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Abstract

A number of investigators have invoked a cascading local interaction model to
account for power-law-distributed fluctuations in ecological variables. Invoking such
a model requires that species be tightly coupled, and that local interactions among
species influence ecosystem dynamics over a broad range of scales. Here we reanalyse
bird population data used by Keitt & Stanley (1998, Dynamics of North American
breeding bird populations. Nature, 393, 257-260) to support a cascading local
interaction model. We find that the power law they report can be attributed to mixing
of lognormal distributions. More tentatively, we propose that mixing of distributions

accounts for other empirical power laws reported in the ecological literature.
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Keitt & Stanley (1998) report that year-to-year fluctua-
tions of North American breeding bird populations
adhere to a power law distribution of event sizes. Power
law scaling can arise in inanimate systems as a result of
local interactions among particles that propagate through
space (Stanley 1995). Keitt & Stanley (1998) therefore
propose that local interactions among bird species
“cascade” spatially to produce power-law-distributed
population fluctuations for the North American avifauna.
We report here that the empirical power law they derive
can be attributed to mixing of lognormal distributions.

Keitt & Stanley (1998) derive their empirical power law
from abundance data collected on over 600 bird species from
approximately 2500 survey routes throughout North Amer-
ica (data available at http://www.mp2-pwrc.usgs.gov/bbs).
They characterise population fluctuations for each species on
each survey route as R, = N,(t+ 1)/N,(#), where N(t)
and N;(¢#+ 1) are the number of individuals of species s
observed on a particular route for years ¢ and ¢ + 1. They
then aggregate R; values across all species and routes to
obtain the power law P(R) o< R*¥®, where P(R)) is the
probability of a fluctuation of size R occurring, o = 2 when
R <1,and o = —2 when R, > 1.

We analyse the same data as Keitt & Stanley (1998) but,
for each species, consider only one survey route that meets
the following criteria: (1) it has 25 or more years of nonzero
abundance data for the species of interest; (2) it has the
highest geometric mean abundance among the routes
meeting criterion (1) and (3) this geometric mean is > 10
individuals. We adopt these more stringent criteria to avoid

sampling errors and indeterminacy of R, values that occur
when dividing by 0. After computing the R, values for each
species and aggregating R, values across all species, we
observe straight-line relationships between log;,(P(R))
and log,,(R,) (Fig. 1a), indicating a power law relationship
between the two variables. As reported by Keitt & Stanley
(1998), we find that the distribution of log;((R;) values is
symmetrical about 0, indicating that there is no discernible
overall trend in population abundance.

The standard deviation of log;,(R,) varies considerably
among the 250 species we analysed (Fig. 1b). If we
separately standardise the distribution of log;,(R;) for
each species with respect to mean ( = 0) and variance
(= 1) and then aggregate the standardised values across
all species, the empirical frequencies lie within the 95%
confidence intervals of those estimated for the corre-
sponding lognormal distribution (Fig. 1c). Moreover, if
we sample 25 values [same as our criterion (1)] from each
of 250 lognormal distributions, all with a mean of
log,o(R) =0, but with standard deviations distributed
as in Fig. 1(b), the aggregate distribution of simulated R
values is a power law identical to that in Fig. 1(a) and to
that reported by Keitt & Stanley (1998). The power law
they report can therefore be attributed to mixing of
lognormal distributions, a result consistent with that of
Hsu er al (1974). We cannot, however, reject other
explanations for this power law (e.g. Embrechts er al.
1998; Podobnik ez al. 2000; see Appendix) because 25 data
points is a small sample for investigating behaviour at the
tails of a distribution.
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Figure 1 (a) Frequency distribution of log;o(R;) for 250 species
combined. Frequencies are computed as proportions of data
points whose values fall within each of 40 bins of equal width on
a logy-scale. The slopes of the power law fits are identical to
those of Keitt & Stanley (1998) (& 2), although we observe
morte scatter near the tails owing to a much reduced sample size.
(b) Frequency distribution of the standard deviations of
log,(Rs) for the 250 species analysed. (c) The line represents
the frequency distribution of log;y(R;) for all species combined
after separately standardising values for each species with respect
to mean (= 0) and wvariance (= 1). Dots delineate 95%
confidence intervals of frequency estimates (computed separately
for each bin) for the corresponding normal distribution of
log;o(Rs). Data are binned as in (a) to compute frequencies.

The lognormal distribution can be justified theoreti-
cally because population growth is a multiplicative
process (Dennis & Patil 1988). The probability density
function (PDF) that results from mixing 4 lognormal
distributions can be expressed as

k
Px) = Z 0:fi(x)
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where f;(x) is a lognormal PDF and 0, is the proportion of
points contributed by f£(x) to P(x) with £0;,= 1. The
PDF of the mixed distribution thus depends on the form
of the k underlying lognormal distributions and their
relative contributions to the mix. Mixing lognormal
distributions does not always yield a power law but if,
as here, means are identical but variances vary among
distributions contributing to the mix, the resulting
distribution will be fat-tailed compared to the lognormal
(Titterington et al. 1985).

Ecological systems are composed of heterogeneous
units that are influenced by a variety of processes that vary
in the scale and magnitude of their effects. Mixing of
distributions may therefore account for many, if not most,
empirical power laws reported in the ecological literature
[see Sole et al (1999) for a review]. For the North
American avifauna, we find that the standard deviations
of the log,((R,) distributions are significantly correlated
with bird body mass (r = 0.46, P < 0.0001), which here
varies among species by over 3 orders of magnitude.
Species differences thus contribute to differences in the
magnitudes of bird population fluctuations which, in turn,
produces a power law when fluctuation data are
aggregated across multiple species.
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APPENDIX

In response to this paper, Keitt and Stanley (personal
communication) state that Keitt and Stanley (1998) also
present metapopulation dynamics as a potential explana-
tion for this power law. Keitt and Stanley (personal
communication) also point out that mixing of locally
exponential distributions is what generates power laws in
cascading local interaction models and in the metapopula-
tion model they propose. Here we present a third possible
mechanism by which mixing of distributions can occur to
generate this power law. In contrast to the mechanisms
proposed by Keitt and Stanley (1998), our mechanism
does not involve species interactions and assumes only
that the magnitudes of population fluctuations varies
among species. Keitt and Stanley are currently testing
other predictions of their metapopulation model in an
attempt to determine the extent to which metapopulation
dynamics and species differences contribute to this power
law. The issues raised here demonstrate that intepreting
power laws requires careful consideration of precisely
how mixing of distributions occurs.
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