5 The normal distribution and distributions
associated with it

We have made use of the histogram on several occasions so far to
give a pictorial or graphical view of how a set of scores is distrib-
uted. Let us take as a further example the distribution of heights of
children of a given age. This distribution might look something like
Figure 12. Each bar of the histogram represents a height range of

proportion
03

02

01

0 75-89 90-104 105-119120-134 135-149 150164 166-180

height/cm
Figure 12 Histogram showing numbers of children with different
heights

fifteen centimetres. There is no compelling reason why this range
should be chosen. It could be smaller; indeed, the interval could be
as small as one liked, providing that the measurements were suffi-
ciently sensitive. (It only makes sense to do this when drawing a
histogram if you have a large enough sample to ensure that the
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The normal distribution and distributions associated with it

Figure 13 Approximation of a histogram to a smooth curve as
the interval decreases

frequency or number of cases in different categories still remains
reasonably large.)

A variable of this type, which can be continuously sub-divided,
is called a continuous variable. There are other types of variables.
Ones which can only take on particular numerical values are called
discrete variables (e.g. size of family). There are also non-numerical
categorical variables (e.g. gender — female or male).

By reducing the size of the interval with a continuous variable,
the rectangles increase in number and become thinner so that the
histogram approximates to a smooth curve when there is a
sufficiently large sample (Figure 13). One such curve which you
will hear referred to frequently is the normal distribution curve. As
its properties were first investigated by Gauss, it is also commonly
known as the Gaussian distribution. Incidentally, there is nothing
abnormal or peculiar about other distribution curves — it just so
happens that the so-called ‘normal’ curve is one which crops up
many times and which has particularly useful, simple, and well-
known mathematical properties. Different normal distributions
vary only in their means and standard deviations and hence, if they
are standardized so that they have the same mean and standard
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The normal distribution and distributions associated with it

deviation, they have identical shapes. This intimate relationship
between the standard deviation and the normal distribution is
one of the reasons for the widespread use of the standard
deviation.

The importance of the normal distribution

1 On theoretical grounds

It can be shown theoretically that, if we assume that there are
many small effects all operating independently of each other to
influence a particular score or other outcome, then the resulting
distribution of scores is the normal distribution. As we have dis-
cussed previously, performance in an experiment is conceptualized
as resulting from a large number of separate random errors arising
from uncontrolled variables, in addition to the possible effect of
the independent variable.

2 On practical grounds

If a sufficiently large number of observations or measurements are
made so that the shape of the distribution can be assessed it will
very frequently transpire that the distribution does actually ap-
proximate more or less closely to the normal distribution. For
example, human height is distributed in this way (providing you
control for gender and ethnic background — a distribution with
both males and females would be bimodal — see p. 43). So is
human intelligence as measured by 1Q tests, although this tells us
more about the standardization procedures used than anything
else.

3 On mathematical grounds

It has already been pointed out that the normal distribution is
particularly simple mathematically. It is also very useful that the
results obtained by assuming a normal distribution are often ap-
plicable even when the distribution differs somewhat from the
normal.
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The shape of the normal distribution curve

The shape of the normal distribution curve

The shape of the normal distribution curve is illustrated in Figure
14. 1t is bell-shaped and is symmetrical about its mean. In other
words, if one imagines a vertical line drawn through the mean,
then the shapes on either side of the line are identical. The median
and mode occur at the same value as the mean. The curve falls
away relatively slowly at first on either side of the mean, i.e. there

Figure 14 The normal distribution curve

is a high probability of scores occurring just a little above or just a
little below the mean. When one gets to the ‘tail’ of the distribution,
either above or below the mean, the curve approaches the horizon-
tal axis ‘asymptotically’. That is, the slope of the curve decreases
continually for values further and further from the mean so that
although the axis is approached it is never actually reached (al-
though this is impossible to show on a drawing such as Figure 14).
What this means is that there will be some very small probability
of getting values a long way from the mean.

The standard deviation is associated with the curve in the follow-
ing way. If we consider an upper limit obtained by going one
standard deviation above the mean, and a lower limit obtained by
going one standard deviation below the mean, a certain proportion
of the cases, scores or whatever makes up the distribution, will be
contained within these limits. For all normal distributions, this
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The normal distribution and distributions associated with it

proportion is 0-6826, that is 68-26 per cent of the scores in any
normal distribution fall within the limits of one standard deviation
above and below the mean. In other words just over two-thirds of
the scores are within a standard deviation of the mean.

