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Abstract

Stochastic matrix models are frequently used by conservation biologists to measure
the viability of species and to explore various management actions. Models are
typically parameterized using two or more sets of estimated transition rates between
age/size[stage classes. While standard methods exist for analyzing a single set of
transition rates, a variety of methods have been employed to analyze multiple sets of
transition rates. We review applications of stochastic matrix models to problems in
conservation and use simulation studies to compare the performance of different
analytic methods currently in use. We find that model conclusions are likely to be
robust to the choice of parametric distribution used to model vital rate fluctuations
over time. However, conclusions can be highly sensitive to the within-year
correlation structure among vital rates, and therefore we suggest using analytical
methods that provide a means of conducting a sensitivity analysis with respect to
correlation parameters. Our simulation results also suggest that the precision of
population viability estimates can be improved by using matrix models that
incorporate environmental covariates in conjunction with experiments to estimate
transition rates under a range of environmental conditions.
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INTRODUCTION

Population viability analyses (PVAs) have become increas-
ingly common in the conservation literature as mathematical
modeling tools have become more widely accessible to
wildlife managers and conservation biologists (e.g. Boyce
1992; Beissinger & Westphal 1998; Groom & Pascual 1998;
Reed er al. 1998; Mottis et al. 1999; Menges 2000). While a
wide variety of mathematical and statistical tools are available
to conduct PV As, matrix models remain popular because of
their relative simplicity and their potential for linking vital
rates directly to population dynamics. The goal of this paper
is to provide a review of statistical issues concerning the
formulation and analysis of stochastic matrix models in
conservation biology. Readers are encouraged to consult the
review papers cited above for a more general discussion of
the strengths and limitations of the various tools available for
conducting PV As, and the practical issues associated with
conducting PV As for a population in the wild.

Estimates of transition rates require at minimum N+ 1
years of data in order to estimate /V transition matrices.
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Frequently, time and monetary constraints limit the
researcher to two consecutive years of data collection
resulting in one set of transition rate estimates. In these
cases, one can conduct a deterministic analysis including:
calculation of the dominant eigenvalue to assess the
viability of the population, calculation of sensitivities and
elasticities to assess the relative importance of each
transition rate, and calculation of the stable age structure
and reproductive values associated with the estimated
transition matrix (Caswell 1989). Demographic data
collected for three or more consecutive years allow
calculation of multiple transition matrices, differing from
each other as a result of sampling variation and variation
in environmental conditions. A deterministic analysis
based on each estimated matrix will therefore often result
in very different conclusions (Bierzychudek 1999). How-
ever, a more typical approach to analyzing multiple sets of
transition estimates is to formulate a stochastic matrix
model under the assumption that the variation in vital
rates among matrices is due to fluctuating environ-
mental conditions.
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Stochastic matrix models are useful for exploring the
same types of questions addressed by a deterministic
matrix model. Simulation of population projections
provides a means of estimating a stochastic growth rate
and other measures associated with the viability of the
population, such as the probability of extinction. Simi-
larly, one can conduct a sensitivity analysis to determine
which rates have the greatest influence on the popula-
tion’s growth rate. Despite the popularity of stochastic
matrix models among conservation biologists, a review of
the literature indicates that several methods are currently
being used to formulate and analyze stochastic matrix
models without much thought being given to the relative
accuracy and precision of competing methods. Theoretical
or simulation studies comparing methods are rare.

In this paper, we review applications of stochastic
matrix models to problems in conservation, with a focus
on the methods used to formulate and analyze models. We
compare the performance of the different analytical
methods currently in use via simulation studies. Based
on our results, we offer recommendations concerning data
analysis methods that may depend on the quality, quantity
and nature of the available data. Models that explicitly
relate variability in vital rates to environmental variables
are suggested as a potentially more powerful alternative to
the descriptive statistical approach that most studies to
date have used.

MODEL CONSIDERATIONS

Long-term population dynamics

The basic form of a stochastic matrix model is given by:
N+1) = AN ©

where M) is a vector of age/size/stage classes, and A(2),
t=0,1, 2, ... is a set of transition or projection matrices
assumed to vary according to environmental fluctuations.
The resulting dynamics of the model depend on the
assumptions regarding the stochastic process generating
these transition matrices (Caswell 1989). Most applications
in conservation biology assume that the stochastic process
generating A(#) is a stationary (time-invariant) ergodic
Markov chain. In this case, the long-term dynamics of M)
will be independent of the initial state of the population,
M0). As tbecomes large, the log population size, log{ M%)},
will be approximately Gaussian distributed with mean
log{N(0)} + puz and variance o°¢ (Tuljapurkar & Orzack
1980; Heyde & Cohen 1985). Here, p is the long-term
stochastic growth rate of the population and & is the
“infinitesimal variance” of the process.

If important environmental variables fluctuate in a
cyclical manner, a periodic matrix model may be

appropriate (see, for example, Golubov er al. 1999). While
similar convergence properties apply in this case (Caswell
1989), the model is not inherently stochastic. Another
important consideration is whether or not to include
density dependence in the model. The long-term con-
vergence results discussed above do not apply for density-
dependent populations. Density-independent models are
often justified for populations that have been reduced to
levels well below their carrying capacity and are therefore
of concern to population managers. However, density-
independent models may not be appropriate for small
populations that are limited by habitat availability or for
populations that have become endangered as a result of
habitat fragmentation. In such cases, where habitat
destruction is the main cause of population decline,
predictors of future habitat utilization (e.g. current and
projected economic growth and zoning regulations) may
provide an alternative to demographic population model-
ing for assessing long-term population viability (C.
Wilcox, personal communication). Throughout the rest
of this paper, we will assume the underlying population
model is density independent, with transition matrices
generated by a stationary ergodic Markov chain.

Number of age/stage classes

The first step in formulating a stochastic matrix model is
to determine an appropriate number of age/stage classes.
Ideally, stage/age classes should only group individuals
with similar demographic rates. This can be accomplished
by subdividing the population into many classes. How-
ever, increasing the number of classes decreases the
amount of data per class for estimating the class’s
transition rates. Vandermeer (1979) and Moloney (1986)
offer objective methods for balancing these two conflict-
ing goals. Alternatively, Easterling et al (2000) have
developed a continuous state-discrete time modeling
approach that does not require specification of size/stage
classes. We will not give further consideration to this
problem here.

Correlation among vital rates within years

Correlation among vital rates arises when environmental
variation affects multiple vital rates simultaneously. For
example, severe winter snowfall may decrease both adult
and juvenile survival rates, resulting in a positive
correlation between these parameters. Several recent
studies of populations across time and space have shown
significant, and mostly positive, within-year correlations
among transition rates (Horvitz & Schemske 1995;
Oostermeijer et al. 1996). Tuljapurkar’s approximation
(1990) to the stochastic growth rate, [, provides a means
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for investigating the effect of within-year correlation. In
the case of temporally independent fluctuations, the
stochastic growth rate is approximately given by:

1
n =~ 10g(7\.0) — EGZ,

(%) (%)Cov(aij,ﬂu) (2)

where Ag is the dominant eigenvalue of the matrix of mean

o
641»]»

is the sensitivity of A to parameter @;; and the sum is over
1<, j, b [<n, where n is the dimension of M. Clearly,
positive correlation has a negative effect on the long-term

1
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rates,

growth rate of the population, while negative correlation
tends to dampen the effect of vital rate fluctuations.
Positive correlation among parameters can significantly
alter even short-term population projections, and therefore
incorrect assumptions regarding the degree of correlation
can have far-reaching consequences for viability calcula-
tions (Ferson & Burgman 1995; Cisneros-Mata ez al. 1997).
Furthermore, since positive correlation increases 62, the
variance of the asymptotic distribution of log population
sizes, correlation can affect the degree to which one can
expect to predict future dynamics.

