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Summary. The idea of dimension reduction without loss of information can be quite helpful for
guiding the construction of summary plots in regression without requiring a prespecified model.
Central subspaces are designed to capture all the information for the regression and to provide a
population structure for dimension reduction. Here, we introduce the central kth-moment subspace
to capture information from the mean, variance and so on up to the kth conditional moment of the
regression. New methods are studied for estimating these subspaces. Connections with sliced
inverse regression are established, and examples illustrating the theory are presented.
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1. Introduction

In simple regression a two-dimensional plot of the response Y versus the predictor X displays
all the sample information and can be quite helpful for gaining insights about the data and
for guiding the choice of a first model. Such straightforward graphical displays of all the
data are not generally possible with many predictors, but informative displays are still possible
in situations where we can find low dimensional views, the only ones that are possible in
practice, that provide ‘sufficient’ information about the regression. In regression graphics we
seek to facilitate a visualization of the data by reducing the dimension of the p x 1 predictor
vector X without loss of information on the regression and without requiring a prespecified
parametric model. We called this sufficient dimension reduction, borrowing terminology
from classical statistics. Sufficient dimension reduction leads naturally to the idea of a
sufficient summary plot that contains all of the information on the regression that is available
from the sample.

As reviewed in Sections 2.1 and 2.2, dimension reduction subspaces (DRSs) and, in
particular, central subspaces Syxx are useful population foundations for pursuing sufficient
dimension reduction in regression. A basic goal here is to estimate the fewest linear
combinations n{ X, ...,n}X, d < p, with the property that ¥|X and Y|n'X have the same
conditional distribution, where 7 is the p x d matrix (n,,. .., n,). Thus, nTX contains all the
information about the conditional distribution of Y|X that is available from X and, if
is known, a sufficient summary plot of Y versus n'X can be used to guide the analysis.
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No model for Y|X is required. Methodology for estimating sufficient summary plots has
proven to be particularly useful during model development and during model criticism where
the response is replaced with a residual.

In Section 3 we introduce a new concept—the central kth-moment subspace (CKMS)
S)(,k))(—and study its basw properties. In Section 4 we propose a method called covy to estimate
the directions in S . The main goal of this new approach is to estimate the fewest linear

combinations of X thdt contain all the information on just the first kK moments of Y|X. This
shift in emphasis from the complete conditional distribution of Y|X to its first Xk moments
distinguishes the new approach from previous work based on the central subspace.

There are at least three reasons that focusing attention on moments of ¥Y|X might be useful
in practice. First, the mean and variance functions are often of special interest. Our new
approach allows investigators the opportunity to tailor a dimension reduction inquiry to
those moments. Second, although we might be able to gain information on the first few
moments of Y|X by using known methods for pursuing the distribution Y|X, having the
ability to focus on those moments should in principle produce better results. Finally, by
contrasting results from known methods for studying Y|X with results on the first few
moments, we may be able to tell whether the dependence of Y on X is confined substantially
to those moments or whether higher order moments are involved.

A connection with sliced inverse regression (SIR) is presented in Section 5. In Section 6 we
use the new method to study a real data set and present a few related simulation results. We
put all the proofs in Appendix A.

We assume throughout that the scalar response Y and the p x 1 vector of predictors X
have a joint distribution, and that the data (Y;,X;), i =1, ..., n, are independent and iden-
tically distributed observations on (Y, X) with finite moments. The goal of the regression is to
infer, as far as possible with the data available, about the conditional distribution of Y|X with
emphasis on its moments. The notation U 1L V|Z means that the random vectors U and V are
independent given any value for the random vector Z. Subspaces will be denoted by S, and
S(B) means the subspace of R’ spanned by the columns of ¢ x u matrix B. Pg denotes the
projection operator for S(B) with respect to the usual inner product and Qg = I — Pg.

The data which are analysed in this paper can be obtained from

http://www.blackwellpublishers.co.uk/rss/

2. The central subspace

2.1. Definitions
Let B denote a fixed p x ¢, ¢ < p, matrix so that

Y 1L X|B™X. (1)

This statement is equivalent to saying that the distribution of Y|X is the same as that of
Y|BTX for all possible values of X. It implies that the p x 1 predictor vector X can be replaced
by the ¢ x 1 predictor vector BTX without loss of regression information and thus represents
a potentially useful reduction in the dimension of the predictor vector.

If condition (1) holds then it also holds when B is replaced with any matrix whose columns
form a basis for S(B). Thus, condition (1) is appropriately viewed as a statement about S(B)
which is called a DRS for the regression of Y on X (Li, 1991). Knowledge of the smallest
DRS could be useful for parsimoniously characterizing how the distribution of Y|X changes
with the value of X.
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Let Syjx denote the intersection of all DRSs. Although Syjx is always a subspace, it is not
necessarily a DRS. Nevertheless, Syx is a DRS under various reasonable conditions (Cook,
1994a, 1996, 1998). In this paper, Syx is assumed to be a DRS and, following Cook (1994b),
is called the central DRS, or simply the central subspace. The dimension dim (Syx) is the
structural dimension of the regression; regressions are identified as having zero-dimensional,
one-dimensional, ... structure.