If we consider wider limits, say two standard deviations above
and below the mean, then the shape of the normal distribution is
such that 95-44 per cent of the scores fall within these limits. For
plus and minus three standard deviations, this percentage rises to
99-73 per cent.

To take an example: if it is known that the mean of a population
is 100 (say the population is one of IQs which are standardized to a
mean of 100) and the standard deviation is 15, then we know 68-26
per cent of the population will lie within limits of 115 to 85; 95-44
per cent within limits of 130 to 70; and 99-73 per cent within limits
of 145 to 55.

Standard normal distribution

As was pointed out in the last chapter, standard scores (z-scores)
can be obtained by expressing deviations from the mean in terms
of standard deviation units,

deviation score x
standard deviation

i.e. standard score z =

Tables of the normal distribution are usually given in this standard
form. Table D (p. 163) is an example which shows the fractional
area under the standard normal curve. It can be seen from this
table that for a z-score of 1-0, the fractional area enclosed between
the mean of the distribution (where z = 0) and z = 1-0 is 0-3413.
Figure 15 illustrates this.

As the curve is symmetrical, the area enclosed between :z-
scores of —1-0 and +1-0 is therefore 2 x 0-3413 = 0-6826. An-
other way of expressing this is to say that a proportion of 0-6826
(i.e. 68:26 per cent) is contained within these limits — which is what
was stated in the last section.

Taking a different example of the use of Table D, look at the
area corresponding to a z-score of 1-96. The table shows that this is
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Samples and populations

frequency
mean
0-3413 of
total area
0 +1 z
Figure 15 Fractional area enclosed between z = 0 and
=+1

0-4750. Therefore between the limits of z = —1.96 and z = +1-96
a fractional area of 2 x 0-4750 = 0-95 (95 per cent) is contained.
This means, of course, that 5 per cent of the population exceeds
these limits. Figure 16 shows this.

Hence, in an experimental situation where we can establish that
we are dealing with the normal distribution, a z-score exceeding
196 can be used to demonstrate that the IV had an effect on the
DYV at the 5 per cent level of significance. Use the table to find the
z-score corresponding to the 1 per cent level of significance.

Samples and populations

In an experiment, what we are doing is collecting a set of scores.
Typically, these scores are considered as a sample taken from some
population. By appropriate randomization techniques, we try to
make sure that each member of the population has an equal chance
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The normal distribution and distributions associated with it

frequency

0-95 of
total area

~1-96 0 +1-96 z

Figure 16 Fractional area enclosed between z = + 1-96 and
z= —-196

of appearing in the sample. This then means that the results
obtained from the sample can be generalized to the population.

You may be confused about the way in which we have been
using the words ‘sample’ and ‘population’. In statistics they are not
limited to references to people. Thus, one talks about samples and
populations of scores, as well as samples and populations of
people.

When standard deviation was being discussed earlier, it was
pointed out that the formula we used was appropriate for obtaining
estimates of the population standard deviation from the scores in
the sample. Thus, if from our sample we obtain a value of 80 for
the mean and 10 for the standard deviation, then our estimate is
that in the population from which the sample is drawn, 68 per cent
of the scores will lie between the limits of 70 to 90.

This is only an estimate, of course. We have no certainty that it
is correct. But it does mean that if, at a later stage, we obtain a
score of 56 it would be quite improbable that it came from the
same population (after all we estimate that approximately 95 per
cent of the scores lie between 60 and 100, i.e. between plus and
minus two standard deviations). It would not be impossible, how-
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ever, for the score of 56 to come from the population — remember
those tails approaching the horizontal axis asymptotically.

Comparing two samples

A problem which we are much more likely to be concerned with in
attempting to evaluate the results of our experiments is the decision
as to whether the scores obtained under one experimental treatment
or condition differ from the scores obtained under another experi-
mental treatment or condition. We have already considered one
way in which a decision could be reached — by using the sign test —
but there ought to be a way which would make direct use of the
actual scores which we obtain. What we would really like to know
is whether the difference in the mean scores of the two experimental
samples can be taken as evidence that there is a genuine difference
between the two experimental conditions. The question is a familiar
one: Is the observed difference in means sufficiently unlikely when
random errors alone are involved that we are willing to decide that
something else apart from the random errors is having an effect? In
other words that the I'V is affecting the DV?