Autocorrelation

If environmental variables associated with vital rates are
correlated over time (e.g. fluctuations in food supply may
be correlated from one year to the next), then one may
expect vital rates to exhibit autocorrelation. Long time
series are required to determine if autocorrelation exists.
Swanson (1998) analyzed 175 vertebrate and 88 precipita-
tion data sets and found using resampling techniques that
15 years of data were necessary to stabilize estimates of the
autocorrelation present in the data set. Since data are rarely
sufficient to determine the degree to which vital rates are
temporally correlated, most stochastic matrix models
assume vital rates are uncorrelated over time. Those
studies that have included autocorrelation have typically
done so using an autocorrelation matrix that defines the
probability of choosing any given matrix in terms of the
previously chosen matrix (Silva et al. 1991; Canales et 4.
1994; Dixon et al. 1997). Including autocorrelation did not
severely affect the conclusions of these studies, indicating
that temporal correlations are probably less important than
within-year correlations among rates. These results support
theoretical studies that have shown that p is typically not
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affected much by autocorrelation (Tuljapurkar 1982). On
the other hand, studies have shown that positive auto-
correlation can have a large effect on o~ and on the rate of
convergence of the total population size to a lognormal
distribution (Tuljapurker & Orzak 1980; Tuljapurkar 1982;
Runge & Moen 1998).

ESTIMATION OF pn AND THE PROBABILITY OF
EXTINCTION, Pexr

Demographic data collected for N+ 1 years lead to estimated
transition matrices Ay, A, ..., An. Stochastic matrix models
parameterized from such data are typically used to estimate
K, 02, extinction probabilities and sensitivities or elasticities
of pn to changes in demographic rates. Several analytical
methods have been proposed to calculate these quantities.
However, it is unclear which of these methods provide the
most accurate and precise estimates.

A population’s long-term growth rate and its prob-
ability of extinction can be estimated by simulating
equation 1 on the computer. The simplest method of
simulating population trajectories is to randomly sample
from the N estimated transition matrices to project the
population for each simulated year. We will refer to this
approach as the “random transition matrix” (RTM)
approach. Most eatly analyses of empirical data sets [eight
out of 11 applications of matrix models reviewed by
Nakaoka (1996)] used this approach.

Alternatively, one can formulate a multivariate distribu-
tion to describe how vital rates vary over time and then
randomly draw values from this distribution to simulate
population dynamics. We refer to this method as the
“parametric matrix method” (PMM). This approach has
become popular with the availability of several population
viability analysis software packages that allow the user to
select from a limited menu of distributions [e.g. RAMAS/
Stage (Ferson 1994), RAMAS/Metapop (Akgakaya 1997),
INMAT (Mills & Smouse 1994), ALEX (Possingham &
Davies 1995), VORTEX (Lacy 1993), and GAPPS (Harris
et al. 1986)]. It should be noted that the above programs
differ in their underlying structure and capabilities; see, for
example, Mills ez al. (1996), Brook ez al. (1999) and Brook ez
al. (2000a,b) for a comparison of different PVA packages.
In particular, several of the packages use an individual-
based formulation of the transition matrix model to
implement demographic stochasticity.

Finally, one can estimate p and &~ analytically using
Tuljapurkar’s “small fluctuations approximation” (SFA),
given by equation 2, and an estimate of extinction risk can
then be calculated using these estimated parameters and a
diffusion approximation (Lande & Orzack 1988; Dennis et al.
1991; Cisneros-Mata et al. 1997). All three of these methods
have been applied to problems in conservation (Table 1).
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Table 1 A selection of stochastic matrix models applied to problems in conservation biology, to illustrate the diversity of methods and assumptions that have been used.

Species Type of matrix Number of sets Purpose of the Methods used Autocorrelation Distribution/correlation Covariates Comments
(references) (number of classes) of transition  model included (Y/N) (if PMM used)
estimates
Semibalanus Age (4) 4 (fecundity)  Estimate W, Puy RTM No NA Ice Year (Y/N) Metapopulation
balanoides 2 (survival —  Assess the model
(barnacle); with and importance of incorporating
Wethey (1985) withiout ice)  catastrophic different habitat
mortality due types.
to ice scouring.
Collected in Sensitivity analysis
4 habitat types (by using a range
of parameter values).
Plantago Size and Age (12) 3 (in each of  Estimate P, RTM, No NA No
lanceolata  habitat 1 two habitat sensitivity analysis.  deterministic
(plant); van (18) habitat 2 types) Assess the effect of  elasticity analysis
Groenendael habitat type on life
and Slim history
(1988) characteristics.
Furbish’s Size/Stage (6) 3 pooled across Estimate P, W. RTM, also No NA Covariates collected
lousewort 3-15 sites. Assess the included natural (see purpose) but
Pedicularis importance of catastrophes not directly
Sfurbishiae vegetative cover, (with varying included in
(perennial substrate type, probability) stochastic model
plant); Menges substrate
(1990) disturbance class,
dominant
vegetation, light
and soil water
potential on
transition rates
and population
viability
Yoldia Size (10) 18 (recruitment) Estimate | and PMM, stochastic No Lognormal & No
notabilis 9 (individual  sensitivities. sensitivity truncated
(marine growth); Examine the analysis normal
bivalve); sampled at 2 effect of (calculated (recruitment),
Nakaoka sites. recruitment through numerical normal
(1997) distribution (normal differentiation) (individual

vs. lognormal) on p

growth). Rates
vary independently

[T S|PPOW XL1ewW d1ISeyd01S



SUND/PYT UG [P 007D

Table 1 continued.

Species Type of matrix Number of sets Purpose of the Methods used Autocorrelation Distribution/correlation Covariates Comments
(references) (number of classes) of transition — model included (Y/N) (if PMM used)
estimates

Gopherus Size (8) 2 to 4 (sampled Estimate L, PMM, No Beta (growth No Combined

agassizii at 8 sites). sensitivity analysis deterministic and survivorship). spatial and

(Desert elasticities Reproduction temporal

tortoise); calculated from held constant. variability

Doak et al. mean matrix. Rates correlated

(1994)

Umbonium  Age (6) 8 Estimate [t RTM No NA No

costatum (recruitment)

(subtidal

snail); Noda

& Nakao

(19906)

Leptogorgia  Size (5) 23 (monthly)  Estimate L, RTM (varying No NA No Estimated

virgulata sensitivity analysis. ~ matrices), RTM correlation

(Marine (individually among rates and

gorgonian varying found negative

coral); recruitment, correlation

Gotelli growth, and between

(1991) survival rates). survival, growth
and recruitment

Haliaeetus  Age () size of Not provided Estimate population PMM using No Distribution not No

leucocephalus matrix not (used means  size after 25 years RAMAS/stage given

(bald eagle); given in text and variances) for population in

Wood & which eggs were

Collopy removed vs. control

(1993) population.

Arisaema Size (7) 2 (sampled at  Estimate L, RTM, stochastic No NA No

tyiphyllum 2 sites) sensitivity analysis  sensitivity

(perennial analysis

herb); (numerically)

Bierzychudek

(1982)

Morone Age (15) 13 (survival of Estimate [ RTM No NA No

saxatilis
(striped
bass);
Cohen

et al. (1983)

eggs to
yearlings)

au|3 d's pue Biagal [ 8YZ
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Species Type of matrix Number of sets Purpose of the Methods used Autocorrelation Distribution/correlation Covariates Comments
(references) (number of classes) of transition — model included (Y/N) (if PMM used)

estimates
Panax Ginseng size (6) 4 (from Estimate p,P., and RTM No (ginseng) NA No Used spatial
quinquefolium multiple “minimum viable Yes (wild leek) variance to
(American  Wild leek populations of population size” represent
Ginseng)  Size (7) ginseng) under various temporal
and 4 (wild leek)  harvesting vatiance
Allium strategies.
(wild leek); Determine optimal
Nantel harvest strategy
et al.
(1996)

Ascophyllum  Size (5)
nodosum

(brown alga);
Aberg

(1992a,b)

Haplopappus Size (4)
radiatus

(herbaceous
perennial

plant);

Greenlee &

Kaye (1997)

Andropogon  Age (6)
breviffolius

(savanna

grass);

Canales

et al.

