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MINI-REVIEW Presynaptic autoreceptors
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Presynaptic axon terminals of all known neuronal families

possess on their external membrane release-regulating

receptors sensitive to the neuron's own transmitter and

which have been termed autoreceptors (Starke et al. 1989).

Autoreceptors coexist with release-regulating heterorecep-

tors, which are activated by transmitters/modulators other

than the neuron's own transmitter (Vizi and Kiss 1998).

Particularly well studied are the a2 adrenergic autoreceptors,

generally viewed as part of a physiological mechanism

mediating feedback inhibition of noradrenaline release

(Langer 1974). Different subtypes of the a2-adrenoceptor

are present on noradrenergic terminals in the peripheral and

central nervous system of different laboratory animals (see

the following article by Starke and references therein). It

should be added that inhibition of release by a2-autoreceptors

also occurs in noradrenergic terminals of the human cerebral

cortex where the autoreceptors were characterized as a2A

subtype (Raiteri et al. 1992).

Over the last two decades the above `presynaptic

autoreceptor theory' has sometimes been questioned (see

the following article by Kalsner and references therein;

Laduron 1998). Based on the failure to demonstrate axonal

transport of a2 receptors to synaptic boutons, Laduron

(1998) challenges the very existence of a2-adrenoceptors on

presynaptic noradrenergic terminals. However, a2-adreno-

ceptors do exist on noradrenergic axon terminals in the

CNS, as demonstrated by a technique that, using up±down

superfused thin layers of synaptosomes, permits unequivocal

functional demonstration that a given receptor type or

subtype is localized on a given axon terminal family (Raiteri

et al. 1974; Raiteri and Raiteri 2000). By exploiting

superfused synaptosomes, not only the presence of release-

inhibiting a2-adrenoceptors on noradrenergic terminals

could be demonstrated (Mulder et al. 1978), but also that

of muscarinic M2 receptors on cholinergic terminals (Marchi

and Raiteri 1985), of GABAB receptors on GABAergic

terminals (Bonanno and Raiteri 1993), of rat 5-HT1B (Maura

et al. 1986; GoÈthert et al. 1987) and human 5-HT1B (Maura

et al. 1993; Fink et al. 1995; Schlicker et al. 1997) receptors

on rat and human serotonergic terminals.

In the present issue, Kalsner clearly accepts that

noradrenergic axon terminals possess a2-adrenoceptors and

that these can be activated by exogenously administered

noradrenaline or a2 agonists; however, he does not believe

that a local regulation of transmitter release by autoreceptors

`is routinely operative at axon terminals', thus questioning

the physiological relevance of a2-autoreceptors as well as of

other autoreceptors. I have the impression that the

arguments raised by Kalsner over the last decade and, in

particular, in the following article are relevant and deserve

to be carefully considered.

I must immediately recognize that our superfusion

technique, although often considered as the preparation of

choice to localize presynaptic receptors and characterize

their pharmacological pro®le, can be of little help in solving

the controversy on the physiological signi®cance of

autoreceptors because, in this system, the endogenously

released transmitters are rapidly removed from the release

sites. The question needs to be approached by using nervous

tissue preparations in which the transmitter released in the

synaptic space can reach concentrations suf®cient to activate

the receptors present on presynaptic terminals. Nevertheless,

it has to be stressed that no experimental conditions can

obviously be physiological: therefore, the debate on the

physiological relevance of autoreceptors will possibly

continue for several years.

In the meantime, I would like to make a few considera-

tions, in part related to the above controversy and, in part,

aimed to point out some general aspects of receptor-

mediated release regulation.

One aspect that may deserve consideration is that

presynaptic autoreceptors coexist with transporters for

transmitter reuptake on axon terminals and that the af®nities

of autoreceptors and transporters for the released transmitter

are very similar. As the physiological role of transporters

has not been questioned, it seems dif®cult to explain why the

transmitter present in the synapse should selectively bind to

transporters versus autoreceptors. On the other hand, one

could hypothesize that autoreceptors are extrasynaptic, i.e.

out of the active zone: if this is the case, autoreceptors could

not regulate routinely transmitter release but they would

come into play only following transmitter `spillover'. It

might be interesting to use tissues from animals lacking the
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noradrenaline transporter and to see if a2-adrenoceptor

antagonists are able to enhance the evoked release under

stimulation conditions in which the compounds are

ineffective in wild type animals (i.e. single-pulse or POP

stimulation).

