths of 10, 100 and 500 Hz were used;
the lower frequency range was required to accurately
estimate the ®rst two modes at around 5 Hz. The natural
frequencies were easily estimated directly from the
frequency response functions since the club was very
lightly damped. The modes were well separated in each
direction so the experimental and analytical modes may
be paired. More formal methods of pairing modes, such
as the modal assurance criterion (Allemang & Brown
1982) could not be employed because of the dif®culty in
obtaining mode shapes due to the mass loading of the
accelerometer. Table 1 shows the ®rst 10 natural fre-
quencies of the wood and a comparison with the ®nite
element model estimates.

Finite element model updating

As demonstrated in the previous sections, the dynamic
response of the club is not identical to the predicted
response. Ideally, if the measurements are accurate, the
uncertain parameters of the numerical model should be
changed to more closely re¯ect the properties of the
physical structure; this is model updating. Mottershead
& Friswell (1993) gave an extensive survey of the ®eld
and Friswell & Mottershead (1995) outlined most of the
popular methods in detail.

Parameters for updating

A critical decision in model updating is the choice of
parameters to update. The primary unknowns will be
changes in the inertia properties of the head, and the
¯exibility properties of the shaft. The change in the
inertia properties of the head are given by

dIxx dIxy dIxz

dIxy dIyy dIyz

dIxz dIyz dIzz

24 35 �3�
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A global term for the shaft, namely the change in stiffness
of the shaft, is used. Thus the shaft stiffness matrix, K,
which is the same as the club stiffness matrix, is:

K � �1� hk�K0 �4�

where K0 is the stiffness matrix of the initial ®nite
element model, and hk is the parameter to be updated.

The remaining shaft parameters are based on the
generic approach. The generic model updating approach
is based on the idea of adjusting the mode shapes and
natural frequencies of elements or substructures (Glad-
well & Ahmadian, 1995). For example, a joint model that
requires updating may be represented as a substructure.
The mode shapes of the initial ®nite element model could
be assumed correct, and the natural frequency of the ®rst
mode, typically a bending mode, could be updated. Thus
the bending ¯exibility of the joint is changed to produce a
model that better represents the measurements. The
element mass matrices are assumed to be correct.

In the case of the golf club, the substructure is taken as
the whole shaft. Thus the bending stiffness of the shaft
bending and torsion (and possibly axial) modes are
updated. Since the shaft is axisymmetric the bending
modes will occur in pairs, that is bending modes with the
same natural frequency in orthogonal planes perpendic-
ular to the shaft cross-section. Thus reference to the ®rst
bending mode of the shaft will implicitly mean the two
associated bending modes. Of course, attaching the club
head will break the axisymmetry of the shaft, and cause
the natural frequencies of the bending modes in each
plane to be different. Furthermore, the bending and
torsion vibration will be coupled.

The stiffness matrix for the shaft may be decomposed as

K � VKVT �5�

where V is the matrix of eigenvectors of the stiffness
matrix, normalized to unit length, and L is a diagonal
matrix of the corresponding eigenvalues. The elements
of L are available for updating, and the sensitivity of the
stiffness parameters to these parameters is easily com-
puted. The corresponding parameters for updating are
the relative changes in the eigenvalues, and are de®ned in
a way analogous to eqn (4).

A sensitivity analysis

If measured eigenvalues (natural frequency squared) only
are used for updating, then the sensitivity matrix is easily

calculated using the eigenvalue derivatives (Fox &
Kapoor, 1968). The sensitivity of the natural frequencies
to the uncertain parameters is easily obtained from the
eigenvalue derivative. Table 2 shows the sensitivity
matrix for the ®rst nine natural frequencies to the
uncertain parameters, based on the initial ®nite element
model of the wood. Of particular note are the zero
elements in this matrix. The natural frequencies are
insensitive to the inertia terms Ixy and Iyz because of the
symmetry imposed by the z axis being coincident with a
principal axis of inertia of the head. Furthermore, we will
assume that we have the z axis aligned correctly so that
these parameters are forced to remain zero. The ®rst
bending modes in both directions are relatively insensi-
tive to the inertia terms since these modes do not involve
much rotation at the club head. The natural frequencies
of the vertical (z direction) modes are only sensitive to Iyy

and the horizontal/torsional modes are only sensitive to
Ixx, Izz and Ixz. Thus the dynamics of the two planes
decouple, although it is important to remember that this
occurs because of the alignment of the z axis.