(1994)

Andropogon  Size (4)
semiberbis

(savanna

grass; Silva

et al. (1991)

3 (at two
different sites)

3 (at each of 4
different sites)

6 monthly (1
burn plot, 1
control plot)

2 (one burn,
one non-burn)

Estimate W, Py
sensitivity analysis.
Determine the
effect of ice
severity and its
frequency on vital
rates and p

Estimate W,
compare RTM and
PMM estimators.

Estimate L,
sensitivity analysis,
estimate optimal
burn frequency.

Determine burn
frequency needed to
ensure P >0,
sensitivity analysis.

RTM, stochastic
elasticity analysis
(numerically)

RTM, PMM

RTM, periodic
matrix model;
LTRE sensitivity
analysis

RTM, LTRE
sensitivity
analysis

No NA

No Truncated
Normal

Yes NA

Yes NA

Type of year (no
ice, moderate
damage due to ice,
and large damage
due to ice)

No

Fire (burn year,
non-burn year)

Fire (burn year,
non-burn year)

Used 30 years of
data to determine
frequency of
each type of
year (no ice,
moderate ice,
large ice).

6b S|oPOW XL1BW d1ISeYd01S
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Table 1 continued.

Species

(references) (number of classes) of transition

Type of matrix

Number of sets Purpose of the
model
estimates

Methods used

Autocorrelation Distribution/correlation Covariates

included (Y/N) (if PMM used)

Comments

Hudsonia
montana
(shrub);
Gross

et al. (1988)

Size (5)

Cervus
elephas
(red deer);
Benton

et al.
(1995)

Age (19)

Carex Size[stage

bigelowii  and age (26)
(sedge);

Carlsson &

Callaghan

(1991)

Rostrhamus ~ Stage (3)
sociabilis

(Snail Kite;

hawk);

Beissinger

(1995)

5 savanna  Size (4,6,5,5,5)
species (1

subshrub,

two shrubs,

and two

trees);

Hoffman

(1999)

4 (plots divided Determine burn
into 3 treatmentfrequency that
groups: control maximizes |;

burn, and sensitivity analysis;

competitors examine

hand effectiveness of

clipped) trampling reduction
vs. controlled burns

21 Estimate p,

(survivorship &sensitivity analysis
reproduction) comparing
stochastic and
deterministic
measures. Compare
RTM amd SFA

estimates of L.

3 (used 2 Estimate [,
sets of sensitivity analysis
transition

estimates from
“non-flowering”
and one estimate
of rates during

“flowering

years”)

Mean and Estimate P.,
variances determine effect of
determined low water levels on
from other population viability
literature

sources

3-5 (non-burn  Sensitivity analysis,
year, year of  determine fire
burn, year after frequency that will
burn — 3 years allow persistence of
after burn) the population
after pooling

data over

space and time

PMM and
periodic matrix
model;
deterministic
elasticity analysis

using mean matrix

R'TM, SFA,
stochastic snd
deterministic
sensitivity
analysis

RTM,
deterministic
elasticity analysis
(for each type of
year — flowering
and non-
flowering)

RTM (choice of
environmental
states), PMM
within each state

RTM, periodic
matrix, LTRE
sensitivity
analysis

No Beta (survival rates);
Normal (fecundity

rates); rates correlated

No, but test for NA
autocorrelation

Indirectly NA
(through
restrictions on

the number of
consecutive

draws of each

type of matrix)

Indirectly Normal
through (survival rates)
periodic matrix

formulation

No NA

Fire (burn year,
year after burn, 2
years after burn,
and non-burn year)

Flowering year
and non-flowering
year

Drought year,
Year after drought,
high water level

Fire (burn year,
year after burn,
non-burn year)

au|3 d's pue Biagal{ ' 05T
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Table 1 continued.

Species Type of matrix Number of sets Purpose of the Methods used Autocorrelation Distribution/correlation Covariates Comments
(references) (number of classes)of transition ~ model included (Y/N) (if PMM used)
estimates
and different
burn intensities
Calidris Age (3) 6 (survival) Sensitivity analysis, =~ Combination of ~ No Beta (adult No
pusilla; determine which RTM (juvenile survival),
Hitchcock rates were survival, # of uniform
and Gratto- responsible for hatched eggs per (number of eggs
Trevor population decline nest, number of hatched per nest)
(1997) immigrants) and
PMM (adult
survival, # of eggs
per nest in second
set of simulations)
Carduus Size (4) 3 (one site) Estimate p; RTM, No NA No
nuans 1 (second site) sensitivity analysis deterministic
(thistle); to determine which  elasticity analysis
Shea & rates to target for
Kelly (1998) population control
Totoaba Stage (4) Unclear. Sensitivity analysis SFA, PMM No Truncated No Survival
macdonalds, Provide mean to determine how normal, estimates from
Cisneros- values variability and correlation age structure
Mata et al. correlation among included data (1955~
(1997) vital rates affects p 1990) and catch-
and P.y,. Compare per-unit-effort
SFA diffusion data. Fecundity
approximation rates determined
estimate of P, with so A=1.
estimate calculated
using PMM.
Picoides Age (5) 4 (juvenile Estimate Pey, RTM using No NA No Juvenile
borealis (red- survival) sensitivity analysis RAMAS/stage survival
cockaded 1 (adult (version 1.3) calculated using
woodpecker); survival) deterministic life table
Maguite elasticity analysis methods;
et al. included
(1995) demographic
stochasticity
Asarum Size (5) and 5at 4 Estimate p, P, RTM, No NA No, but modeled  Included
canadense  Stage (5) locations minimum viable deterministic “early successional” demographic

LSZ S|oPOW XL1ew diseydols
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Table 1 continued.

Species Type of matrix Number of sets Purpose of the Methods used Autocorrelation Distribution/correlation Covariates Comments
(references) (number of classes)of transition  model included (Y/N) (if PMM used)

. estimates
estimates
(clonal for both clones giving 10 population size, elasticity anlaysis and “late stochasticity
woodland  and ramets transitions in  sensitivity analysis.  (on plot by year successional”’

herb);
Damman &
Cain (1998)

Silene regia  Size (6)
(prairie

perennial);

Menges &

Dolan

(1998)

Vireo latimeriAge (2)
(passerine

songbird);
Woodworth

(1999)

Centrocercus Stage (3)
urophasianus

(Sage

Grouse);

Johnson &

Braun (1999)

two different
types of habitat

2-12 (at 16 HEstimate W, Py,
populations)  sensitivity analysis.
Parameter Examine the effect
means and of predation and

standard errors parasitism on Py,
drawn from

multiple

literature

sources

23 Sensitivity

Analysis, estimate
[ under various
management
scenarios

basis)

RTM (using
POPPROJ),
deterministic
clasticity analysis

PMM
deterministic
sensitivity &

>

clasticity analysis

PMM using
@Risk software
package;
deterministic
sensitivity &
elasticity analysis

No

No

NA

Uniform
distribution for
all rates (using
RAMAS/stage);
no cotrelation

Normal
distribution for
all rates, no
correlation

habitats separately

Recruitment Y/N
(two sets of
matrices — with and
without recruitment
— for each set of
transition estimates).