It has been observed that agonists at presynaptic

metabotropic release-inhibiting receptors, when exogen-

ously added to superfused synaptosomes, can inhibit

transmitter release only when this occurs by exocytosis

and not by transporter reversal (Levi and Raiteri 1993).

Furthermore, the release modulation occurs when vesicular

exocytosis is `quasi-physiological', i.e. it is consequent to

mild depolarization and opening of voltage-sensitive Ca21

channels (VSCCs), not when it is triggered by Ca21

ionophores, which bypass VSCCs (Fassio et al. 1999) or

by hypertonic sucrose (Rosenmund and Stevens 1996).

Could such selectivity of modulation be suggestive of a

physiological function of autoreceptors? Could the proposed

strict relations between autoreceptors and VSCCs (thought

to be present in the active zone) suggest that autoreceptors

may not be extrasynaptic?

The above results are compatible with the idea that some

presynaptic auto- and heteroreceptors can interact with the

complex machinery of exocytosis (for a review see Parnas

et al. 2000). Due to the multiplicity of the proteins that seem

to be involved in the exocytotic process, understanding their

interactions with presynaptic receptors will be a formidable

task. In this context it must be stressed that the

autoreceptors constitute a numerous family whose compo-

nents work through quite diverse, though poorly understood,

mechanisms. Although we know enough about inhibitory

a2-autoreceptors, it is clear that release-stimulating iono-

tropic nicotinic autoreceptors work differently. Again, the

mechanisms underlying the stimulation or the inhibition of

glutamate release brought about by different subtypes of

metabotropic glutamate autoreceptors must of course be

quite dissimilar. In light of such ignorance, one should be

very cautious in extrapolating from a2 noradrenergic

autoreceptors to autoreceptors in general.

Transmitter coexistence in a same neuron is a frequent

phenomenon. In general a classical transmitter coexists with

one or more neuropeptides. Sometimes two classical

transmitters are costored in the same neuron, for instance

GABA and glycine in spinal cord interneurons that

co-release both transmitters onto motoneurons. Terminals

that co-release GABA and glycine possess two transporters

(Raiteri et al. 2001). It is unknown if these terminals also

possess two release-regulating autoreceptors, one for each

cotransmitter and if, in the positive, activation of one

autoreceptor selectively regulates the release of the

corresponding transmitter or that of both.

It is well known that, in electrically stimulated slices, the

potency of exogenous autoreceptor agonists decreases with

increasing frequencies of stimulation. The usual (and

seemingly obvious) explanation is that the exogenous

agonist has to compete for the autoreceptor with increasing

concentrations of endogenously released transmitter. This

may not be the only reason, however: in superfused

synaptosomes, where endogenously released transmitters

are rapidly removed before they can accumulate in the

vicinity of the autoreceptor, exogenously added agonists

gradually loose their potency as the extent of depolarization

increases. Why this occurs is unclear at present.

As mentioned above, a2-adrenoceptors exist as multiple

subtypes. The relative function of a2A/D- and a2C-adreno-

ceptors as release-regulating autoreceptors remains unclear,

even after the exploitation of knock-out mice (Hein et al.

1999; Scheibner et al. 2001). The use of knock-out animals

may in general help studies of autoreceptors and hetero-

receptors. One needs to be cautious, however, in selecting

the experimental model, due to the well known compensa-

tory mechanisms occurring in these genetically modi®ed

animals. Moreover, animals knocked-out for the receptor

subtype presumed to be the terminal autoreceptor, also lack

the same receptors sited elsewhere, including other axon

terminal families. As several transmitters are released when

a slice is stimulated electrically, the effects of knocking out

all these regulatory receptors are unpredictable. The use of

superfused synaptosomes may be particularly useful in

determining what receptor subtype among pharmacologi-

cally similar receptors is the autoreceptor candidate

(L'hirondel et al. 1998) or if, as a compensatory process,

a different subtype takes the place of the original

autoreceptor in the knock-out animal.

Autoreceptors coexist with heteroreceptors on the same

axon terminals. If autoreceptors are in general inhibitory,

heteroreceptors can either inhibit or enhance transmitter

exocytosis. A relatively unexplored aspect concerns the

cross-talks between coexisting auto- and heteroreceptors or

between heteroreceptors.

In the following two articles, arguments in favour (Klaus

Starke) and against (Stanley Kalsner) the physiological

relevance of a2-autoreceptors are provided. Some readers

will have a good opportunity to strengthen their own

opinions by removing their doubts; some may become more

doubtful; some may even start doubting. Personally, I feel

that all presynaptic auto- and heteroreceptors, even if

physiologically irrelevant, are gifts made by nature to

pharmacologists.
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