In order to attack this problem, we have to consider a special
kind of standard deviation called the standard error.

Standard error

Suppose that we take as a population the actual population of
male Chinese in the world. And further suppose that we take a
random sample of 1000 of them and measure their heights. (The
actual procedure necessary to get a random sample is left to the
fertile imagination of the reader, as I am not sure that I could do
it. Remember that each individual must have an equal chance of
ending up in the sample.) The distribution might look something
like Figure 17. Flushed by our success, we gather in a second
sample of 1000 and measure again. This time we might find that
the mean of the distribution was slightly higher. Repeating the
process again with a third sample would lead to a slightly different
mean again, and so on. The point I am trying to make is that we
would not obtain identical means from successive samples. There

69



The normal distribution and distributions associated with it

proportion

135 150 165 180 195
height/cm

Figure 17 Distribution of heights for a sample of 1000 people
(fictitious data)

proportion

-

1 1 1
135 150 165 180 195

Figure 18 Distribution of mean heights of samples of 1000
people

would be a certain amount of variation. If one were to sample
repeatedly in this way, taking 1000 people at a time, it would be
possible to build up a sampling distribution of the means. This is a
curve showing the frequency of occurrence of different mean
scores, and it might look something like Figure 18. If this is
compared with the sampling distribution of the scores themselves,
it can be seen that there is much less variability in the mean
scores than in the individual scores. An alternative way of putting
this is to say that the standard deviation of the means is consider-

70



The t-test

ably less than the standard deviation of the scores themselves. The
standard deviation of the means is given a special name — the
standard error.

It is common sense that the means will vary much less than the
individual scores. Mathematically there is a very simple and neat
relationship between the standard error (SE) of the means, and the
standard deviation (SD) of the scores:

SE = 3D,

NG

where N is the size of sample (1000 in the example quoted above).

The t-test

Let us say that, in an experiment, the mean score for condition A
exceeded that for condition B, where A and B are two levels of a
particular independent variable. Are we justified then in saying
that the IV is affecting the DV? This is, once again, the question of
generalizing from the sample of experimental results to the popula-
tion. Two factors which would influence our decision are, firstly,
the size of the difference in means and, secondly, the amount of
variability in the scores. The bigger the difference in means, the
more confidence we have that the sample difference reflects a real
difference between the experimental conditions. But the larger the
variability in scores, the less is our confidence.
These two factors are taken into account in the r-test, where

f = difference in means
standard error of the difference in means

Previously, we have talked about the standard error as being the
name given to the standard deviation of the mean. This can be
generalized to indicate the standard error of the difference in two
means. If we draw two samples from a single population and look
at the means of the two samples, we will find that almost always
there will be some difference in the mean scores. Sometimes the
difference will be negligible.

By taking repeated pairs of samples and each time noting the
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The normal distribution and distributions associated with it

difference in means 0

Figure 19 Sampling distribution of difference in means of two
samples taken from the same population

difference in the means of the two samples, it will be possible to
plot the sampling distribution of the difference in means in a
similar manner to that in which the sampling distribution of the
means was built up in Figure 18. An example of what this might
look like is shown in Figure 19.

By the way, do not worry that you are going to have to spend
the rest of your life painstakingly building up sampling distributions
by taking sample after sample. By using statistical theory it is
possible, after making certain assumptions about the population
and sample, to derive formulae for the sampling distributions.

Do not be confused by Figure 19 looking very different from
Figure 18. By choosing an appropriate scale for Figure 19, both
figures could be made to look very much the same. The point
made by drawing Figures 17 and 18 to the same horizontal scale
is that the sampling distribution of individual scores is much
wider than the sampling distribution of mean scores. Similarly,
the sampling distribution for difference in individual scores would
be much wider than the sampling distribution for- difference in
means if it were drawn to the same horizontal scale as Figure
19.

It is perhaps surprising that if the samples drawn from the
population are relatively small (say 50 or less) then the sampling
distribution of ¢ is not normal, although the underlying population
is itself normal. The distribution is known as the z-distribution and
differs slightly in shape from the normal distribution. However, it
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The ttest

difference in means 0 1\

observed

differenca

in means
Figure 20 Observed difference in means superimposed on the
sampling distribution of Figure 19

gets closer and closer to the normal distribution as the sample size
increases.

