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Summary. The paper reflects on the author’s experience and discusses how statistical
theory, sound judgment and knowledge of the context can work together to best advantage
when tackling the wide range of statistical problems that can arise in practice. The phrase
‘pragmatic statistical inference’ is introduced.
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1. Introduction

After about 35 years in statistics, it may be worthwhile to set down my approach to the subject,
both to encourage and guide practitioners and also to counterbalance a literature that can be
overly concerned with theoretical matters far removed from the day-to-day concerns of many
working statisticians.

I claim no originality for most of what is written, except perhaps in the explicit formalization
of what I call pragmatic statistical inference. As well as problem solving in general, I also
discuss model building and inference from a practical point of view. Some general themes
are the importance of context in statistical practice, the key role of data analytic descriptive
methods and recognition of the iterative nature of much statistical work. I also emphasize the
underlying unity of different statistical approaches, because I subscribe to the growing consensus
that different forms of inference are appropriate in different practical situations, and that the
frequentist and Bayesian perspectives are complementary in applied statistical work. I begin
with an example—my most recent piece of consulting at the time of writing.

2. Prologue example

A large manufacturing company sought my advice on the best way of forecasting future values
of a particular time series. A meeting was arranged with the person who was responsible for this
task. It transpired that the company did not employ a statistician, even though they employed
several thousand people, collected large amounts of data and had numerous quality control,
reliability, experimental design and planning problems. My client said that this was not for want
of trying, but because they had been unable to recruit a suitable person. Whether or not this
was true, it is sadly typical that many large companies do not employ a statistician and rely
on engineers who ‘know a bit of statistics’, or on external consultants who may not have the
requisite inside knowledge of the company’s workings.
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My client showed me the data, which consisted of just 11 quarterly observations—a short
series. The observed variable was described as the ‘number of services and part orders in one
quarter’ for a particular model of a type of electrical appliance. A ‘part order’ was explained
as involving the supply of one or more spare part replacements for a single machine. The data
have been coded to preserve confidentiality and the scaled data are 1579, 1924, 1868, 2068,
2165, 1754, 2265, 2288, 2526, 2568 and 2722, starting in 1998, quarter 1. The series is plotted
in Fig. 1 and shows an upward trend, which is approximately linear. There is no apparent
seasonality. The value in 1999, quarter 2, seems unusually low, but my client could provide
no explanation for this. The series is rather short to use any sort of sophisticated forecasting
procedure. The company had heard of exponential smoothing and wondered whether that would
be an appropriate method to use.

My first impression was that the series was so short that any simple univariate projection
method would be reasonable, provided that it allowed for trend. However, before committing
myself, I asked some questions to obtain further background information to understand the
context better. In particular, I needed to find out why a forecast was required and what would
be done with it. I soon ascertained the key information that production of the particular brand
was shortly to be stopped so that a new model could be introduced. Forecasts were desired to
plan the run-down of work on the brand. Sales through shops would continue for a while but
would be phased out within 3–5 months. Thus the upward trend in the data would soon cease.
Then, almost by chance, I discovered the second crucial item of information, namely that the
observed variable was not as originally described but was actually the ‘number of services and
part orders for machines less than 2 years old ’. This is because the company is only directly
involved in servicing and supplying spare parts when a machine is covered by warranty. The

Fig. 1. Number of services required for a particular type of consumer durable in successive quarters from
1998, quarter 1, to 2000, quarter 3
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latter expires when a machine is 2 years old. This means that the observed series will soon start
decreasing and should die out within 2 1

2 years!
Using Fig. 1 by itself, it seems reasonable to use something like Holt’s linear trend version of

exponential smoothing. However, we now know that this would be completely inappropriate!
The contextual information tells us that the value 2 1

2 years ahead will be 0, and so we can
forecast with certainty! In the interim, I suggested that some sort of damping procedure, taking
account of the known numbers of past sales, would be appropriate. This would best be carried
out in house by people who were familiar with the problem. Simple extrapolation is totally
inappropriate, and my expertise as a time series ‘expert’ appears wasted! In fact, it was my more
general skills as a problem solver that proved useful.

3. What is statistics?

I do not claim that the prologue example is a ‘typical statistical problem’. There is (fortunately?)
no such thing. However, as often happens at the end of a piece of consultancy, I wondered
whether this example could teach us anything about problem solving in general. I would say
that some elements of the above problem feature in many statistical tasks—the importance of
context, the messiness of the data and the lack of clarity in objectives.

Before we go any further, it may be helpful to attempt to specify what is meant by the subject
entitled ‘statistics’, though this is clearly difficult to do in a way that will please everyone. A
typical dictionary definition is ‘the science of collecting, classifying and using numerical facts’.
I would vary this somewhat to the ‘science of collecting, analysing and interpreting data to
describe phenomena and to answer specific questions’. A radically different definition is given
by Lindley (2000) as ‘the study of uncertainty’, and this enabled Lindley to concentrate on the
measurement of probability as the prime activity of statisticians. However, although I might
accept an alternative definition of statistics as ‘the pursuit of knowledge in the presence of
uncertainty’, I cannot accept an approach that removes data from centre stage or which makes
the subject primarily deductive, rather than inductive.

In practice, the scope of statistical problem solving is so wide that any definition can look
suspect. It involves interaction with the real world and hence with many different kinds of
uncertainty—certainly a longer list than that considered by Lindley (2000). There may, for
example, be uncertainty about what the question is, uncertainty about the quality and meaning
of the data and uncertainty about the form of relationships between variables, not to mention
the usual well-documented sources of statistical uncertainty such as random variation and
measurement errors. Thus my paper is not concerned with idealized inference but, like Rubin
(1984), with the

‘activities of applied statisticians in the real world who are subject to constraints of finite resources,
many problems to examine, and mixed expertise of consumers’.