The central subspace, which is taken as the inferential object for the regression, is the
smallest DRS such that Y 1L X|nTX, where the columns of the matrix ) form a basis for the
subspace. In effect, the central subspace is a metaparameter that can be used to characterize
the regress1on of Y on X. If an estimated basis 7} of Sy|x is available then the summary plot of
Y versus 7)' X can be used to guide subsequent analysis. For additional background on these
ideas, see Cook (1998) and Cook and Weisberg (1999a).

Let ¥x = var(X), which is assumed to be non singular, and let Z = 3 v 2{X EX)} be
the standardized predictor. Then Sy = Sy|Z (Cook (1998), proposmon 6.1). The
columns of the matrix v = ZX/ 271 form a bas1s for Syz, the central subspace for the regression
of Y on Z.

2.2. Estimation methods

Many of the methods for estimating vectors in the central subspace are based on the
following idea. Let K be a consistent estimate of a population kernel matrix K with the
property S(K) C Syjz. Then S(K) can be estimated as the span of the left singular vectors of K
whose singular values are inferred to be non-zero in the population.

Various ways of choosing K stem from the inverse regression of Z on Y and require the
condition that E(Z|y"Z) = P,Z where the columns of the matrix « form a basis for Syjz-
This condition, which applies to the marginal distribution of the predictors, is equivalent to
requiring that E(Z|y'Z) be linear, so we refer to it as the linearity condition. The linearity
condition must hold only for the basis v of the central subspace. Since -+ is unknown, in
practice we may require that the linearity condition holds for all possible ~, which is
equivalent to elliptical symmetry of the distribution of Z (Eaton, 1986). In particular,
application is often facilitated when the predictors are normally distributed, as we shall see
later in Section 4.2.2. Simultaneous power transformations 7(X) = (#;(X;)) of positive pre-
dictors X or weighting (Cook and Nachtsheim, 1994) are often effective for inducing near
multivariate normality. Because the conditional distribution of Y|X is the same as that of
Y|T(X) and because no model is assumed for Y|X, the role of a normalizing predictor
transformation is to facilitate the analysis by changing the way that the conditional dis-
tributions are indexed by X. Hall and Li (1993) showed that, as p increases, the linearity
condition is satisfied for nearly every p x 1 vector +. Placing a prior distribution on -, they
then argued that there is a high probability that the linearity condition will be reasonable.

The inverse mean subspace is defined as

Sez)yy = span{E(Z|Y ), Y € R(Y )},

where R(Y) is the support of Y. Under the linearity condition Sgz)y) € Syjz, and thus an
estimate of a portion of the central subspace can be constructed by estimating Sgz)y). SIR
(Li, 1991) is perhaps the most well-known method for estimating Sgz)y). It is based on the
kernel matrix

K = E{E(Z|Y) E(Z| V)"
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where Y is a discrete version of Y obtained by partitioning its range. This kernel matrix is the
basis for estimating the inverse mean subspace Sy y) C Syjz € Syjz. Although modifica-
tions of SIR have been proposed (see, for example, Schott (1994) and Velilla (1998)) they all
share the estimation of SE(Z‘Y) as a common goal. Recently, Bura and Cook (2001) studied
parametric inverse regression methods for estimating Sgz)y); these methods do not require
the linearity condition or slicing the response.

In the next section we begin our study of CKMSs and methods for estimating them.

3. kth-moment dimension reduction subspaces

The central subspace is designed to capture the entire conditional distribution of Y|X and
thereby to give a full picture of the dependence of Y on X. Cook and Li (2001) introduced a
new class of subspaces, which they called central mean subspaces, and studied their properties.
Following this direction, we now introduce kth-moment DRSs and central kth-moment DRSs,
and study their properties. The construction of a CKMS is similar to that of the central
subspace, but dimension reduction is aimed at reducing the mean function, variance function
and up to the kth moment function, leaving the rest of Y|X as the ‘nuisance parameter’.

When considering conditional moments, dimension reduction hinges on finding a p X ¢
matrix 77, ¢ < p, so that the random vector n'X contains all the information about Y that is
available from E(Y|X), var(Y|X),..., M®(Y|X), where M®(Y|X) = E[{Y — E(Y|X)}}|X] for
k > 2. For notational convenience, M V(Y|X) stands for E(Y|X).

Definition 1. If
Y LAMDY|X), ..., MO [X)}n"X,

then S(n) is a kth-moment DRS for the regression of Y on X.

It follows from this definition that a DRS is necessarily a kth-moment DRS, which in turn
is necessarily an ith-moment DRS for any i < k. Also, if k =1, then S(n) is a mean DRS
(Cook and Li, 2001), whereas, when k — oo, S(n) is a DRS when the moment-generating
function of Y|X exists. In such a case, letting k — oo is equivalent to requiring Y 1L X|n'X.

The following proposition gives equivalent conditions for the conditional independence
that was used in definition 1.

Proposition 1. The following statements are equivalent.