The sensitivity of the generic shaft parameters shows
the expected trend, for example the ®rst modes of the
club are most sensitive to the ®rst bending mode of the
shaft. For the second shaft mode, the horizontal bending
and torsion mode couple, and both coupled modes are
sensitive to the generic parameter corresponding to this
shaft parameter. It should be noted that the vertical
bending modes are not coupled to the torsional modes,
and so are insensitive to the shaft torsional mode generic
parameters. Furthermore, the modes considered are
relatively insensitive to the second and higher torsional
shaft modes, and only the ®rst torsional mode of the
shaft are used for updating.

Updatingmethods and subset selection

Friswell & Mottershead (1995) described a large number
of updating techniques but the weighted least squares
method based on the natural frequencies alone are used
in this work. The method allows a wide choice of
parameters to update and both the measured data and
the initial analytical parameter estimates may be weight-
ed. This ability to weight the different data sets gives the
method its power and versatility, but requires engineer-
ing insight to provide the correct weights.

In general, mode shape data contains far more errors
than the natural frequencies, and so the information lost
by not measuring mode shapes is relatively small. In
addition the mode shapes are not very sensitive to
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changes in the updating parameters. For example, the
®rst mode of a golf club will be approximate to the
standard ®rst bending mode of a beam, for a large range
of shaft cross sections and head properties. This prior
knowledge may be incorporated into the updating
algorithm through the weighting matrices.

The weighting of changes from the initial parameters
is often used to regularise the solution to the ill-
conditioned updating problem. This is often necessary
because there are only a few measured natural frequen-
cies available for updating, but there are many more
potential parameters. Thus the problem is under-deter-
mined and extra constraints have to be added. The
alternative, used here, to assume only a subset of
parameters is in error (Friswell et al., 1997). For a given
size of parameter subset, the parameters are chosen that
produce the smallest residual. Normally this subset has
to be chosen using suboptimal methods, but the number
of parameters in this example is small enough to ®nd the
best subset by an exhaustive search of all the subsets of a
given size. The subset is also often chosen based on the
sensitivity matrix of the initial model, but in this paper,
the difference between the predictions of the initial
model and the experimental results are too great to do
this. Thus the parameters for each potential subset are

updated, and the converged residual used to choose the
best subset.

Updating themodel of the wood

Only the measured natural frequencies were used to
update the golf club model. The sensitivity matrix is
easily calculated using the eigenvalue derivatives with a
model reduced using the ®rst 25 modes of the initial
model. An over-determined problem is generated by
choosing the size of the parameter subsets as smaller
than the number of measurements. The measurement
weighting matrix is a diagonal matrix whose elements are
the inverse of the natural frequencies squared. This
minimizes the size of the relative natural frequency
errors, and weights all natural frequencies equally. The
plane of vibration of the analytical modes is determined
at each iteration, to ensure that the analytical and
experimental natural frequencies are paired correctly.
Lower bounds are placed on the parameters, namely that
the inertias cannot decrease below half of the initial
values, the shaft stiffness cannot reduce by more than
10%, the head mass cannot reduce by more than 30 g
and the eigenvalues of the generic shaft parameters
cannot reduce by more than 20%. These bounds are

Table 2 Sensitivities of the natural frequencies to the uncertain parameters for the wood

Mode number, vibration plane

Sensitivity
with respect to 1, z 2, y//x 3, y//x 4, z 5, y//x 6, z 7, y// 8, z 9, y//x

hk 2.3 2.3 25 26 45 65 115 143 226
Ixx 0 ) 1.9 ´ 10)3 ) 2.7 ´ 104 0 ) 2.8 ´ 105 0 ) 1.2 ´ 106 0 ) 4.9 ´ 106