4. Tackling real life statistical problems

This section briefly revisits some key aspects of problem solving. Good statistical practice (e.g.
Deming (1965), Preece (1987) and Chatfield (1995a)) is an essential prerequisite to any appli-
cation of theory, and any competent statistician, whatever his or her philosophy, will start
by asking questions, clarifying objectives, obtaining background information to tackle the
problem ‘in context’, collecting ‘good’ relevant data, assessing the quality and structure of
the data, deciding what to do about outliers and missing observations, and so on.
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4.1. Context
Context is recognized as crucial in scientific investigations. For example, a doctor treating a
patient with a high temperature and shivering might diagnose influenza in Europe but malaria
in West Africa. Context is equally crucial in statistics but is rarely recognized in theoretical work.
In particular, there have been few attempts to provide systematic guidelines on how to formulate
the problem (but see Hand (1994)) even though this is the essential first step in any statistical
investigation. I spend an increasing proportion of my time in problem formulation as opposed
to data analysis and note the importance of asking (many) questions, of finding out about any
prior knowledge and looking at any prior data, and ensuring that any necessary background
information is understood. Some tips, and further references, on consulting and collaboration
are given by Chatfield (1995a), chapter 10, and Derr (2000). From bitter experience, I particularly
advise against consulting by telephone or electronic mail, where one cannot see the data.

In statistical inference, the use of contextual information raises rather different issues. The
Bayesian may be able to incorporate some contextual information via priors, whereas the fre-
quentist may, for example, be able to incorporate external constraints, such as requiring a
particular coefficient to be positive. However, such matters tend to become wrapped up in
the inferential apparatus and are unrelated to more important questions, such as what is the
objective and what is a sensible model given the context? Many examples could be given (e.g.
the prologue example and Piepel and Redgate (1998)) where contextual issues need to be centre
stage, and hence be an explicit ingredient of statistical inference.

4.2. Collecting the data
There is a large literature on collecting ‘good’ data, some of which recognizes the many practical
difficulties involved. It is customary to try to collect random samples and statistical inference
often proceeds by pretending that the data are random even when they are clearly not! The fact
that some data sets are not completely random may, or may not, matter. Randomization is the
means, but representativeness is the goal.

The term quasirandom may be used to describe data that are as near to random as the practical
conditions allow. In the non-experimental sciences, genuine random samples are rare but are
generally analysed as if they are random. Sample surveys and observational studies can suffer
greatly from non-response (as well as misrecording). Even scientific experiments are usually
less random than they may at first sight appear. For example the scientist who takes a ‘ran-
dom’ sample in a particular laboratory on a particular day using a particular batch of material
may have difficulty specifying the population from which this is a random sample. Here, Dem-
ing’s distinction between enumerative and analytic samples (e.g. Hahn and Meeker (1993)) is
important.

The statistical literature is rather sparse on the question of collecting confirmatory samples.
Statisticians tend to be involved with analysing one-off samples, which can have serious limita-
tions. All scientific findings need to be checked, e.g. by repeating an experiment in a different
laboratory on a different day. Thus statisticians, if they wish to be regarded as good scientists
(Box, 1990), need to give more emphasis to collecting more than one data set wherever possible,
as that is the route to scientifically valid and generalizable results. However, there is little advice
in the literature on how to collect follow-up samples and traditional inference has rather little
to say when there are a series of data sets, rather than a single set of data. There has been some
recent work on meta-analysis that looks at between-study heterogeneity, as well as the findings
from single studies, while Ehrenberg’s (1975) work on seeking empirical generalizations provides
an alternative route. More generally the question whether ‘statistical method’ is, or should be,
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the same thing as ‘scientific method’ is not a topic that I can fruitfully pursue here—see for
example Nelder (1986, 1999) and MacKay and Oldford (2000).

4.3. Analysing the data
Having collected some ‘good’ data, the next stage is to analyse them. The first step is usually to
carry out an initial data analysis (IDA)—see Chatfield (1985) and Chatfield (1995a), especially
chapter 6. This includes assessing the quality and structure of the data, calculating summary
statistics and plotting appropriate graphs. In my experience, deciding what to do about pecu-
liarities of the data, such as outliers and missing observations, is often more important than
anything else. Indeed many readers will know that I am an ardent proponent of a careful IDA,
which is vital to understand the data and is sometimes all that is needed if, for example, the
results are very clear cut or reveal such poor data quality that a more sophisticated model-based
analysis cannot be justified. Where appropriate, IDA is also vital in building a model—see
Section 5—and choosing an appropriate method of analysis.

An instructive example of the importance of IDA is the reanalysis of some data from a field
trial comparing 10 varieties of barley by Cleveland (1993), chapters 1 and 6. This shows fairly
conclusively that the 1931 and 1932 data for a variety called velvet at a site called Grand Rapids
were erroneously interchanged. Sadly, many previous analyses failed to spot this.

4.4. Avoiding trouble
A key skill for the practitioner is the knack of avoiding trouble, as I (just) managed to do in
the prologue example. It is far more important to avoid trouble than to achieve some sort of
notional optimality. Some ways of doing this, some things to look out for and a variety of
examples are given by Chatfield (1991). I have made many mistakes over the years but have
(fortunately) managed to keep most of them quiet or to correct them before much harm was
done. Like others, I naturally avoid broadcasting such errors, even though we probably learn
more from our failures than from our successes.

4.5. Communicating the results
At the University of Bath, we send many of our undergraduates out for a year on industrial
placement as part of their degree course. In my experience, the most important skill that they
learn during this time is the ability to communicate with their work colleagues, both statisticians
and non-statisticians. Report writing is a key skill, while giving good oral presentations is also
vital—see Chatfield (1995a), chapter 11. I particularly recommend asking someone to comment
on a draft report, while overhead transparencies should (obviously) be legible at the back of a
lecture room. I find it amazing that so many experienced lecturers still ignore the latter guideline.

5. Model building

Most statistical problems require some sort of model to be constructed. This involves formulating
a sensible model, fitting it to the data, checking the residuals and revising the model if that
proves necessary. The phrase ‘statistical inference’ is sometimes used synonymously with the
estimation of model parameters (i.e. fitting the model). However, modern computer packages
enable the analyst to fit most classes of model very easily, and so the real problem is deciding
what model to fit. I have argued elsewhere (Chatfield, 1995b) that modern inference should
include the whole model-building process, including model formulation and model criticism.
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The statistician needs to ‘match the model to the data’ (Nelder, 1986) rather than just to fit it,
and it is the model formulation stage that is usually the most difficult.