No

No

au|3 d's pue Biagald [ ZseT
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Few long-term data sets have been collected from which
one can infer typical distribution shape, strength of
correlation (between rates within years) or the degree of
autocorrelation. In the following section, we present a
simulation study comparing the RTM, PMM and SFA
approaches to estimating the stochastic growth rate L under
a range of environments and with different amounts of
available data. The estimated probability of extinction is
extremely sensitive to the estimate of W in density-
independent models (Fieberg & Ellner 2000), as well as
models with density dependence incorporated by imposing
a ceiling on population density (see Middleton ez al. 1995;
Figures 3 and 4). The results of this study are therefore
informative with respect to extinction risk: better estimates
of 1 imply better estimates of extinction risk. Although
extinction risk is the more relevant parameter in most
applications, it has serious disadvantages as a summary
statistic for comparing methods. First, the relationship
between [ and extinction risk is highly dependent on the
time horizon (Fieberg & Ellner 2000) and is strongly
nonlinear in W, so the results of a study using extinction risk
would not necessarily be meaningful for other values of
these parameters. Second, the sampling variability of [ is
characterized well by the mean and variance (as evidenced
by our simulation study below), wheteas the estimated
extinction risk often has a U-shaped distribution with
clusters near 0 and 1 (Fieberg and Ellner 2000).

Simulation study I: RTM versus PMM versus SFA

We consider the following stage-structured matrix model
with three stage classes (juveniles, subadults and adults):

nj(t + 1) 0 0 f,; nj(t)
15, (t + 1) 0 0 754(t)
n,,(t+ 1) Sa Sa n,z(t)

O <&

where, 7(#), n.#) and n,# represent the number of
juveniles, subadults and adults respectively at time % f,
represents the fecundity rate of adults; s, s,,and s, represent
survival rates of juveniles, subadults and adults respec-
tively. This model was used by Ferson and Burgman
(1995) to examine the effect of correlation among vital

rates on short-term extinction risk. We assume that all four
vital rates are density independent with constant means
and variance over time (no autocorrelation) given by:

E(£) 0.99 SD(£) 0.12
| EG) | [oso| | spisy) | | 0083
= EG) | T L0637 | sh@w) | 7| o
E(s,) 0.72 SD(s,) 0.12

The above standard deviations agree with those reported in
Ferson and Burgman (1995); the means were reduced by a
factor of 0.9 in order to give p near 0. We examine three
distributional assumptions, three different correlation
structures and varying assumptions regarding the amount
of data available to parameterize the model (Table 2). For
each combination of distributional assumption X correla-
tion structure X sampling frequency (/N = number of sam-
pled transition matrices), we use the following approach:
Given the true joint probability distribution function of
(forspSiwr $a) = Gl31, %2, %3, X).

1 Calculate the true growth rate of the population by
projecting for 900,000 iterations (after 1000 iterations to
remove transient dynamics) by randomly drawing survi-
val and fecundity rates from G(xy, x5, X3, X4), resulting in a
random transition matrix each year. In order to compare
true growth rates for different probability distributions, it
was desired that the true growth rates be estimated with
very little error. Nine hundred thousand iterations were
sufficient to estimate the true growth rate to 4 significant
digits in our examples.

2 Sample N + 1 sets of transition rates from G(xy, x, X3, Xy),
giving Nsampled transition matrices. Estimate [ via RTM,
PMM and Tuljapurkar’s approximation:

(a) RTM: project the population for 10,000 iterations
(after 1000 initial iterations to remove transient dynamics)
by randomly choosing among the /N sampled transition
matrices for each iteration.

(b) PMM: parameterize a multivariate normal distribu-
tion using the estimated sample mean vector and
covariance matrix of vital rates. Project the population
for 10,000 iterations (after 1000 iterations to remove
transient dynamics) by randomly drawing survival and

Table 2 Simulation to examine effect — .
Distribution*

Correlationt No. of sampled matrices

of correlation structure, distribution,
sampling frequency.

Survival rates ~ beta; Fecundity rate ~ gamma

All rates ~ uniform

All rates multivariate normal

0,0.5,099 1,2 3, 4,5, 10
0,0.5,09 1,2, 3, 4,5, 10
0,0.5,0.9 2,10

*We used a “folded” or “reflected” multivariate normal distribution. Rates falling out of

biologically feasible ranges (survival rates <0 or >1, fecundity rates <0) were set to values

just inside the biologically feasible range (see Appendix A).

TAIl rates assumed to be equally correlated. Cortelations are approximate when using

uniform and beta/gamma distributions (see Appendix A).
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fecundity rates from the parameterized normal distribution
each iteration. (Note: we consider cases in which the true
distribution of vital rates is non-normal. However, we
simulate a researcher who does know the true distribution
of vital rates and therefore chooses to use a PMM approach
with a multivariate normal distribution).

(c) SFA: estimate the sample mean vector and covariance
matrix of the vital rates and form the mean matrix, with
entries corresponding to the sample means of each
parameter in the matrix model, and then estimate [l using
Equation (2) above.

3. Repeat step 2 for 10,000 randomly sampled sets of
transition rates giving 10,000 estimates of P via each
method.

4. Estimate the sampling distribution of i (for each
method) using a kernel density estimator (Simonoff 1996).

Table 2 lists the different cases considered in this
simulation study. All simulations were conducted using
MATLAB Version 5.3. Software written by Dr. Christian
C. Beardah, The Nottingham Trent University, was used
to perform kernel density estimation (software available at
http ://euler.ntu.ac.uk/maths.html).

Results of simulation study |

True growth rates for each scenario are listed in Table 3.
As expected, the true growth rate decreases as the
correlation among vital rates increases. Furthermore, the
sampling distribution of M becomes wider as the
correlation among rates increases (Fig. 1a), indicating
that estimates of [ are more variable when vital rates are
positively correlated.

The choice of distribution had very little effect on the
stochastic growth rate (Table 3). Furthermore, the
sampling distribution of [l was relatively unaffected by
the distribution of vital rates (Fig. 1b). The means,
variances,and covariances of vital rates used to simulate
population projections were only approximate (Appendix
A). Slight differences in the correlation structure may be

in part responsible for the slight differences in the
observed growth rates in Table 3. Plotting the marginal
distributions of each rate (normal versus beta versus
uniform and normal versus gamma versus uniform)
indicates that the marginal distributions are fairly similar
for the means and variances used in this simulation study
(Fig. 2). In each case, the distributions were symmetric (or
nearly symmetric). Therefore, it is not surprising that the
choice of distribution had very little impact on the
stochastic growth rate.

We found that all three methods (RTM, PMM and
SFA) resulted in very similar estimates of p. Figure 1c
shows the results for the case where all rates are
independent and distributed as a multivariate normal.
Similar results were obtained for the other distributions
and correlation structures considered. We know of only
one other study comparing estimation methods (Greenlee
& Kaye 1997). They found that the RTM approach
(N = 4 sampled matrices) resulted in a higher extinction
risk than the PMM approach (using a truncated normal
distribution with all rates varying independently). Green-
lee and Kaye conjecture that the PMM approach gave
optimistic results since all rates were assumed to vary
independently, whereas the RTM method accounts for
correlation among vital rates. In contrast to their study,
we estimated and included correlation in the PMM
approach — possibly allowing a fairer comparison of these
two methods. Truncation of fecundity rates in Greenlee
and Kaye’s (1997) analysis may also explain the discre-
pancy between the RTM and PMM methods. The
variance of seedling reproduction was quite large in
comparison with the mean for all four study sites in their
analysis, resulting in a high probability of truncation
(setting negative values to 0). Truncation of negative
values substantially increases the resulting mean of the
distribution and could also explain the optimistic predic-
tions using the PMM approach in their study.