(@) YIL{MD(Y|X),..., MPOYX)}n"X.

(b) cov{Y/, MO(Y|X)|nT™X} =0, forj=1,... k.

(¢) MU(Y|X) is a function of n"X. Equivalently, E(Y/|X) is a function of X for j =
L.... k.

(d) cov{Y’, f(X)|nT™X} =0 for j=1,...,k and any function f(X).

This proposition is a generalization of proposition 1 of Cook and Li (2001), but here part
(d) is an additional equivalent condition.

Paralleling the development of central subspaces, we would like to have the smallest kth-
moment DRS, as seen in the next definition.

Definition 2. Let S)(,k))( = NS™ where the intersection is over all kth-moment DRSs S®. If

Sg& isitself a kth-moment DRS, itis called the central kth-moment DRS, or simply the CKMS.
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The CKMS does not always exist, because the intersection of two kth-moment DRSs is
not necessarily a kth-moment DRS. However, the existence of the CKMS can be guaranteed
under various mild conditions that also guarantee the existence of the central subspace. For
example, if the support of X is open and convex, then the CKMS and the central subspace
exist. We do not view existence as a crucial practical issue and thus we assume throughout the
rest of this paper that the CKMS exists.

The CKMS is always contained in the central subspace SY\X C Syjx because the former
is the intersection of a larger collection of subspaces. Naturally, the following relationships
hold:

1 k
Six S S8R T S Srx

and

Syx = lim (S -

If Y|X depends only on moments up to the kth, then st
regression models for Y|X have Sy @ — Syix-

Let W = ATX for some 1nvert1bie matrix A. Then Sy (k) lS(k) Consequently, there is
no loss of generality in standardizing X to have mean and 1dent1ty covariance matrix. In
most of the subsequent developments then we work in terms of the standardized predictor

Y‘X = Syjx. In fact, many common

Z deﬁned m Section 2.1. Also, Sg& l/ 28%, which is the same as the relationship
Syix = SylZ between central subspaces that we mentioned previously.

4. Covariance methods

In this section we develop methods for finding directions in the CKMS.

4.1. Population structure
The following proposition indicates how to find vectors in S(y‘)z from the covariance between
Z and a polynomial in Y.

47 and assume that E(Z|y'Z) is linear. If £ ©(Y) is
any at most kth-degree polynomial of Y, then

E{fO(Y)Z} € 8§y € Snz.

Proposition 2. Let « be a basis for s®

In particular, we can take f®(Y) = Y*

There are many ways of selecting £ ®)(Y), but it seems that Y* is a simple and convenient
choice. The following two examples show the potential usefulness of this proposition.

4.1.1. Example 1
Let zj, z2, z3 and € be independent and identically distributed standard normal random
variables, and let Y = z; + z1z; + . Then E(YZ) = (1,0, O)T, but

E(Y*Z) = cov{var(Y|Z), Z} + cov{E(Y|Z)*, Z}
=(0,0,0)" +(0,2,0)".

Here S)(,zé = Syjz, whichis two dimensional. While the population ordinary least squares (OLS)
coefficient vector E(YZ) finds one direction, the method of proposition 2 finds the other.
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4.1.2. Example 2
Let zy, z2, z3 and € be independent and identically distributed standard normal random
variables, and let Y = 1 + z; 4+ exp(z»)e. Thus E(YZ) = (1,0,0)", but

E(Y?Z) = cov{var(Y|Z), Z} + cov{E(Y|Z)*, Z}
=(0,2¢%,0)" +(2,0,0)"
=(2,2¢%,0)".

Here S)(,‘l% C S)(,‘z% = Syjz- While OLS finds the direction in S;‘l%, the method of proposition 2
finds the other direction, which is in 8;2; but not in S;‘lé
Proposition 2 can be used to develop methodology for estimating a CKMS. Define the
population kernel matrix K = (E(YZ), ..., E(Y*Z)) and the corresponding covariance sub-
space
SH = S(K). ®)

cov

Then, under proposition 2, Séé\)/ C Sﬁ% Thus the subspace spanned by the left singular
vectors of K corresponding to its non-zero singular values is a subspace of S(yk)Z' For
application in practice, let K be the straightforward moment estimate of K. 'Hhen, if
d= dim(SC(lgz) is known, the subspace spanned by the left singular vectors of K corresponding

to the d largest singular values is a consistent estimate of Sc((l;z Usually we also require a
method for inference about d. Such methods are addressed in the next section.
The kernel matrix K is one of many that could be used. For instance, we usually use the

corresponding kernel matrix with Y centred and scaled:
K. = (EWZ),....EW*Z)),

where W= {Y — E(Y)}/o(Y) and o(Y) = /var(Y). Here the response is standardized in K.
perhaps to induce some numerical stability and so all calculations will be invariant to unit
changes in Y. Because S(K.) = S(K) = Séffl, methods based on K. should give results that are
equivalent to those based on K. This conclusion follows from the relationship K. = KU,

where U is a k x k non-singular, upper triangular matrix.