Although some general guidance can be given about model formulation, it is often more of an
art than a science and is heavily context dependent. The practising statistician needs to formulate
a model based on background theory, on previous empirical evidence and/or on a preliminary
look at the data. Exactly how this is done will vary widely and will usually involve subjective
judgment, but there is, for example, a world of difference between a plausible guess (which all
statisticians have to make from time to time) and a model based on substantial prior empirical
knowledge. Given that model formulation is a key aspect of problem solving, it is unfortunate
that it is often skated over when considering inferential questions. For example a theorist might
pose the problem ‘Let X1; X2; : : :; Xn be independently and identically distributed N.µ;σ2/:
what is the best way to estimate µ?’ without saying why the data are thought to be independent
normal random variables with a constant variance. A man in daily muddy contact with field
experiments will not have much faith in a model that assumes independent normal errors (Box,
1976).

The word ‘model’ normally invokes ideas of simplification and idealization (Cox, 1995) but
there is always some tension between aiming for a parsimonious model with few variables and
wanting to include all conceivably relevant variables. Related to this is the distinction between
a model seen as a useful approximation and a model seen as the ‘truth’. However much data we
have, and however careful the modelling procedure, we can never be certain that the true model
has been found. Indeed most statisticians would agree that there is no such thing as a ‘true’
model (e.g. Durbin (1987), page 178). Model uncertainty (Draper, 1995a; Chatfield, 1995b) is
a fact of life and arguably the most serious component of uncertainty. However, it is also the
component about which least is known and which is typically ignored in statistical inference.
Yet inference is crucially dependent on the model assumed, and Tsay (1993) goes as far as saying
that ‘Since all statistical models are wrong, the maximum likelihood principle does not apply’!

Taking time series analysis as an example, the statistician who decides (rightly or wrongly)
to fit a model from the autoregressive integrated moving average (ARIMA) class will typically
try a range of plausible models (after looking at diagnostic tools such as the correlogram),
pick the best fitting model and then make inferences and forecasts on the assumption that the
model selected is true. Such inferences fail to take account of uncertainty about the structure
of the model. A Bayesian may prefer to use a dynamic linear model (e.g. Pole et al. (1994))
as it arguably provides a more natural way of quantifying prior information about physically
meaningful quantities such as trend. Moreover, estimates of model parameters can be readily
updated by using the Kalman filter. However, these advantages should not be allowed to obscure
the many assumptions that have to be made in setting up the model. Model uncertainty is still
present.

A key component of much model building is the use of IDA—see Section 4.3. Although data
analytic in character, IDA is a vital preliminary to model building and inference. However, the
extent to which the analyst can and should look at the data before formulating and fitting a
model is controversial. For the Bayesian, there is a real danger in looking at the data before
choosing the ‘prior’ since one ends up looking at the data twice. But if this is not done, and
the data contain some unexpected feature that has not been allowed for in the prior, then a
zero prior leads to a zero posterior regardless of what the data are saying (sometimes called
Cromwell’s law).

The frequentist also faces problems in deciding whether to incorporate IDA when formulating
a model. When a model is entertained after looking at the data, it can be shown (Chatfield, 1995b)
that least squares theory no longer applies, estimates are biased and diagnostic checks, using
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the same data previously used to formulate a model, are tainted. In particular, my experience in
time series forecasting suggests that estimates of uncertainty, based on assuming that the best-fit
model is true, are woefully inadequate in that the out-of-sample forecast accuracy is typically
twice as bad as expected from the within-sample fit. This emphasizes the importance of checking
any model with new data to guard against overoptimism resulting from using a best-fit model,
and it explains my preference for simple models. The use of more complicated models may lead
to a better (within-sample) fit but may give worse out-of-sample forecasts.

It is clear from the above that statisticians do not usually fit a single model, but rather try
several, either all at the same time or in a sequential way. The first guess at a model will be
modified in response to diagnostic checks or to the collection of more data and will typically be
improved in an iterative–interactive way. The circular (closed loop) process for real life model
building contrasts with the (open loop) process of traditional inference where a model is assumed
a priori. The merits of iteration in statistical work are propounded, for example, by the work of
Deming (e.g. Deming (1986)) and Box (e.g. Box (1994)). Sadly, the iterative nature of modelling
is often suppressed in published work, thereby giving a misleading impression.

6. Inference

To use a statistical model, the analyst will estimate model parameters and then make appropriate
inferences. Many experienced statisticians adopt a general approach that can best be described
as ‘pragmatic’, and this is a way ahead that I also recommend. A ‘pragmatist’ is someone who
chooses a sensible, practicable course of action, and the relevant dictionary definition of the ad-
jective pragmatic is ‘advocating behaviour that is dictated more by practical consequences than
by theory’. (The school of philosophy called the pragmatic method (e.g. James (1975)) is con-
cerned with studying ideas by tracing their respective practical consequences.) This adjective has
already been used to describe what statisticians do (e.g. Bartholomew (1995) and Spiegelhalter
et al. (1994), page 378). Such an approach is flexible, undogmatic and eclectic in character.
Although implicit in some published work, I want to formalize it as far as is possible (which is
not very far) and to give it a distinctive name. First, we briefly revisit traditional inference.

6.1. Traditional statistical inference
Traditional inference has two main ingredients:

(a) a model—M—a prespecified family of parameter-indexed probability models;
(b) a set of data—D—assumed to be a random sample from some known population where

M applies.

The problem is to estimate and/or test hypotheses about the parameters of M using D. Various
approaches may be taken, and the Bayesian approach further assumes prior knowledge about
the model parameters or about particular hypotheses.

Although of theoretical interest, traditional inference forms a rather small part of what statisti-
cians actually do. The theory is primarily intended to be applied to (smallish) samples collected
from well-defined populations by using a proper randomized survey or experimental design
when there is a particular model in mind. This theory is ‘nice’ to teach for the more mathemat-
ically inclined and can be formalized in such a way that it sounds ‘objective’. Unfortunately, it
diverts attention from the wealth of alternatives that statisticians may face in practice.

Much statistical work involves rather little inference (Smith, 1986). As well as IDA, non-
inferential techniques include data analytic methods, such as cluster analysis and multidimen-



8 C. Chatfield

sional scaling, which need not depend on a probability model and are designed to reveal structure
in data. When used as a precursor to inference, they are typically ignored in any subsequent
theoretical calculations. Bartholomew (1995) distinguished four types of statistical procedures,
of which three do not readily fit into a traditional inference scenario, namely

(a) the analysis of census and large sample data,
(b) the analysis of complex dynamic stochastic systems (rather than static populations) and
(c) the assessment of uncertainty in wider areas of public concern.