For each of the different estimation methods we
considered, the sampling distributions converged on the
true value of [ as the sample size increased, regardless of

Table 3 True stochastic growth rates

Correlation determined from 900,000 iterations of
- the model.
Distribution* 0 0.99
All rates ~ multivariate normal 0.0134 0.00885 0.00437
All rates ~ uniform 0.0136 0.00910 0.00444
Survival rates ~ beta; Fecundity rate ~ gamma 0.0134 0.00922 0.00435

*We used a “folded” or “reflected” multivariate normal distribution. Rates falling out of

biologically feasible ranges (survival rates <0 or >1, fecundity rates <0) were set to values

just inside the biologically feasible range (see Appendix A).

TAIl rates assumed to be equally correlated. Correlations are approximate when using

uniform and beta/gamma distributions (see Appendix A).
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Figure 1 Sampling distributions of 0 (a) effect of correlation structure (all rates multivariate normal, method = RTM, /N = 3 transition
matrices); (b) effect of distribution (cortelation = 0.5, NV =2, 10, method = RTM); (c) effect of estimation method (all rates multivatiate
normal, correlation = 0, N = 2, 10); (d—f) effect of sampling frequency (all rates multivariate normal, method = RTM, N= 1, 2,3, 4, 5,
10; correlation among all rates = 0 (d), 0.5 (e), 0.99 (f)). The true values of [ are indicated by solid vertical lines in plots (d-f). RTM,
random transition matrix method (matrices chosen at random to simulate population projections); PMM, parametric matrix method
(matrices are chosen from a parametric distribution each iteration); SFA, small fluctuations approximation (growth rate estimated using

Tuljapurkar’s (1990) approximation).

the underlying distribution governing fluctuations in vital
rates (Fig. 1d—f). The estimators are unbiased or nearly so
for V= 10, although there may be a slight bias for small
N (Fig. 1d-f). More importantly, the sampling distribu-
tions are quite broad even with 10 sets of transition rates,
indicating that estimates of W are highly variable and
should be interpreted with caution. It seems, somewhat
subjectively, that gains in precision are substantial up to
N = 4 matrices (5 years of data), and then “diminishing
returns’ on sampling effort set in (Fig. 1d—f). It should be
noted that the results included in this paper may not hold
true for other matrices of different size and density. A
larger simulation study is needed before our conclusions
can be generalized. Nonetheless, our analyses can be used
to offer useful suggestions regarding analytical methods.

RECOMMENDATIONS FOR ESTIMATING p AND

PEXT
Ease of computation

Tuljapurkar’s approximation requires only minimal com-
putational effort and therefore is useful for providing a
quick estimate of a population’s viability. However, this
approximation may break down when rates are subjected
to a higher degree of variation and/or catastrophic events
(Benton & Grant 1996). The RTM approach also offers a
simple method for estimating [ and extinction probabil-
ities. Furthermore, this approach may be reasonable for
modeling the effect of discrete events (e.g. “‘cata-
strophes” due to flooding, fire, hurricanes, etc.) that
occur infrequently but affect multiple transition rates
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Figure 2 Marginal distributions of fj, s, s, s, for the model considered in Simulation Study I

simultaneously and by substantial amounts (Morris et al.
1999). The PMM method requires the most effort since
one must choose an appropriate distribution and correla-
tion structure.

Ability to incorporate assumptions regarding correlation

In order for means, variances and correlations to be
estimable (statistically), a minimum of p+ 1 sets of
transition estimates are required, where p is the number of
model parameters (non-zero elements in the matrix).
Attempting to simultaneously estimate means and var-
iances/covariances using less data will result in an
estimated covariance matrix that is not necessarily positive
definite. While one can continue to use the resulting
covariance matrix, it should be noted that positive
definiteness is a property of all covariance matrices and
therefore obtaining a realistic estimate is problematic. A
possible advantage of the RTM approach is that
correlation need not be directly estimated; the approach
automatically incorporates correlation structure through

©2001 Blackwell Science Ltd/CNRS

the process of drawing entire sets of transition rates
estimated during the same year.

Assumptions about correlation have strong effects on
sampling variance and therefore on the standard error that
would be estimated for [i (Fig. 1a). The estimated standard
error can in turn have large effects on the estimated
extinction risk and the associated confidence interval
(Ludwig 1996). Consequently, when the goal of modeling
is to estimate extinction risk, it is important for the model
analysis to include a sensitivity analysis with respect to
estimated correlation parameters, not just means and
variances. We strongly recommend using the PMM and
SFA methods when conducting PV As since these methods
have the flexibility to examine a variety of correlation
structures. Cisneros-Mata et al. (1997) provide a useful
example of this type of analysis using the SFA method.

Choice of parametric distribution

Using the PMM method requires that one specify a
parametric distribution and estimate parameters associated
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with this distribution. Ecological data sets are typically
sparse, providing little information regarding the varia-
bility of transition rates over time. In most cases,
distributions are chosen based on convenience. The most
frequently used distributions include the multivariate
normal, beta, gamma, uniform and lognormal distribu-
tions. Of these distributions, only the multivariate normal
distribution allows one to build correlation into the model
in a simple manner. However, a normal distribution can
result in values that are not biologically feasible (ex.
negative survival or fecundity rates). In some cases, a
truncated normal distribution is used (including some
commercial programs, e.g. RAMAS). However, trunca-
tion will result in a different mean and variance than
originally intended and may result in a bimodal distribu-
tion if rates are highly variable. For this reason, the beta
distribution is frequently used to model survival rates
since random draws are constrained to lie in the interval
between 0 and 1. Similarly, gamma and lognormal
distributions are convenient for modeling fecundity rates
since the support of these distributions includes all
positive numbers. Finally, uniform distributions are
frequently used to model environmental fluctuations in
vital rates when data are not available to directly estimate
their means and variances. A uniform distribution can be
completely defined by specifying an interval of plausible
values — a task that is often attempted based on biological
considerations when data are incomplete.

While our study suggests that the choice of distribution
may not be important, the choice of distribution will likely
have a greater impact when alternate distributions differ in
their third and fourth moments (Slade & Levenson 1984).
The shape of the distribution of fecundity rates is likely to
be more influential than that for survival rates since
survival rates are constrained to the interval (0,1) (Slade &
Levenson 1984). Nakaoka (1996) found signficant differ-
ences in estimated growth rates depending on whether a
normal or lognormal distribution was used to model yeatly
variation in recruitment. Our analyses suggest a useful
approach to assessing the importance of the assumed
distribution when formulating a matrix model. A plot of
several proposed densities or an examination of third and
fourth moments (skewness and kurtosis respectively) of the
data offers a simple way to evaluate the likelihood that
results will be sensitive to the assumed distribution. Our
results suggest that the choice of distribution will not
significantly alter results when alternate densities are
similar. In fact the PMM approach using a multivariate
normal distribution performed quite well even when the
true distribution governing vital rates was a mixture of beta
and gamma distributions (Fig. 3).

To further test the notion that proposed densities
describing vital rate fluctuations will be similar, we

examined fecundity rates reported in Brook er al. (2000b)
for four species representing a range of taxa (Fig. 4). The
means and variances for the four species varied consider-
ably. However, in three of the four cases the probability
densities most commonly used to model fecundity rates
(gamma, lognormal, uniform and normal distributions) are
fairly symmetric and do not differ significantly. Discre-
pancies among alternate densities are largest for the sage
brush lizard (Fig. 4d). However, even in this case gamma
and lognormal distributions are similar to each other, as
are the uniform and normal distributions. Therefore, we
expect that in most cases alternate parametric distributions
will be similar, and therefore the choice of distribution
may not have a large impact on model predictions.