4.2. Methodology
In general, we are interested in the subspace

SIE{fP)Zy,i=1,...,h] 3)

where fl(k)(Y),..., fh(k)(Y) are 1 < min(p, k) linearly independent known polynomials
having up to kth degree. Usually we take min(p, k) as the default value of A. Particular
interest is placed on the special case,

S(K) =S, )

Our goal is to estimate the dimensions of these subspaces by using the singular values of
corresponding sample kernel matrices, as mentioned in the previous section. Although
expression (4) is the subspace that we normally pursue in practice, the results of the next
section are presented in terms of expression (3) to allow for generality.

4.2.1.  General known polynomial f®(Y)
Let Yx denote the usual estimate of Xx, and define the standardized observations
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7, =35"*(X; - X), i=1,...,n,
where X is the sample mean of the predictor vector. Define
(7)) = (AP0, AP,
M = E{f(Y )},
M; = E{ ()},
K; = ELSP0) = MOZ) BP0 = My ZD)
= EPTZ, . E{f/(k)(Y)Z})
The sample kernel matrix corresponding to K, is
N 1 » R 1 »
K; = (n DA S "”(Y)Z)

Assume that d = dim{S(K,)} is known. Let §; > § > ... > §, be the singular values of
K, and let 11, .. lh be the corresponding left singular vectors. Then S(K/,) =S8, .. ld)

Otherwise, 1nference about d is still required for use in practice. The linear combination 7; X,
1)27

where 7, = E l will be called the jth cov, predictor.
We base our estimate of d on the idea suggested by Li (1991). The statistic
Aw=n 35 &
m nj:%l 5;

is used as follows to estimate d. Beginning with m = 0, compare A, with the percentage points
of its distribution under the hypothesis d = m and determine the p-value p,,, which is the
probability of exceeding the observed value of /A\m. If p,,, is larger than a selected cut-off there is
not sufficient information to contradict the hypothesis. If it is smaller, conclude that d > m,
increment m by 1 and repeat the procedure. The estimate d = m follows when p,,,_; is relatively
small, implying that d > m — 1, whereas p,, is relatively large, so there is no information to
contradict the hypothesis. The estimate of S(K},) is then given by S{i ool i1~ These vectors
can be back transformed to 7); for consideration in the original scale.

Either the asymptotic distribution of Ay or a nonparametric alternative is required to
implement this procedure in practice. Here we describe a permutation test that can be used to
infer about d. The idea was suggested by Cook and Weisberg (1991) and studied further by
Cook and Yin (2001). Background on permutation tests was given by Davison and Hinkley
(1997) and Efron and Tibshirani (1993).

4.2.2. Permutation test
Assume without loss of generality that the kernel matrix K is a p x p positive semidefinite
symmetric matrix. Starting with a non-symmetric kernel A, for example, we can set K = AAT.
The test statistic is then

- p
A, =n Z
where the 5\j are the eigenvalues of K.

Let U = (u;) denote the p x p matrix of eigenvectors u; of the population kernel matrix K,
let d = dim{S(K)} and assume that S(K) = Sy|z. Consider testing the hypothesis that d < m
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versus d > m. Partition U = (U, Uy) where U is p x m so that under the null hypothesis
Syiz € S(Uy). The following proposition provides a basis for constructing permutation tests
for inference on d. The proof follows directly from proposition 4.6 of Cook (1998) and is thus
omitted.

Proposition 3. Let U be constructed as indicated previously and assume that UITZ uin UEZ.
Then S(Uy) is a DRS for the regression of Y on Z if and only if (7Y, UlTZ) JJ_UgZ.

According to this proposition we can gain information on d by testing the null hypothesis
(Y, UlTZ) 1 ng. We propose to test this statement by comparing the observed test statistic
A, with its permutation distribution under the null hypothesis. This involves recomputing
Am for each of a selected number of random permutations of the elements of the sample
version of (Y, UITZ), and then comparing the observed value with its permutation distribution
to obtain the p-values. These p-values can be used to infer about d by using the general
procedure described at the end of Section 4.2.1.

Li’s (1991) test for dimension with SIR is based on the assumption of normal predictors.
The permutation test requires that U]TZ and ng be marginally independent. This condition
is satisfied when Z is normally distributed, although normality is not a necessary condition
for the permutation test.

: k
5. Connection between S%), and Sy,

Having developed the CKMS, we establish in the next proposition a general connection
between the inverse mean subspace Sgz y) and the covariance subspace S®) defined at
expression (2). This provides connections between SIR and covy.

Proposition 4.

(a) If Y has finite support R(Y) = {ag, a1, - . ., a;}, then

Sezyy) = span{E(Y'Z),i=1,...,k} =8S®

cov*
(b) If Y is continuous and py = E(Z|Y) is continuous on R(Y), then

Sezyy) = span{E(Y'Z),i=1,2,...} = lim SH).
According to proposition 4, we can select a k depending on the support of Y so that the
inverse mean subspace Sgz|y) and the covariance subspace S®) are the same. Thus methods
like SIR (Li, 1991) and parametric inverse regression (Bura and Cook, 2001) for estimating
the inverse mean subspace can be regarded as methods for estimating a covariance subspace
S®) for some value of k. However, for any value of k, S&) C Sgz)v) and thus methods for
estimating Sc(ifz, provide lower bounds on Sgz,y).