Some statistical problems (e.g. regression with observational data and time series analysis)
are typically tackled by using traditional inferential apparatus, despite doubts about whether
the sample really is random and despite not knowing the model a priori.

Modern inference is generally interpreted more broadly than traditional inference with more
emphasis on model selection and model criticism. However, it still fails to cover many of the
activities of working statisticians.

6.2. Pragmatic statistical inference
I suggest that pragmatic inference may be thought of as having three main ingredients:

(a) the context—C—including objectives and known background information;
(b) the model—M—(or a series of models, M1;M2; : : :) entertained before, during or after

looking at the data;
(c) the data—D—(or a series of data sets D1;D2; : : :) are collected in a random or quasi-

random way from some known population (and the populations will not be exactly the
same for each Di when a series of data sets is collected). The adjective quasirandom was
introduced in Section 4.2.

This differs from traditional inference in its explicit inclusion of the context, and hence of the
problem to be solved, and the recognition that there may be a series of models and data sets,
perhaps examined in an iterative way. The problem may involve model selection as well as
parameter estimation and hypothesis testing, but the last two are usually a means to an end,
and not the end itself. Rather the statistician will want to use the fitted model, e.g. to make
predictions, to make decisions or choices, or simply to provide a succinct description. Note that
no restriction is placed on the inferential approach to be used, and the analyst is free to use
ideas from more than one approach even within the same problem.

I realize that this approach is already used implicitly by many or most statisticians. Even the
most dyed in the wool frequentist or Bayesian will recognize the importance of context and, if
honest, will admit to ‘peeping’ at the data before formulating a model. Thus in one sense the
message of the paper is not new. However, I want to go further than merely suggesting that
the statistician selects the most appropriate inferential approach from a list of alternatives by
explicitly recognizing

(a) the paramount importance of context,
(b) the key role that is played by pre-inferential descriptive and data analytic methods,
(c) the iterative–interactive nature of statistical modelling,
(d) that statisticians may use ideas from different schools of inference, not only in different

problems but perhaps even within the same problem, and
(e) that statisticians need to be flexible and to make good use of that hard-to-define, but

priceless, commodity called ‘common sense’.
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The formalism given above for pragmatic inference emphasizes the difficulties that are involved
in trying to develop any corresponding theory. As Mallows (1998) says, it is not clear that there
could be a ‘theory of applied statistics’, since ‘by definition, context and theory are different
things’. The context is impossible to formalize in a general way, and it may even be the case,
for example, that the objectives change iteratively as the study progresses. The model may also
develop iteratively as more data are collected, and this also makes a general theory elusive.
There have been several attempts to formalize statistical practice (e.g. Gale (1986) and Oldford
(1990)), but real statistical analysis includes components that cannot be completely formalized,
given the complex process by which an experienced analyst examines a data set and formulates
a model.

Of course, one attraction of traditional inferential procedures is that we can develop certain
‘road test’ properties so that a procedure is known to be ‘good’ under given assumptions. More
specifically, we would like to be sure that a procedure is not systematically misleading when
applied repeatedly (Cox, 1997). Unfortunately, it looks to be impossible to develop notions of
‘goodness’ to the same extent for pragmatic inference. However, it may be possible to define ‘best’
in alternative ways or at least to draw on traditional inference results in regard to part of some
pragmatic procedure. It should in any case be remembered that optimality results for traditional
inference may depend on dubious assumptions. What matters in practice is not whether a model
or procedure is ‘best’ but whether it is ‘sufficiently good’ in the given context.

One important method for checking a model that does not depend on traditional theory is
the predictive validation of out-of-sample results. This is routine in time series forecasting but
can readily be used in many other applications. The use of calibration is an area where Bayesian
and frequentist ideas can both be used within the same problem. For example, Rubin (1984)
recommended the ‘calibration of Bayesian probabilities to the frequencies of actual events’,
while predictive calibration, with its inherent frequency character, can be used to validate or
falsify a model formulated in a Bayesian way (e.g. Draper (1995a) and Draper (1995b), page 142).

6.3. Why an eclectic approach?
This subsection amplifies my wish to promote further the virtues of a flexible approach to
inference. The word ‘eclectic’ means to be willing ‘to select from each school of thought such
doctrines as please him’ (Concise Oxford Dictionary), and this description has already been
applied to inference (Cox, 1978, 1995; Durbin, 1987; Moore, 1998). Some approaches to tra-
ditional statistical inference have rather restricted application (e.g. decision theory) or are not
widely understood (e.g. fiducial inference). Thus I concentrate my remarks on seeking common
ground between the frequentist and Bayesian approaches, both of which are widely used.

Historically there has been a wide gulf between the two schools of thought. The sharp
exchanges in the discussion of Efron (1986) provide an example from fairly recent years. Some
frequentists continue to be highly sceptical of methods involving subjective beliefs (e.g. ‘Bayesian-
ism may seal the doom of applied statistics as a respected profession’ (Hamaker, 1977)), while
avowed Bayesians may still claim, for example, that their approach is the only one to be
‘coherent’ (e.g. ‘Every statistician would be a Bayesian if he took the trouble to read the lit-
erature thoroughly’ (Lindley, 1986)). Coherency aims to ensure that the statistician’s actions are
internally consistent, but at the price of requiring that the analyst is able and willing to express
consistent preferences about different courses of action, even when there are different kinds
of uncertainty, perhaps imprecisely known. Whether such superrational beings exist is open to
doubt! Despite this, there is no doubt that Bayesian ideas are useful. For example Pocock (1994)
says that
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‘frequentists are prone to become Bayesians when faced with practical research questions, especially in
clinical trials, which do not readily lend themselves to frequentist solutions’,

and goes on to suggest the title ‘closet Bayesian’ for statisticians

‘who adopt strategies in study design and data interpretation which include concepts of prior belief, but
who do not express them in a formal Bayesian framework’.

Likewise Cox (1986) says that he has rarely, if ever, found it feasible to incorporate prior know-
ledge via the Bayesian formalism, but that ‘it seems crucial that such prior knowledge is used,
if extremes of empiricism are to be avoided’.