Data requirements

Two types of sampling frequency must be considered
when evaluating the quality of a demographic data set.
First, one must sample enough individuals to ensure that
each set of transitions is estimated accurately. Our
simulation study ignotes this type of sampling variability,
assuming that all rates are measured without error.
Uncertainty in predictive ability due to sampling a small
number of individuals can be estimated by resampling
techniques (McPeek & Kalisz 1993). These techniques,
while useful, have rarely been used (but see Bierzychudek
1999). Secondly, one must consider the sampling intensity
needed to characterize environmental variability. Specifi-
cally, how many transition rates should be sampled in
order to characterize the environment and its affect on

PMM approach with mis-specified distribution

10 T T T T T T T
ol N
No. of Transitions
8r ----2
-—-3
7t — 4
> ----5
‘@ 6} -—- 10
c
[
o
el
i}
©
£
»
w

p hat

Figure 3 Sampling distribution of p using PMM approach with
a multivariate normal distribution (true survival rates ~ beta;
true fecundity rates ~gamma, correlation among all

rates = 0.5); the true [ is given by the solid vertical line.
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Figure 4 Alternate probability densities parametenzed using means and variances reported in Brook et al. (2000b).

vital rates? Data sets including a small number of
transition estimates are not likely to provide an adequate
description of the environment (Bierzychudek 1999). The
consequences of not sampling an adequate number of
transitions have not been fully explored. Furthermore,
there are no straightforward methods for incorporating
this uncertainty (arising from limited sampling of
environmental states) into demographic analyses.

Our results suggest that estimates of W are likely to be
fairly imprecise even if one has collected data for 11 years,
yielding 10 estimated transition matrices. Fieberg and
Ellner (2000) have shown that extinction probability
estimates using stochastic matrix models are likely to be
unreliable for forecast intervals greater than 1/5 to 1/10 of
the sample size of the data set used to predict extinction.
Many PV As attempt to estimate extinction risk over time
intervals of 100 to 200 years (Beissinger & Westphal 1998,
p. 825) with less than 10 years of data (Table 1). Therefore,
the sampling intensity has severe ramifications regarding
the conclusions that can be drawn from these models. We
suggest below that modeling with environmental covari-
ates may help overcome these data requirements.

©2001 Blackwell Science Ltd/CNRS

SENSITIVITY ANALYSES

The goal of a sensitivity analysis is to determine which
vital rates have the largest influence on the growth rate of
the population or on its probability of extinction. An
appropriate sensitivity analysis can therefore provide
useful information regarding which stages of the life
history are most important to target via management
actions (Crowder et al. 1994). Methods for petforming
sensitivity analyses have been developed for periodic
(Caswell & Trevisan 1994) and stochastic environments
(Tuljapurkar 1990; Caswell 1996; Grant & Benton 2000)
as well as for density-dependent populations (Grant &
Benton 2000). Life Table Response Experiments (LTRE),
originally developed to analyze experimental data, offer
another alternative for conducting a sensitivity analysis
(Caswell 1989; Ehrlen & van Groenendael 1998; Mills ez
al. 1999; Grant 1998). All of these methods require one to
estimate how the population growth rate will change
following a small perturbation in each matrix element,
(a”). Alternatively, simulation methods can be used to

Oajj
i o . .
conduct a “global sensitivity analysis” to examine the
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effect of varying multiple rates simultaneously and by
large amounts (Saltelli ez al. 1999). Several other new
developments in the field of sensitivity analysis may prove
useful to conservation (see Benton & Grant 1999 for a
useful review and “Special feature-elasticity analysis in
population Biology”, Ecology 81(3): 605-708, for recent
developments).

Analytical approaches to sensitivity analysis have
typically focused on quantifying the relationship between
[ and vital rates. However, in most cases interest lies in
examining how the probability of extinction changes
under various management scenarios that may affect vital
rates. Plots of the cumulative distribution function of the
conditional time to extinction (Dennis et al. 1991; Morris
et al. 1999) under different management scenarios can be a
useful method of performing a sensitivity analysis of
extinction to changes in vital rates. Alternatively,
McCarthy er al. (1994) have developed a method of
performing a global sensitivity analysis using the prob-
ability of extinction as the response variable.

MODELING WITH COVARIATES

Collection of demographic data can be difficult and time
consuming. Annual transition matrices are obtained at a
rate of one per year per population. Therefore most data
sets contain a small number of vital rate estimates. On the
other hand, many environmental variables (temperature,
annual precipitation, atmospheric pollutants, etc...) are
easily measured and have been collected across large
spatial and time scales. Spatial replicates may provide a
means to tie transition rates to environmental conditions,
using natural variation over space or via experiments in
which environmental conditions are artificially manipu-
lated, thereby increasing sample size. As such, methods
that incorporate environmental covariates have the
potential to overcome typical time constraints regarding
data collection. Runge and Moen (1998) have developed a
modeling strategy that allows correlation (and autocorre-
lation) among vital rates via their common link to an
assumed, although not necessarily identified and mea-
sured, environmental variable. However, reliable estima-
tion of model parameters, in most cases, will require
information regarding the environmental process control-
ling the variability in vital rates. Therefore, the first step
will be to discover available environmental variables that
can be shown to have an effect on vital rates.
Connections between environmental variables and
population processes may be difficult to elucidate.
Swanson (1998) found only two studies indicating
significant cross-correlation between the rate of popula-
tion increase and local precipitation (out of 175 vertebrate
and 88 precipitation data sets), despite significant auto-

correlation in 17.8% of mammalian time series, 61.5% of
avian time series, and 97.7% of precipitation time series.
Comprehensive studies providing a link between vital
rates and important environmental variables will be
necessary before the methodology proposed by Runge
and Moen (1998) can be effectively utilized. Once
important environmental variables have been identified,
experiments in which these variables are manipulated
should provide the information needed to model the
relationship between demographic rates and the environ-
ment. Used in conjunction with information regarding the
distribution of these environmental variables over time,
models incorporating covariates may lead to more
efficient estimates of population viability.

Many studies have modeled the effects of using discrete
covariates (Table 1), most notably fire disturbance, in
conjunction with a stochastic matrix model. Silva ez al.
(1991), Canales et al (1994) and Gross et al (1998)
estimated transitions in burnt and unburnt plots and then
used this information in conjunction with periodic
(deterministic) and stochastic matrix models to determine
the fire frequency required for population persistence for
three fire-dependent plant species. Hoffman (1999)
conducted similar analyses to determine fire return
intervals required for the persistence of five woody plant
species negatively affected by fire. Hoffman (1999), Silva
et al. (1991) and Canales et al. (1994) also used LTRE
measures to determine how fire disturbance affected
demographic rates and in turn how these changes affected
the population growth rate in each of the environments.

Aberg (1992a, b) utilized a stochastic matrix model to
assess the importance of winter ice damage on populations
of the seaweed Ascophyllum nodosum located at two
different study sites. He estimated transition matrices
under three environmental conditions (years with no ice,
moderate ice damage, and large ice damage) and then
varied the frequency of each type of environment
according to observed frequencies at the two study sites.
In addition to standard analyses (estimating W and
performing a sensitivity analysis), varying the probability
of each environmental type allowed a method of
examining the sensitivity of | to the severity of the ice
disturbance. Wethey (1985) conducted a similar analysis to
examine the effect of sea ice on barnacle species.
Beissinger (1995) assessed the impact of low water levels
on the viability of the Snail Kite by incorporating three
“environmental state” matrices corresponding to drought
years, lag years (after a drought) and high water level
years.Altering the frequency of droughts provided an
estimate of the inter-drought interval necessary for
population persistence.