For application in practice, SIR requires that a continuous response Y be replaced by a
discrete version Y with finite support constructed by slicing. Although Li (1991) indicated
that the number of slices is not crucial, the results can be sensitive to the choice (Cook (1998),
chapter 11). From proposition 4 we can think of the number of slices as controlling the
maximum order k of the covariance E(Y*Z) used to summarize the distribution of Y|Z. If
interest is mostly in the lower order covariances there may be little reason to choose a large
number of slices. Alternatively, we may wish to conduct analyses with different numbers of

slices, focusing first on low order covariances (few slices) and eventually on high order
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covariances (many slices) to gain a more detailed understanding of Y|Z. This perhaps partly
answers one of the open questions posed by Kent (1991).

SIR and covy, can also be connected in a related way. Consider a class of subspace
estimation methods based on a population kernel matrix with columns E{g(Y)Z}, j=
1,..., k, where the g; are known functions. The covy methods are based on choosing poly-
nomials for the g;, whereas SIR is based on choosing step functions (slicing) for the g;.

Finally, proposition 4 can be used to understand the limitations of the inverse mean
subspace, and why SIR fails to find directions in symmetric regressions like ¥ = Z2 + ¢
where Z is standard normal and independent of € which has mean 0. In this case E(Y*Z) =0
for all k=1,2,..., so Sgzy) = 8(0). Like SIR, cov, will also fail in such symmetric

regressions, and this accounts for many situations in which S*) is a proper subset of Sé’&

6. Soil evaporation

In this example we consider the regression of daily soil evaporation (Y) on four predictors:
the integrated area and range of the daily air temperature and daily humidity curves. The
data set consists of 46 observations and a few additional predictors that are not used here. It
was presented by Freund (1979) and analysed in a related context by Cook (1994a). Our goal
was to study the first two moments of Y|Z by using S{2. An inspection of various plots of the
predictors did not reveal any notable non-linearities and thus we assumed the linearity
condition.

We based our analysis on the sample kernel matrix
- 12 .. 12 25
Ke= (=Y WZ,-> WL,
n ; n ;

where W; = (Y; — Y)/6(Y). As an aside, the squared length of the first column of K¢ is n!
times the score test statistic for the hypothesis 8 =0 in the homoscedastic single-index,
normal linear model Y = 3y + g(8"X) + ¢. The squared length of the second column of K. is
2n~! times the score test statistic for the hypothesis o = 0 in the heteroscedastic linear model
Y = By + exp(a'X)e, where ¢ is normal with mean 0 and variance o2. This kernel matrix thus
gains its information on the second-moment subspace in a rather classical way. Further,
although the usual score test statistic for o = 0 requires that the mean function be correct
(Cook and Weisberg, 1983), it can also indicate an incorrect mean function, even if the
variance function is constant. The second column of the kernel matrix K¢ can therefore
contain information on both the mean function and the variance function. This was pre-
viously illustrated in the two examples of Section 4.1.

Returning to soil evaporation, the permutation p-values for cov, based on 1000 rep-
lications are 0 and 0.032; thus, we infer that dim(SC(gL) = 2. The singular values of the sample
kernel matrix are about 1.13 and 0.27, suggesting that most of the variation is in the first
direction. Additionally, the permutation p-values for covs are 0, 0.035 and 0.914, lending
support to the possibility that the regression information is contained in the first two
moments and that S = Sé‘z% = Syz-

The orthonormal cov; coefficient vectors 7, and 7}, are shown in Table 1 for the original
predictors and those predictors standardized by their sample standard deviations. A
standardized coefficient is just the original coefficient times the sample standard deviation of
the associated predictor. As in linear regression, it may be easier to assess the relative
magnitudes of coefficients when the predictors all have the same sample standard deviation.
The interpretation of the coefficients in Table 1 depends on the specific application context.
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Table 1. Raw and marginally standardized estimated coefficient vectors 7;
from the cov, analysis of the evaporation data

Predictor X m Standardized I Standardized
ul U

Air temperature area 0.096 0.114 0.242 0.531

Air temperature range 0.621 0.148 -0.797 —-0.353

Humidity area -0.562 —-0.935 0.177 0.547

Humidity range —-0.538 —-0.301 0.524 0.542

Nevertheless, we can see that the humidity area is the dominant predictor in the first
standardized direction in Table 1, and all predictors contribute about equally to the second
standardized direction. Since the coefficient vectors 7); and 7}, only define a subspace, the
interpretation might be enriched by considering linear combinations of them.

A three-dimensional summary plot of Y versus the two cov, predictors along with the OLS
fit ¥ of a full quadratic model in those two predictors is represented in Fig. 1. Various
residual plots and other standard diagnostics did not indicate deficiencies in the fit. The OLS
fit Y of a full quadratic in the original four predictors did not offer any notable
improvement. The sample correlation between Y and f/fun is 0.984. The quadratic surface
shown in Fig. 1 appears to be twisted, suggesting the possibility of interactions. This
possibility is supported by investigating the interaction terms in the OLS fit of a full quadratic
model in the original four predictors.