Many statisticians have begun to question whether such disagreements are as real as the more
extreme protagonists appear to suggest, or whether practising statisticians can, in fact, gain much
from both schools of thought. In particular, there are many common features to the different
inferential approaches, including the importance of clarifying the problem, the importance of
collecting good data, the desirability of carrying out a preliminary data examination before
starting a more formal statistical analysis and the use of the likelihood function. We agree about
far more than we disagree.

Given the wide variety of practical problems that require solution, it seems unnecessarily
limiting to restrict attention to one particular inferential approach. By being flexible, the statis-
tician will not ‘fall into the rigid fundamentalisms which are so destructive and, ultimately,
self-defeating’ (Bartholomew, 1995). Views similar to my own have already been expressed by
many others such as Smith (1994) who said (page 17) that ‘there is no single right method of
inference’, and that ‘different types of inference are relevant for different problems’, by Lindsey
(1999), page 16, who said that ‘we should not attempt to apply one mode of inference in all
contexts’, and by Box (1983) and Box (1994), page 217, who used the word ‘ecumenism’ in his
earlier paper, deriving from its use in the search for worldwide (Christian) unity. Barnett (1982),
page 285, summarized the approach of George Barnard as being

‘a catholic one—stressing the fact that no single concept or attitude is sufficient to cover the range of
different needs in statistical inference’,

and Barnard (1996) himself said that we need to be familiar with different approaches so that
‘an appropriate choice : : : can be made to problems as they arise’. Cox (1986) said ‘A single
approach is not viable’, whereas Rice (1995), page 597, remarked

‘the subject matter under investigation and the role that statistics plays in the investigation should
effectively determine whether it is more appropriate for the user of statistics to take a Bayesian, decision-
theoretic, frequentist or purely data-analytic point of view, or some combination of these’.

While agreeing with Smith (1994), page 18, that we should ‘enjoy the diversity of our subject’, I
also think that more effort is needed to unify the discipline. (Lindley (1997) is unusual is saying
that attempts at reconciliation should be resisted, but the rejoinder of Berger et al. (1997),
page 156, is persuasive.) As Efron (1998) said, ‘the world of applied statistics seems to need an
effective compromise between Bayesian and frequentist ideas’. There have been several formal
attempts at this (e.g. Good (1992)), and I want to take this one stage further with the explicit
recognition of pragmatic inference. One consequence is that there is no need for statisticians to
label themselves as ‘Bayesian’ or ‘frequentist’ or ‘unsure’. Rather we can all simply use the label
‘statistician’.

Morris (1986) referred to a ‘frequency-Bayes compromise’ over 15 years ago, whereas Spiegel-
halter et al. (1994) referred to Bayesian−frequentist rules. It is now not uncommon to see both
words in the title of a paper (e.g. Berger et al. (1994, 1997) and Bernard (1996)). Further evi-
dence of the coming together of the different approaches is provided by several discussants of
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Spiegelhalter et al. (1994) including A. P. Grieve, J. A. Lewis, D. G. Altman and F. E. Harrell,
Jr. (However, A. P. Dempster, in a rare note of discord, recommends the removal of ‘frequen-
tist crutches’ and relying solely on Bayes, thereby demonstrating that there is still life in old
controversies!)

It is inappropriate here to reiterate the perceived advantages and disadvantages of different
inferential approaches (see, for example, Cox (1978) for an early summary, Barnett (1982)
for a detailed exposition and Pocock (1994)), especially those of a mathematical nature, as
we wish to focus on the complementary qualities of different approaches as applied to real
life problem solving. Many problems lead to very similar solutions using different inferential
approaches, and it is rather rare for different approaches to give qualitatively different results.
However, when prior information is sharp and non-controversial, then frequentists methods
could be seriously disadvantaged. Moreover the different approaches will generally appear to
be different, especially in the way that probability is interpreted.

In the notation of Section 6.2, the frequentist approach enables the calculation of quantities of
the form prob.D|M/ but not of prob.M|D/. If the latter is what is really wanted, then it can be
obtained with a Bayesian approach, but only by specifying prior beliefs about the model. That
may be difficult, especially if the appropriate model was not even thought of before looking at the
data! (Note that the theory for the traditional frequentist approach is also strictly inapplicable
when a model is entertained after looking at the data.) Moreover Bayesian computations can
be demanding even in this computer age. Thus there is little doubt in my mind that we can never
find an inferential approach that covers all practical situations.

The pragmatic statistician, who is unconstrained by philosophical dogma, will generally be
able to choose an appropriate approach for a given problem, given the context and objectives.
To take just two examples, consider the Dirichlet model of consumer purchasing behaviour
(e.g. Goodhardt et al. (1984)), which has been built up over many years based on many data
sets. The presence of much prior information might appear to suggest a Bayesian approach,
but when a new data set is collected, perhaps on a new product or under new marketing
conditions, the question is not ‘Is the Dirichlet model true’ but ‘do the new data conform
to the well-established model?’. Here prob.D|M/ may be of interest, suggesting a frequen-
tist approach. Alternatively the analyst may simply make a judgment (neither frequentist nor
Bayesian) about whether the deviations from the model are of any practical importance. Sup-
pose instead that some econometric model has been suggested by economic theory, and that
we are interested in the truth or otherwise of some particular hypothesis—H—perhaps speci-
fying a subclass of a more general econometric model. Now the quantity prob.H|D/ seems of
prime interest. This suggests a Bayesian approach, provided that widely acceptable priors can
be agreed.

6.4. Point estimation
The need for an eclectic approach is nowhere more important than when computing point
estimates of model parameters. Proponents of a particular approach like to posit problems
where alternative approaches fail. Although there is much to learn from such problems, it is
not that method A is ‘good’ and method B ‘bad’; it is that different methods suit different
problems. As one example, Samaniego and Reneau (1994) present a paper that, according to
the title, is aimed at reconciling the Bayesian and frequentist approaches. In reality, it is primarily
a contest between the two approaches for a particular empirical situation, namely estimating
the proportion of first words, containing six or more letters, on the 758 pages of a particular
book. This shows (surprise, surprise!) that the Bayesian approach is better when good prior
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information is supplied, but that the frequentist approach is better when the analyst is ignorant,
or worse misinformed, about the prior. Samaniego and Reneau (1994) concluded that

‘every statistician ... should sometimes be a Bayesian and sometimes be a frequentist. Knowing when
to be one or the other remains a tricky question.’