These studies illustrate the usefulness of incorporating
environmental variables into stochastic matrix models.
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Sensitivity analyses allow one to examine the relative
importance of demographic rates under different environ-
ments and simulations allow one to determine how the
frequency of various environmental types affects the
viability of populations. Careful attention to experimental
design and model formulation is likely to be highly
beneficial in such studies. For example, experiments at
several treatment levels (e.g. different fire intensities) may
be necessary to accurately characterize how environmental
variables interact with demographic rates. Furthermore, it
will be important to sample plots for several years after a
treatment is applied if the effects of an environmental
disturbance is distributed over multiple years. Finally,
demographic rates will naturally vary within each type of
environmental state due to other variables that are not
included in the analysis. Sampling plots of each treatment
type for multiple years will allow one to incorporate
temporal variability in each type of environment. Of the
studies examining the effect of environmental disturbance
mentioned above, only Beissinger (1995), Gross et al.
(1998) and Hoffman (1999) measured transition rates
during the year after a disturbance, providing the means
to incorporate the effect of environmental disturbance
over a longer time frame. Similarly, only Wethey (1985),
Beissinger (1995) and Gross et al. (1998) incorporated
variability among demographic transitions within differ-
ent environmental states.

We conducted a simulation study to examine the
usefulness of incorporating environmental covariates in
stochastic matrix models. In particular, we aim to
determine the consequences of discretizing continuous
environmental variables, such as rainfall, into “environ-
mental states” and to assess the potential gain in the
precision of estimates obtained using models that in-
clude covariates.

Simulation study II: true population dynamics

We based our simulation study on Beissinget’s (1995)
model for the Snail Kite. The simulation model considers
three stage classes (fledglings, subadults and adults).
Beissinger (1995) found that survival rates were consider-
ably lower during drought years. Furthermore, nesting
success, the proportion of birds nesting and the number of
nesting attempts per year were affected by the previous
year’s water level as well as the current water level; clutch
size was not found to vary with water level. Therefore, we
assume that survival rates depend on the current (yearly)
mean water level, x(#), and that fecundity rates depend on
both the current and the previous (yearly) mean water
levels. Using a similar model structure to that of Runge
and Moen (1998), survival rates for fledglings, subadults
and adults, S{7 = 1,2,3) are determined by:
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Si(t,%) = (1 + exp[~o, — B, () + 0,8, }])

i=1,2,3. (3)

The above formulation assumes a logistic response of
survival to water levels, taking values between 0 and 1. B,{
controls the sensitivity of survival rates to water levels,
and g, is a normal (0, 1) random variable, the source of
unexplained variance in S;

Only subadults and adults breed. The proportion of
Kites successfully nesting, p;(x,1), is determined by:

pi(x, 1) = (1 +exp[—og — Brx(r) — v

{x(t =1) 4+ o0pep}]) 5 i=2,3. (42)

Here again, we assume a logistic response of nest success
to water levels, with ¥z and Bz, controlling the sensitivity
of vital rates to the current and previous year’s water
levels respectively; €f, is a normal (0,1) random variable.
The number of nesting attempts in year £ bf{x?) is
determined using:

) _Jlfori=2
i(x,1) = max{0, 2 + bx(z) + ex(r — 1) + &, } fori =3

(4b)

Again, band ¢ control the sensitivity of nesting attempts
to water levels and g, is a uniform (0, 0.1) random
variable; €, €r and €, are assumed to be independent.
Clutch size was assumed to be constant, two fledglings per
year. Fecundity rates are given by the product of nesting
success, proportion of Kites nesting, number of nesting
attempts per year and clutch size:

Ei(x, 1) = 2pi(x, ) bi(x, 1) (5)

Parameter values used in the simulation study (Table 4)
were chosen to match the mean rates reported for each
environmental state (Beissinger 1995; Table 2). “True”
Snail Kite population dynamics were simulated using
amplitude-adjusted Fourier Transform surrogate data
series (Theiler er al. 1992) generated from the water level
data presented in Beissinger (1986, Fig. 3) and then
randomly drawing survival and fecundity rates according
to equations (3) and (5).

Effect of discretizing water levels

Following Beissinger (1995), we consider a matrix model
that incorporates three environmental states: drought
year, lag year and high water level years. Water levels less
than 13.75 feet were considered drought years and lag
years were defined as having water levels = 13.75 feet
with a drought the previous year. The “true” distribu-
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Table 4 Parameter values used in simulation study II

Parameters Value

s, As2, Us3 -16.99, —-18.76, —18.76
Bs1, Bsz, Bsa 1.13, 1.48, 1.48

Os1, Os2, Os3 0.224, 0.224, 0.224
gz, Op3 —29.45, —39.83

Bra, Prs 1.34, 2.43

Yr2, Y3 0.44, 0.16

Or2, OF3 0.002, 0.002

a, b, c -9.54, 0.47, 0.32

tions of x(#), S; and F; (given by the surrogate water level
data sets and equations (3) and (5)) were used to determine
the distribution of §; and F; within each environmental
state. This information was then used to construct a matrix
model that differs from the “true” population model only
in that the effect of water levels occurs through discrete
environmental states rather than the continuous functions
given by equations (3) and (4) (see Appendix B). We refer
to this model as the “true environmental states model”
(TES model). Comparison of this model with population
dynamics obtained from direct simulation of equations (3)
and (5) measures the effect of pattitioning environmental
variables into discrete states.

Values of the population’s growth rate over the next 50
years are given in Fig. 5a (true population dynamics, [ye)
and Fig. 5b (TES model population dynamics, [rgs) for
1000 surrogate water level data sets. Discretizing water
levels into environmental states led in general to slightly
higher (more optimistic) growth rates. The mean value of
Hrgs (over the 1000 water level data sets) was 0.012 versus
—0.001 for the mean of Wy Plotting Wrps versus Weye
(Fig. 5¢) indicates that the values for [pps were typically
higher than p,. for harsh environments and slightly
lower in favourable environments. In the TES model, the
water level in year #—1 only affects the current vital rates
in deciding whether a water level year > 13.75 feet is a lag

Figure 5 Effect of discretizing water level data
on Snail Kite growth rates for 1000 surrogate
water level data sets: (a) distribution of true
growth rates, W (b) distribution of growth

() Mean(u, 1= 0001, sdip, ) = 0053

year or a high year. However, in the true model, the
previous year’s water level has the potential to affect vital
rates more substantially (through the functions given in
equation (4)), perhaps offering an explanation for the
discrepancies between the Wy and Prps. Values of [
were more variable than values of [rgg across water level
data sets [var(Myue) = 0.053; var(prgs) = 0.039]. On the
other hand, growth rates within a given water level data
set were more variable for the TES model since the
distribution of vital rates was less closely connected to
water levels.

Using covariates to improve the precision of viability
estimates

Next, we simulate two different experimental approaches
leading to six transition estimates. In the first case, the
researcher estimates survival and fecundity rates by
following the population for seven consecutive years
and then uses an RTM approach to estimate the
population’s growth rate over the next 50 years, Lgpr.
In the second case, the researcher decides to incorporate
historical data regarding the distribution of water levels in
conjunction with a 4-year experiment in which he
measures vital rates in a treatment and a control plot.
Between the first and second years of the study, the
researcher keeps water levels at 13 feet to simulate a
drought. The following 2 years, he/she keeps water levels
at 14.5 feet to simulate a lag and high year respectively.
The researcher also collects data from a control area for
cach of the three transition periods, giving a total of six
transition matrices. In addition, we assume the researcher
has available #= 30 or 50 years of historical water level
data from which to estimate transition probabilities
between environmental states. An “environmental states”
model is then used to estimate the population’s growth
rate over the next 50 years, Hps. To determine the
potential gain from incorporating water level data into a
stochastic matrix model, we simulate the above research

) Meanf ) = 0.012, sue) = 0,009
250

() Plotafpg vy

rates from the TES model, pygs. The TES 300
model reflects the true population dynamics
model outlined in Simulation Study II, except
that the effect of water level occurs through
discrete environmental states (drought years,
lag years and high water level years) rather
than through the continuous functions given
by equations (3) and (4) in the text; (c) plot of
Werue Versus Wrps for the 1000 water level data
sets used to produce parts (a) and (b).