Fig. 1. Three-dimensional summary plot of the response versus the two covy predictors: the surface is a full
quadratic fitted to the plot by using OLS
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For contrast we also applied SIR as implemented in Arc (Cook and Weisberg, 1999b).
Not surprisingly, results from the application of SIR depend on the number of slices. Using
the asymptotic test associated with SIR, there was a firm indication of one-dimensional
structure. Depending on the number of slices, the SIR test hinted at a second dimension as
well. For instance, using SIR with three slices (SIR3), the SIR p-values are 0.000 and 0.967.
But, using SIR with four slices (SIRy), the p-values are 0.000, 0.075 and 1.00. Table 2 gives
the R?-values from four different OLS regressions distinguished only by their responses which
are the first two SIR predictors with three and four slices. The predictors for each of the four
regressions are the two cov, predictors 71X and 7 X. For example, R? = 0.982 for the
regression of the first SIR predictor with three slices on the two cov, predictors. The results in
Table 2 indicate that the first SIR predictors are essentially linear combinations of the two
cov, predictors, but the second SIR predictors are not. Further investigation indicated that
the first SIR predictors are very similar to the first cov, predictor, but the second SIR
predictors are not similar to the second cov, predictor. Evidently, the methods differ in their
second directions.

We conducted a small simulation study to see whether this example reflects general
operating characteristics of the methods or perhaps just isolated aspects of the data. Letting
Y represent the fitted values from the quadratic fit shown in Fig. 1 using the first two cov,
predictors 7] X and 71 X, we generated simulated data sets as

Ysim,i:?i+45ia izl)"'9469

where ¢ is a standard normal pseudorandom variable and the standard deviation is roughly
the same as that observed from an OLS fit of the full quadratic model in all four predictors.
The simulated data have two-dimensional structure with the two coefficient vectors (7, 7,) in
Table 1 spanning S, = Sy, x. We then applied cov, and SIR; to the regression of Y, on
the original four predictors. To assess the accuracy of the methods, we calculated the
R’-values from the four OLS regressions of the first and second cov, and SIRj3 predictors
from the simulated data on the two true predictors ff X and 71 X from the original analysis.
The simulation was then repeated 100 times.

The first four rows of Table 3 following the column headings give the 5, 50 and 95
percentage points of the empirical distribution of R? for the first and second cov, and SIR3
predictors. For example, the first row gives the results from the OLS regression of the first
covy predictor from the simulated data on 7] X and 7 X. The results indicate that the first
cov, and SIRj3 predictors reliably captured a linear combination of the true predictors.
Additionally, the second cov, predictor gave a good representation of a second, orthogonal,

Table 2. R?Z-values from the OLS regressions
of the first two SIR predictors with three and four
slices on the two cov, predictors

Method R*-values for the following
SIR predictors:
Ist 2nd
SIR; 0.982 0.018

SIR4 0.999 0.510
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Table 3. SIR and cov, applied to the simulated evaporation

data
Method Predictor 5% R>  Median R°  95% R’
COoV, Ist 0.989 0.995 0.999
covy 2nd 0.890 0.979 0.998
SIR; Ist 0.973 0.984 0.995
SIR; 2nd 0.016 0.308 0.936
covy Ist 0.987 0.996 0.999
cov, 2nd 0.878 0.971 0.998
SIR, Ist 0.972 0.987 0.998
SIR, 2nd 0.102 0.213 0.741
SIR3, Ysim AL X 2nd 0.085 0.516 0.931

direction. The results for the second SIRj; predictor are not nearly as good because the
median R’-value is lower and the variability is larger.

In an independent simulation, the next four rows of Table 3 were constructed in the same
way as the first four rows, except that we used SIR4 instead of SIRj;. The results are
qualitatively similar to the previous results, but the performance of the second SIR,4 predictor
was somewhat worse than that for the second SIR; predictor.

Finally, to provide an external basis for comparison, we ran the previous cases using
Ysim.: = 4¢; so that Y, 1L X. In all cases the R*>-values seemed consistent with observations
on a uniform [0, 1] random variable. The final row of Table 2 gives one set of results for
contrast. Comparing that row with the previous results, it seems that the second SIR
direction did not do as well as selecting a direction at random.

We suggested in Section 1 that, when the first few moments of Y|X are of special interest,
methods that target those moments should in principle produce results that are better than
those from methods that pursue the distribution of Y|X, particularly when S(Yk\)z = Syjz. This
example supports that idea since the results for cov, were found to be substantially better
than those for SIR.

7. Discussion

In this section we discuss a few issues related to aspects of this paper.