The only clear message is that the context is crucial. To clarify the choice of a suitable approach,
the analyst should ask such questions as the following.

(a) Why is a parameter estimate required? How will it be used to solve the problem?
(b) What subject-matter knowledge is available? What prior information, if any, is available

about the parameter?
(c) How confident are we that the model entertained is a (very) good approximation?
(d) How were the data collected? Are they a genuine random sample from the target popu-

lation?
(e) Do we still believe the model after seeing the data? Does conditioning on the observed

data make some inferences silly?

6.5. More on modelling
Parameter estimation, as discussed above, is one highly specialized form of statistical activity
where theory generally assumes knowledge of a model. In practice, it is the construction of the
latter that is usually the key step, and issues of model formulation are usually more important
than a discussion of different modes of inference (Cox, 1995). However, model formulation is
not easy—see Section 5—and all statisticians need to develop skills for doing this. The Bayesian
needs an additional skill for eliciting sensible priors—a rather neglected and difficult topic. For
example, Pocock (1994) said

‘it is difficult to specify a meaningful prior that will be accepted by all interested parties. Incorporating
clinical opinion is ... heavily dependent on who is asked.’

And Evans (1994) said that clinicians’ beliefs are often unsupported by evidence. This being so,
the use of a client’s subjective prior may be dangerous given that one aim of a statistical analysis
is to protect the client from seeing merely what he would like to see. However, Bayesians will
say that some clients welcome the opportunity to try to quantify their prior beliefs in regard to
physically meaningful quantities.

This raises the much asked question whether the model-building process can be made ‘objec-
tive’. Some scientists prefer frequentist procedures because they think that they are ‘objective’
but then apply them in a completely mindless way (Wang (1993), epilogue) that ignores the con-
text and may make a nonsense of them. In contrast, Bayesian inference is sometimes criticized
for being ‘too subjective’. The implication is that the frequentist approach is more objective
because it separates factual evidence from prior opinions (or prejudices) so that two analysts
(using the same model) should derive the same answer. In practice the frequentist approach, and
indeed any statistical problem solving, involves the application of subjective judgment, both to
clarify the objectives, to assess a suitable cost function and to formulate a model. The prag-
matic Bayesian will ‘scratch down’ a ‘prior’ in much the same way that a pragmatic frequentist
will scratch down a model. (Note that the description ‘objective prior’ is sometimes used for a
uniform or ignorant prior (Jeffreys, 1961), but this prior is anything but objective.) Neither
should be afraid to go back to modify their assumptions if subsequent inferences appear qual-
itatively unsound or counter-intuitive.

The point is that statistical analysis is never undertaken in a knowledge-free situation. Rather
the ideas that led to the study being undertaken will influence the questions that are asked, the
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formulation of the model and the form of analysis. The tools used, and the interpretations made,
rely strongly on the good sense, experience and subjective judgment of the analyst, which rely
in turn on the answers to questions such as whether randomization has been used and whether
outliers are present. For example, if randomization has not been used, then it is unwise to try
to build a model and a simple descriptive analysis is indicated. Alternatively if randomization
has been used, then the IDA will suggest what model assumptions are reasonable and whether a
parametric or nonparametric test is appropriate. Although inference may appear to have a low
profile, a further consideration suggests that the ideas of pragmatic inference actually pervade
all that the statistician does. What is clear is that a statistical analysis can never be entirely
objective, and so I suggest that a subjective–objective dichotomy is unhelpful.

6.6. Probability
The concept of probability plays a central role in statistical inference and I suggest that the prag-
matic statistician also needs an eclectic attitude here. To relate probability to real life problems,
we must take a view on how it should be understood, and establish a mapping between the real
world and the mathematical construct. The three main ways of interpreting probability are

(a) the classical equally likely case,
(b) the frequentist approach for phenomena that are inherently repeatable under idealized

identical conditions and
(c) the personal (or subjective or Bayesian) approach that relates probability to the odds at

which you would be willing to bet that a particular outcome will arise.

These interpretations are complementary to each other and appropriate to different situations.
Thus it would be silly to try to apply frequentist ideas to an inherently unrepeatable event like
‘The UK Labour Party will be re-elected with a majority at the next election’ (written in April
2001), and it may be unwise to try to attach personal probabilities to events associated with a
physical mechanism such as a particular form of radioactive decay.

Even apparently simple situations can give rise to discussion. Suppose that a fair penny has
been tossed but you are not allowed to see the result. Is it sensible to say that the probability
of a head is 1

2 , even though the event in question has already occurred and there is no random
variable in sight? I would be happy to regard this as a subjective probability with a long run
frequency justification, in much the same way that I interpret confidence intervals. Consumers
of statistical results will typically interpret confidence intervals, rightly or wrongly, as subjective
probability statements about the likely values of unknown parameters (Rubin (1984), section
2.3). Thus, for a 95% confidence interval (say), 95% expresses the odds at which the analyst
is willing to bet on what will happen in the particular case. Christensen (1995) disliked the
long run frequentist interpretation but also harshly described the subjective interpretation as a
‘blatant attempt at making Bayesian omelettes without breaking Bayesian eggs or even admitting
to making omelettes’—a lovely expression! Unfortunately, his proposed alternative, namely
‘the collection of parameter values that are consistent with the data as determined by an α
level test’, seems even less persuasive. Thus the pragmatic statistician may find it helpful to
use both (frequentist) confidence intervals and Bayesian posterior intervals according to the
context, while making clear the different assumptions and uncertainty logics on which they are
based.

More generally, many statisticians, including me, are happy to apply different types of proba-
bility even within the same problem, e.g. by using frequentist ideas to check Bayesian predictions.
This needs to be clearly stated, and evaluated.
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7. The effect of computational advances

One other important influence, which has been largely ignored in theoretical development, is
the effect of the astonishing computational advances that have been made. Even a computing
dinosaur like me can, for example, readily fit ARIMA models to time series data. At the start
of my career, I was reliant on punched cards or even paper tape to fit one model at a time with
much difficulty. Although frustrating, this scenario did make the statistician think very carefully
about what should be done. Nowadays, there is an understandable tendency to fit models without
much thought. The inevitable outcome is that most statisticians routinely fit many models to the
same data. This is sometimes called data dredging or (statistical) data mining (DM). A better
term might be data-driven inference. The effect that this has on modelling is barely understood
(Chatfield, 1995b). When we use a best-fit model, having looked at dozens of candidate models,
what will be the properties of the resulting inferences and forecasts? Most of us still behave as
if the best-fit model is the one that we thought of before looking at the data.