Frequency (n=1000)
g gz &8

g

“'En"} “ﬁﬂ
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projects (Appendix B) for each of 1000 surrogate water
level data sets (representing replicates of the experiments).
The resulting growth rate estimate using the RTM
approach, Uy, Wwas slightly optimistic, while the
environmental states model led to a slightly conservative
estimate of U [mean(igs) = —0.04, mean(Urry) = 0.008,
mean(yye) = —0.001]. More importantly, incorporating
water level data into the matrix model reduced the
variance of growth rate across simulated data sets by
nearly a factor of 4 (Fig. 6a, b). When several consecutive
years of the same environmental type occur (either
drought or high water level years), the RTM approach
will give more extreme conclusions since rates will have
been sampled from a narrow range of environments. This
result is illustrated by plotting estimates of Mg versus
prrMm (Fig. 6d) for the 1000 surrogate water level data
sets. Estimates of [ obtained from the RTM model were
overly pessimistic when the study years were worse than
average and overly optimistic when the study years were
better than average. Little gain in precision was observed
when additional data regarding water levels was available
(Mps with #= 30 versus ¢ = 50; Fig. 6a and 6¢), suggesting
that sampling 30 years of water level data was sufficient to
improve estimates of the population’s growth rate.

CONCLUSIONS

When data are abundant, one may expect inefficient “seat
of the pants” methods to give correct answers to
questions of interest. However, limited data sets require
efficient analyses and careful consideration of available
methods. Most demographic data sets are relatively
sparse, containing fewer than 10 sets of transition
estimates (Table 1). Therefore, there is a real need to
compare various methods of parameterizing and analyzing

) Ml.\l'\-:uﬁ:- = o). 042, SU{ues:-—- AL

{1h MR, = 00075, S0y ) = 0.30

stochastic matrix models. We have given a few examples
of the types of research that will be needed to guide
fruitful applications of these models in the future.

Based on our review and simulation studies, we make
the following recommendations:

1 Sensitivity analyses should be a standard component of
PV As. Extinction risk estimates from stochastic matrix
models can be highly sensitive to the correlation structure
among vital rates. Therefore, we suggest PMM or SFA
approaches since they allow examination of a variety of
correlation structures. The distribution used in the PMM
approach is likely to be of lesser importance.

2 Estimates of population viability are likely to be highly
variable. Therefore, we recommend that stochastic matrix
models are best used to test alternative management
scenarios using relative measures of viability. Estimates of
viability should not be published or trusted without an
estimate of their precision (e.g. confidence intervals).
Dennis et al. (1991) and Ludwig (1999) provide methods
of calculating confidence intervals for extinction para-
meters.

3 Matrix models that incorporate covariates may improve
the precision of viability estimates. Furthermore, these
models are often useful for framing population dynamics
that could be
manipulated by wildlife and conservation managers.
Therefore, the collection of data for PV As should include
efforts to identify environmental variables responsible for
the variation in vital rates.

in terms of environmental wvariables

Clearly there is a need for further studies that examine
the relative merit of alternative methods. The availability
of carefully conducted and well-documented PV As for a
range of taxa means that such studies can be grounded in

Figure 6 Estimated Snail Kite growth rates

from n = 1000 surrogate water level data sets
(experimental replicates) and samples of six
sets of transition rates. The ES model uses ¢
years of historic water level data to para-
meterize a matrix model with three discrete
environmental states (drought years, lag years

and high water level years; see Simulation
Study II). The RTM model uses a random
transition matrix approach, ignoring water

level data. (a) ES model parametenzed using
t = 30 years of historic water level data; (b)
RTM model results; (c) ES model parameter-
ized using #= 50 years of historic water level
data; (d) Plot of pps (with ¢#= 50) versus
Urrm for the 1000 surrogate water level data
sets used to produce the plots in parts (b) and
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ecological reality. By simulating the process of collecting
data (from the “imaginary world” where a selected PVA
model is exactly true), analyzing the data in alternative
ways, and comparing results with the "truth", competing
approaches can be evaluated objectively.
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APPENDIX A: DRAWING CORRELATED VITAL
RATES FOR SIMULATION

Multivariate normal random variables may lead to para-
meters that fall outside of the range of biologically feasible
values (survival rates < 0 or >1, fecundity rates <0). In
simulations involving the multivariate normal distribution,
survival and fecundity rates <0 were set to 0 + 0.0001z,
and survival rates > 1 were set to 1 — 0.001#, where u#is a
uniform random variable between 0 and 1.

Correlated beta and gamma random variables and
correlated uniform random variables were simulated using
the protocol outlined in Gross et al (1998). First,
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multivariate normal random variables with the desired
correlation structure were generated. These random
variables were then individually transformed back to
beta/gamma uniform random variables as follows:

vital rate = F{G'(x)}

where G is the cumulative distribution of a standard
normal random deviate and F is the cumulative distribu-
tion function of the desired distribution (beta, gamma or
uniform). The method resulted in fair approximations to
the desired correlation structure, although the correlations
between s, and (f5, s;and s,,) were underestimated when all
rates were drawn from uniform distributions (see below):

Resulting correlation structure (900,000 random draws)

Intended correlation: beta/gamma distribution

All rates ~ uniform

(ﬁz 5] Ssa 54)

fa 1 05 05 0.5 1 0499 0.498 0.493
5j 1 05 05 1 0.498 0.497
Ssa 1 0.5 1 0.496
Sa 1 1
1 099 0.99 0.99 1 0988 0.983 0.973
1 0.99 0.99 1 0.988 0.982
1 0.99 1 0.988
1 1

1 0482 0.483 0.482
1 0.483 0.482
1 0.482

1
1 0.997 0.966 0.792
1 0.999 0.798
1 0.798

1
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APPENDIX B: MODELING WITH COVARIATES
Comparing the TES model with true population dynamics

We estimated the true average growth rate of the
population, [e, from 1000 50-year population projections
for each of 1000 surrogate water level data sets; [, = the
average growth rate over the 1000 model runs (within a
given surrogate water level data set). To estimate growth
rates from the TES model, prps, we first created
distributions of §; and F; from 1000 surrogate 50-year
water level data sets by categorizing the rates simulated
using equations (3) and (5) into drought years, lag years and
high years. We then estimated prps from 1000 50-year
population projections for each of 1000 surrogate water
level data sets by first determining the environmental state
(according to the current and previous years’ water levels in
the surrogate water level data set) and then drawing vital
rates from the distributions created in the previous step.

Simulating experimental replicates to test the precision of
population estimates

The following protocol was used to simulate experimental
replicates:

©2001 Blackwell Science Ltd/CNRS

1 Sample vital rates using equations (3) and (5) at water
levels x(#) = 13, 14.5, 14, giving one set of vital rate
estimates in a drought, lag and high year, respectively.

2 Sample six sets of vital rates using equations (3) and (5)
along with the last 6 years of water level data in the
surrogate water level data set.

3 Classify the last three sets of vital rate estimates from
(step 2) as a drought year, lag year or high water level year.
4 Sample the last ¢ consecutive water levels in the
surrogate water level data set. Use these data to estimate
the frequency of each environmental state and the
transition probabilities between each pair of environ-
mental states.

5 Estimate the growth rate of the population from 1000
50-year population projections using the environmental
states matrix model defined by the frequency of environ-
mental states (step 4) and an RTM approach within each
environmental state (using the matrices in steps 1 and 3).
6 Estimate the growth rate of the population using the
RTM approach (with the six matrices in step 2) from 1000
50-year population projections; pick matrices with equal
probability (i.e. ignoring water level).

7 Repeat steps 1-6 for each surrogate water level data set
to obtain 1000 separate estimates of [gg and Hrry (for
each value of 7).