7.1. Assumptions

We used three primary assumptions in the developments of this paper. The first is that Y
and X have a joint distribution, the second is the linearity condition of proposition
2—E(Z|~y"Z) is linear or approximately so—and the third is the independence condition
that was used in the permutation test of Section 4.2.2. The first assumption was used mainly
to facilitate the exposition. It is not essential and the results here apply to designed
experiments in which X is fixed. The linearity condition, although not a severe restriction, is
important because extreme violations of this condition can produce misleading results.
When used in the context of designed experiments, the linearity condition should be
interpreted relative to the design distribution. Many classical designs, particularly central
composite designs, satisfy the linearity condition to a good approximation (Ibrahimy and
Cook, 1995).
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As mentioned in Section 2.2, it may be possible to induce approximate normality in
the predictors by using power transformations or weighting, which would ensure both the
linearity condition and the independence condition for the permutation test. To see what can
happen when the linearity condition fails, let £ be the subspace spanned by {E(Z|yTZ = v)}
as v varies in the sample space of 4'Z, where ~ is still a basis for Sg”)z Then it follows
immediately from the proof of proposition 2 that E(Y*Z) € £ without requiring the linearity
condition. In addition,

E{E(Z|y"Z)Z"~} = E(ZZ ) =~

and thus ‘S(Yk\)z C £ with equality when the linearity condition holds. This shows that £ is
always a kth-moment DRS, although it is not necessarily central unless the linearity condi-
tion holds. A practical consequence of this result is that, when the linearity condition fails,
covy may ‘overestimate’ Sg“)z by including directions that are in the kth-moment DRS £ but
not in the CKMS Sy

The permutation test requires the independence condition UITZ JJ.U;Z. If this condition

fails then, because cov(UlTZ, UgZ) = 0 by construction, one of two cases must hold: either

(a) E(UgZ|U1TZ) = 0 and the dependence is in some higher conditional moments or
(b) E(U§Z|U1TZ) is a non-linear function of UITZ.

Violations under case (b) are potentially more serious in practice and are linked to viola-
tions of the linearity condition. If the linearity holds under the hypothesis Y 1L U§Z|U1TZ
then we must be in case (a) and modest violations of the independence condition should not
have much effect on the permutation test. If the linearity condition fails then case (b) holds
and both estimation and testing will be affected. The outcome here is more difficult to
predict, although results from various simulations indicate that overestimation is likely.

7.2. Residual analysis

The methods of this paper are applicable as model diagnostics by replacing the response Y
with a residual r. For example, suppose that we wish to check the homoscedastic linear model
Y = By + BU + & where U denotes the vector of predictors and ¢ is normal with mean 0 and
variance o?. Letting r; denote the ith ordinary residual standardized by the maximum
likelihood estimate of o, a kernel matrix for cov; is just

~ PN 1 . 1 n .
K. = (kl, k2) = <; Z ril;, Z Z }"izZi> . (5)
i=1 i=1

If the predictors U used in the model are the same as the predictors used in the cov, analysis
then the first column of the kernel matrix is 0.

7.3. Score test for heteroscedasticity
Cook and Weisberg (1983) developed a diagnostic score test for a = 0 in the linear model

Y =08 +8"U+ exp(a’Z)e,

where ¢ is normal with mean 0 and variance o°. For ease of exposition and without loss of
generality, we have written the variance function in terms of the standardized predictor
vector Z which may contain predictors in U. The score test statistic for & = 0 can now be
expressed as n/2 times the squared length of the second column k» of the kernel matrix (5).
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Cook and Weisberg (1983) also proposed an associated diagnostic plot of r? versus the
fitted values aTZ[ from the OLS regression of r? on Z[, referring to the estimated coefficient
vector a as a ‘quick estimate’ of a without any apparent justification. In the context of this
paper, a = k, and, under the condition that E(Z|a'Z) is linear, it can be shown that a is a
consistent estimate of ca for some positive constant ¢, providing support for the diagnostic
plot proposed by Cook and Weisberg (1983).

7.4. Regression mixtures

Cook and Critchley (2000) studied foundations of dimension reduction in the presence of
regression mixtures and outliers, focusing primarily on the central subspace. They concluded
that methodology for estimating the central subspace enables

‘... the analyst to construct low dimensional summary plots that may show the main regression
structure as well as outliers and mixtures without the need to pre-specify a parametric model’.

One of their illustrations of this conclusion involved applying SIR to the regression of an
athlete’s lean body mass Y on height, weight and red blood cell count. They found that SIR
indicates at least two-dimensional structure; the possibility of three-dimensional structure
was difficult to assess because the results depend on the number of slices. In the end, they
found that SIR identifies three distinct subpopulations.

To check further on the abilities of the cov, methodology, we applied cov; to the athlete’s
regression study of Cook and Critchley (2000). The three permutation p-values based on 1000
replications are 0.000, 0.000 and 0.008, indicating that no dimension reduction is possible in
this regression. From this point it was straightforward to reproduce the graphical displays
and conclusions reported by Cook and Critchley using the three cov; predictors. For
example, a plot of the response versus the third covs predictor is very similar to Cook and
Critchley’s Fig. 2. Thus, covs found the same structure as SIR, illustrating that covy
methodology can perform well in complicated regressions.