Another important area is that of DM (e.g. Hand (1998)), where the term is used in its
computing science sense to mean the extraction of information from very large data sets, which
may be ‘messy’. An alternative term is knowledge discovery in databases. It is ‘open to debate
whether Statistics as a field should embrace DM as a subdiscipline or leave it to Computer
Scientists’ (Friedman, 2001). My limited experience suggests that we should not leave DM
entirely to computer scientists and that there are plenty of interesting questions to tackle. Modern
technology now produces huge quantities of automatically recorded data, which are usually
‘secondary’, in that they were collected for some other purpose or for no particular purpose.
Their enormous size poses handling problems and they are often stored in database management
systems. A standard DM package includes many techniques, such as neural networks and pattern
recognition, which are on the fringes of statistics, but is unlikely to offer ‘bread-and-butter’
statistical techniques like analysis of variance. Much of DM is outside the experience of most
statisticians. But should it be? Statisticians need to rethink the way that we tackle very large
data sets. In most cases, statistical inference is usually neither necessary nor desirable. Instead,
descriptive and data analytic methods combined with subject-matter insight may be the best way
to assess, explore and understand the data. They are usually too large to perform much in the
way of an IDA, and yet it may be the peculiar observations that are of most interest. It may not be
possible to find a model to describe all the data, and it may be necessary to build different models
for different parts of the data, or to use algorithms, rather than models, to make decisions. And
what is meant by a ‘significant’ effect or relationship, given that we may have the complete set of
data and we may use a computer to try out numerous potential effects? While the hype about DM
has been rather overdone, the achievements of DM have often been fairly basic in a statistical
sense, as, for example, cleaning up a long list of names and addresses to save duplicated mailing
shots or spotting that beer sells well when placed next to nappies in a supermarket.

In the area of inference, the computer has enabled the Bayesian analyst to tackle problems
that have no analytic solution and has also allowed the analyst more generally to make more
realistic assumptions without worrying that this may make a problem intractable. There has
also been increased activity in other computationally intensive methods, such as bootstrapping,
and in the last few years I have sat through many seminars featuring Markov chain Monte
Carlo (MCMC) methods, Gibbs sampling, the Metropolis algorithm and other trendy topics.
Sometimes I have been impressed by what has been achieved, but on other occasions I have been
disturbed by the need to rely on intuition to validate the results. This seems unsatisfactory. I am
also aware that practitioners naturally suppress any results which go clearly wrong. (I admire the
honesty of one software package that has a preamble saying ‘Beware—MCMC sampling can
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be dangerous. The package might just crash, which is not very good, but it might just carry on
and produce answers that are wrong, which is even worse.’) But how do we tell? The increasing
(over)reliance on these techniques gives me some cause for anxiety, given unsolved convergence
issues and the difficulties in checking what others have done.

Computational advances have also enabled the practitioner to tackle various other problems
in the broad area of inference such as estimating functions (rather than parameters), estimating
models with large numbers of parameters and estimating models with time-varying parameters.
I suspect that the cumulative effect of these computational advances will be to reveal, even
more clearly, the artificial nature of any barriers that exist between the different approaches to
inference.

8. Examples

This section presents two examples to illustrate the pragmatic statistician at work, with the
emphasis on model building in its broadest sense. Scanning my recent work drew attention to
the wide variety of problems, the high proportion of descriptive (as opposed to inferential)
analyses, the iterative nature of any modelling and, when consulting, the importance of asking
questions and preventing ‘clients’ from doing ‘silly’ things. I also realized that it would be difficult
to choose representative examples to illustrate the many points made in this paper. Moreover
I recognize that most experienced statisticians would actually do the sort of things portrayed
here, even though they might not write about them. Nevertheless I hope that these examples
will be helpful, especially to the less experienced reader.

8.1. Example 1: is laser therapy effective for rheumatoid arthritis?
About 10 years ago, a physiotherapist from our local hospital called me to arrange a consultancy
meeting to discuss a proposed trial on the treatment of rheumatoid arthritis (RA). What follows
demonstrates some of the difficulties that are involved in consulting.

Reports in the literature suggested that low level laser therapy (LLLT) may be effective for a
wide variety of disorders, including wound healing and rheumatic complaints, and the method
was being used to treat RA even though there was no direct evidence of its efficacy. It was agreed
that a randomized, double-blind and placebo-controlled study would be carried out to assess
the efficacy of LLLT on chronic RA patients with arthritic finger joints. My client showed a
good grasp of the importance of collecting good data with a proper randomized trial.

About 3 years later, I was invited to visit the hospital to see the results and to discuss their
analysis. In particular they asked me to test the hypothesis that there was no difference between
the treatment and control groups. First, I began, as always, by asking questions to remind
myself about the background, and to find out exactly how the data were collected. In particular,
I checked that randomization really was used, and that there had been no major problems in
collecting the data. I also asked whether there was any prior information from previous studies
that could be used, but the answer was effectively ‘no’. Some patients had dropped out of the
study, primarily because they had received additional alternative therapies, such as a cortisone
injection, and we had to discuss the effect of these missing data on the results. We also discussed
whether a null hypothesis of no difference was really sensible, and whether a one- or two-sided
alternative was appropriate.

When we came to look at the data, I found that a fairly simple IDA was all that was necessary.
My clients had already computed the means and standard deviations of the observations in the
two groups. I also looked briefly at the distributions of the individual observations and checked
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that there were no gross outliers. I saw immediately that the differences between the groups were
(very) ‘small’, as compared with the standard deviations, and this was really the only feature of
note. Even if the treatment did have some small effect, it was unlikely to be sufficiently large to
be ‘interesting’. This being so, there is little point in doing a test as a ‘significant’ difference is of
no interest if it is not sufficiently large to be of practical importance. Nevertheless, to keep them
happy, I carried out the test and showed that it was nowhere near being significant. Of course,
with missing values, the P-values are suspect anyway, but in this case they were so large that
there was clearly no evidence that LLLT was effective, and they helped to convince my clients
that there really was no effect. Normally I would have recommended a confidence interval as
an alternative to, or in addition to, a P-value, but there seemed little point here. (A P-value is
often not what is really needed, even if it is what scientists think they want.)