Iyy ) 4.2 ´ 101 0 0 ) 2.6 ´ 104 0 ) 5.6 ´ 104 0 ) 2.7 ´ 104 0
Izz 0 ) 4.2 ´ 101 ) 1.6 ´ 104 0 ) 4.9 ´ 103 0 ) 2.4 ´ 105 0 ) 1.2 ´ 106

Ixy 0 0 0 0 0 0 0 0 0
Ixz 0 ) 5.7 ´ 10)1 ) 4.2 ´ 104 0 7.5 ´ 104 0 1.1 ´ 106 0 4.7 ´ 106

Iyz 0 0 0 0 0 0 0 0 0
Head
Mass (m) ) 9.2 ) 9.2 ) 0.11 ) 0.44 ) 4.9 ) 3.0 ) 5.6 ) 6.8 ) 5.5
Generic
Parameters
1stTorsion 0 4.1 ´ 10)5 5.0 0 15 0 10 0 11
1st Bending 2.2 2.2 0.18 0.28 0.15 0.037 0.11 0.40 0.43
2ndTorsion 0 7.7 ´ 10)6 0.93 0 2.8 0 1.8 0 1.6
2nd Bending 0.016 0.017 16 24 9.2 0.10 12 10 1.2
3rdTorsion 0 1.8 ´ 10)6 0.22 0 0.66 0 0.42 0 0.39
3rd Bending 2.3 ´ 10)3 2.2 ´ 10)3 0.030 5.1 ´ 10)4 12 49 57 8.6 44
4thTorsion 0 1.1 ´ 10)6 0.13 0 0.39 0 0.24 0 0.20
4th Bending 0.010 0.010 1.2 1.4 0.41 3.5 14 81 89
5thTorsion 0 4.0 ´ 10)7 0.048 0 0.15 0 0.092 0 0.084
5th Bending 1.3 ´ 10)3 1.3 ´ 10)3 7.6 ´ 10)3 0.049 2.9 8.5 2.2 8.7 ´ 10)5 39
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really quite generous, in that it should be possible to
estimate the parameters with more accuracy than the
bounds imply. The initial values of the head inertias are
likely to be very low, because the inertia matrix was
estimated from the position of the centre of gravity of
the head. The inertia parameters should therefore
increase substantially.

Table 3 shows the best parameter subsets and the
updated parameters. The updated natural frequencies for
these parameter subsets are given in Table 1. The best
parameter subset does tend to retain parameters chosen in
previous subsets, and this indicates the parameters that are
likely to be in error. The values of the updated parameters
remain reasonably consistent as more parameters are
added. As expected, the updated natural frequencies
become closer, on average, to the measured natural
frequencies as the number of parameters increases.

Conclusions

The golf club is a fascinating structure. The shaft is
symmetrical, which would produce repeated natural
frequencies if tested in isolation. The addition of the
asymmetrical head causes the natural frequencies to
separate, and to couple vibration in bending and torsion.
By choosing a frame of reference so that one axis is
aligned with the principal axis of inertia of the head, the
bending vibration in one plane is decoupled from the
torsion. This decoupling is a vital aid to inferring the
measured mode shapes. The usual modal analysis
techniques using a roving accelerometer or roving
hammer excitation, are impractical on the golf club.

Strain gauges may be suitable, however, and this is the
subject of further work.

The natural frequencies from the initial ®nite element
model showed considerable errors when compared to
measured frequencies. By updating generic parameters
relating to the shaft stiffness and the inertia properties of
the head, the agreement between the measurements and
the analytical model may be improved. The inertia about
the shaft axis and the shaft ¯exibility, particularly the
torsional stiffness, have been identi®ed as those most
likely to be in error. The updated model may be used to
produce more accurate estimates of the club response
during the swing. Parametric studies of the effect of
changes in geometry and mass distribution may be
undertaken with con®dence by using a validated model.
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