7.5. Availability

The permutation test discussed in Section 4.2.2 is available as an extension to the dimension
reduction methods in Arc (Cook and Weisberg, 1999b). It can be obtained at the Internet site
www.stat.umn.edu/arc by following the link to “Text extensions’. cov, methods are also
available as extensions to dimension reduction methods in Arc.
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Appendix A: Justifications

A.1. Proposition 1
That part (a) of proposition 1 implies part (b), part (c) implies part (a) and part (d) implies part (b) are
immediate. We now show that part (b) implies part (c).

E(Y|X) is a function of nTX by proposition 1 of Cook and Li (2001) for Y 1L E(Y|X)|nX.
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Let us suppose that, for i=1,...,k—1, MY (Y|X) are functions of n"X. Thus by expanding
M®Y|X) = E[{Y — E(Y|X)}*X], we have

MO [X) = EQ¢*X) + g(X).
where g(X) is a function of MO(Y|X) fori=1,...,k — 1; hence g(X) is a function of n*X, and we next
show that M®(Y|X) is a function of n"X. This will imply that E(Y*|X) is a function of n'X.
The proof proceeds by first using part (b),
cov{Y*, MO |X)|n'X} =0,
to show that
E{M P X) EYF[X)|n"X} = E(EX*[X)|n"X} E{M O [X)|n"X}.
Next, by assumption, g(X) is a function of nTX. We then have
EMPYX) gX)In'X} = E{g(X)|n" X} E{M D [X)ln"X}.
Adding the last two equations gives
EM O X) MO X)|n"X} = EM O X)|n"X} E(M O X)|n'X].
Therefore
E[M O X1 n"X] = [E(M O X)X
This implies that var{M ©(Y|X)|n"X} = 0. Thus, given "X, M ©(Y|X) is a constant, and it follows that
part (b) implies part (c).
We now show that part (¢) implies part (d), as follows:
cov{YX, f(X)|n'X} = E(Y* fX)In"X} — EQ¥ " X) E{f(X)|n" X}

= EE(Y" f(X)[X}|n"X] - E¥|n"X) E{f(X)|n"X}

= EY X) E{f(X)In" X} — EQ*[X) E{f/(X)|n"X}

=0.

The third equality follows from condition (c).

A.2. Proposition 2
Using proposition 1, the linearity condition and f ®(Y) = Y*,

E(Y*7Z) = E{(E(Y*Z|Z)}
= E{E(* |y 2)Z}
= E{E(""|v"2) E(Z|v" 2)} (6)
=P, E(Y*7).

The proof for general f®(Y) is essentially the same.

A.3. Proposition 4
A.3.1. Part (a)
Define p; = E(Z|Y = a;) and f; =Pr(Y=a;) for i=0,...,k. Therefore we have ¥, f; =1 and

S fitr; = 0.



174 X. Yin and R. D. Cook

fo 0 ... 0 1 a a(z) a’é

. 0 fi 0 1 a & a

S{EQYZ), ..., E(Y*Z)} = 84 (o, ) ‘ '
0 0 ... fi 1 a a ... d

=S(1gs -+ -5 g)-

The last two matrices in the first equation are non-singular, the first because it is a diagonal matrix with
positive f; whereas the determinant of the second is Il > i, > 0(@; — @;) which is not 0. The result follows
since Sgzjyy = S(ty, - - - » py) by definition.

A.3.2. Part (b)
First note that E[Y'{E(Z|Y)}] € Sz y) for i=1,2,.... Hence

S{E(Y'Z),i=1,2,...} C Spzjy)-
Now we need to prove
Spzyry CS{E(Y'Z),i=1,2...}.
It follows from Cook (1998), proposition 11.1, that
Seaiy) = SWvar{E(Z|Y )}] = S{E(uy i)}
and, if we define the vector Y, = (1, Y, Y2,..., Y9)T for any non-negative integer ¢, then
S{E(uyY,)} CS{E(Y'Z).i=1,2,...}.

Let us first assume that Y has a compact support, say, R(Y) = [a, b]. On the basis of the Weierstrass
theorem (the theorem is stated in Rudin (1987)), Ve > 0, 3 non-negative integer ¢ and p x ¢ matrix C,
such that

py =C, Y, +¢, for all Y € [a, b],
where €, is a p x 1 vector and

sge,, <e for all Y € [a, b].

Therefore, for any vector B € Sgzy), say B = E(u yit)By, we can have
B = E(uyY;)CpBo + E(uye,)Bo.

So the first term on the right-hand side is a vector belonging to S{E(Y'Z),i=1,2,...} whereas the
second term tends to 0 uniformly as ¢ — 0. Thus any vector in Sgzjy) is a limit of the vectors in
S{E(Y'Z),i=1,2,...}, which means that this vector is in S{E(Y'Z),i=1,2,...}, since Sgz|y) is a
compact vector space. So

Spayyy CS{E(Y'Z),i=1,2,...}.

In the case that Y does not have a compact support, since no element of var(gy ) is infinite, as usual
there are @ and b such that we can ignore the ¥s on R(Y) — [, b] and thus apply the above result to
[a, b]. We then have Sgzjy) € S{E(Y'Z),i=1,2,...}. Hence the conclusion holds.
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