At first my clients were devastated that the results were not significant. The therapy was
already being used widely and was expected to have a beneficial effect. Initially, they asked me
about the power of the test. Could the non-significant result arise from using too small a sample?
Given the very small observed effect, I thought not and I eventually managed to persuade them
that a non-significant result need not be regarded as a failure. Rather it should be seen in a
positive light as indicating that this particular form of electrotherapy was not worth using for
this particular condition. More generally, the suppression of non-significant results is a serious
problem leading to what is usually called publication bias (Begg and Berlin, 1988). My clients
eventually agreed that they should write the work up to spread the message that the treatment
was ineffective.

This study had a salutary twist. About 3 years later, I received a copy of an offprint (Hall
et al., 1994) ‘out of the blue’ reporting these results and noting that LLLT was ineffective in
this particular context. In the acknowledgements, I found myself thanked for statistical advice
even though I had not seen the paper in either draft or final form. I was therefore not pleased
to find at least one terrible statistical feature in the paper, namely some inappropriate graphs,
incorrectly described as histograms, which purported to show differences between group means.
Presumably the refereeing process also bypassed statistical advice, possibly because a statistician
appeared in the acknowledgements!

8.2. Example 2: forecasting in the presence of an outlier
There is a vast literature on the treatment of outliers (e.g. Barnett and Lewis (1994)) which
concentrates on tests for discordancy and on robust procedures for accommodating outliers.
However, in my experience, the treatment of outliers is so heavily context dependent that these
procedures are used rather rarely in practice (except perhaps for multivariate data where outliers
may not be ‘obvious’). Instead one useful option is to repeat the analysis with, and without, the
outlier and to see whether qualitatively different results are obtained. Alternatively the use of
‘native wit’ (Barnett and Lewis (1994), page 8) may be called for, and the pragmatic treatment
of outliers fits much more naturally into the ambit of pragmatic statistical inference.

As part of some consulting work, I was given 4 years of monthly sales data and asked to
produce point and interval forecasts for up to 1 year ahead. The problem related to an insurance
claim and a large amount of money was involved. To preserve confidentiality, the data have
been scaled before plotting them in Fig. 2, and so the units are not given. There was no prior
information about a suitable time series model other than that the data were known to be
seasonal. No covariates were provided so only univariate forecasts were considered.

As in any time series analysis, I began by looking at the time plot to assess trend, seasonality
and the possible presence of discontinuities and/or outliers. In this particular study, the time plot
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Fig. 2. Coded monthly sales for 4 years starting in August 1988

showed some upward trend over the first couple of years, which flattens out towards the end of
the series. There is also some seasonality, with three January figures being comparatively high.
However, the first January observation is unusually low compared with other January results,
and the treatment of this outlier took centre stage in the modelling and inference process.

There seems little point in testing for discordance, given that the sixth observation is so clearly
out of line. Rather, the company was asked why such an outlying value might have occurred.
Asking such questions is usually more important than the choice of forecasting method. The
simple answer was that no-one seemed to know, presumably because the observation occurred
several years ago. There was speculation that it was due to changes in the accounting procedure
that resulted in some sales being carried over into neighbouring months. The question was
what to do about it. We could have imputed the value, or used some sort of robust modelling
procedure, but, given the proximity to the start of the series, it seemed more sensible to omit the
first 6 months of data (which are the least relevant to forecasts). The drawback is that we then
had to work with just 3 1

2 years of data. This is shorter than one would like and suggests using
a simple approach. The client preferred a model-based approach, rather than a smoothing
method like Holt–Winters exponential smoothing, and so seasonal ARIMA modelling was
used. After looking at the usual diagnostic tools and trying several models with different forms
of differencing, it was found that seasonal differences were close to being a random walk. The
details need not be given here. Forecasts were then produced using this model, together with
prediction intervals, calculated in the usual way, conditionally on the best-fit model. The latter
are likely to be too narrow in not allowing for model uncertainty (Chatfield, 1996). However,
this analysis seemed the best that could be done here and the client appeared satisfied (though
that is not always a conclusive indicator!).

The twist in this story is that the statisticians working for the ‘other side’ in this insurance
battle not only produced alternative forecasts, which were qualitatively different but also made
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disparaging remarks about my approach. It took some effort to defend myself from what I
thought was unfair criticism. The statistician must be prepared to defend his or her approach
in what is often a hostile climate. In the event, I understand that the lawyers involved eventually
agreed to take the average of the two sets of forecasts—a pragmatic, and not unreasonable,
outcome.

9. Closing comments

This paper has attempted to give some impression of my experience in tackling statistical prob-
lems. I maintain that the driving force in statistics should be a desire to solve problems, whether
they be in science, technology, management or social and public affairs, and not to worry ex-
cessively about the underlying philosophical foundations of our subject, though we do need to
guard against the overly simplistic and to beware of the attitude that ‘If it feels good, it’s OK’
(Copas, 1993).

The tension between the different schools of inference can be creative or destructive, and I urge
that it be the former. Likewise the tension between theory and applications can be constructive
or destructive (Cox, 1995), but the vast majority of statisticians will surely see them as being
complementary. What does worry me is that the literature seems overly concerned with the
former. Ever more complicated techniques are developed, leading to what Cox (1997) has called
‘methodological overkill’. Of course, new methods can be good, but they can also lead to a
fragmentation of the subject, while the absence of complementary help on general strategy,
detailing when and how a new method should be used, is a drawback to the practitioner. My
response has been to focus on the practical aspects of problem solving and to make a modest
start on describing explicitly a general pragmatic inclusive approach to statistical inference.

In summary, the pragmatic statistician realizes that the really important actions during a
statistical study include

(a) exploring the context—obtaining sufficient background information to formulate the
problem carefully,

(b) collecting the necessary data in a valid way,
(c) carrying out a preliminary examination of the data,
(d) formulating an appropriate model and being willing to revise it,
(e) checking the predictive accuracy of the model by using out-of-sample results wherever

possible,
(f) taking active steps to avoid trouble and
(g) communicating the results clearly.
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