Let us say that the observed difference in means in a particular
experiment is as shown in Figure 20. If the samples had been drawn
from the same populations this difference in means is unlikely to
occur. Asyoucan see, it takes usinto one of the tails of the distribution.
But is it sufficiently improbable for us to come to the decision that the
independent variable did have an effect on the dependent variable?

The way in which we come to this decision is identical to the way
in which we came to a decision for the sign test. We decide on a
significance level. Remember that the significance level is the prob-
ability of making a type 1 error, i.e. the probability of deciding that
the independent variable had an effect on the dependent variable
when this is not the case. If we choose the conventional significance
level of 5 per cent this amounts to cutting off 5 per cent of the ¢-
distribution. This has been done in Figure 21. Here the distribution
is divided into a central region, where the decision is made that the
IV had no effect on the DV; and the two tails (shaded in the
figure) where the decision is made that the IV did have an effect on
the DV. What value of difference in means do we take as the
critical value, i.e. the one which is exceeded by 5 per cent of the
population? This is given, in terms of ¢, in Table E (p. 164).
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The normal distribution and distributions associated with it

decide IV decide IV has no effect decide IV
affects DV on DV affects DV
difference in means 0
observed
difference
inmeans

Figure 21 Cut-off points added to Figure 20

As discussed above, the ¢ statistic is the difference in means
divided by the standard error. An alternative way of saying the
same thing is by regarding it as a difference in means measured in
units of standard error. A ¢ of 2 indicates that the difference in
means is twice the standard error, and so on. A feature of the ¢-
distribution is that it changes shape somewhat as the size of the
sample changes. This means that the critical 5 per cent value
changes with the sample size (which is related to the d.f. — degrees
of freedom — of Table E).

Computation of ¢

The computation of ¢ differs according to whether we are using an
independent samples design on the one hand; or a matched pairs
or repeated measures design on the other hand (see pp. 18-19).

Assumptions underlying the f-test

In deriving the z-distribution, certain assumptions have to be made
about the populations from which the samples are drawn. These
are that the population distributions are normal and of the same
variance (sometimes called the homogeneity of variance assumption).
It is possible to test for the reasonableness of these assumptions for
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One-tail and two-tail tests

particular sets of scores. The chi-square test (Chapter 6) can be
used as a test of ‘goodness of fit’ to a normal distribution. The
details of how this is done are not given in Chapter 6. They are
available in more advanced texts, e.g. Hayes (1981). The variance-
ratio test (discussed later in this chapter) can be used to test the
homogeneity of variance assumption.

However, statisticians have demonstrated that the z-test is ex-
tremely robust with respect to violation of these assumptions. This
means there can be considerable deviation from normality and/or
homogeneity of variance without the result of the -test being
affected. An exception to this is with the independent sample
design when there are different numbers of scores under the two
experimental conditions. Here, violations of the homogeneity of
variance assumptions can be serious, and it is worthwhile to test
this assumption (using the variance-ratio test) before carrying out
the r-test.

The strategy recommended for all other cases is to examine the
data and then, unless there are glaring deviations from either
normality or from homogeneity of variance, go ahead with the #-
test.

One-tail and two-tail tests

There are some situations where we have a good reason for
specifying the expected direction of the difference between the means
(or, more generally, the direction of the effect of the IV). This reason
may be theoretical, that is, it comes out as prediction from a theory.
Or it may be from previous work done in the area, either by yourself
or others. In some cases, it may simply be common sense. If, for
example, you are working on some aspect of the abilities of persons
who have recently suffered from strokes, it is a reasonable presupposi-
tion that they may be inferior to those of control non-stroke persons.

In situations such as this use can be made of what is called a one-
tailed test. The reason for the name is obvious — we are dealing
with only one of the tails of the distribution shown in Figure 21. In
this case the null hypothesis that there is no difference in means is
being tested against a directional alternative hypothesis where
condition A (say) has a higher mean than condition B.

75



The normal distribution and distributions associated with it

decide IV has no decide IV
effect on DV affects DV

Figure 22 One-tailed test

We will, if we are using a one-tailed test, only decide that the IV
has affected the DV if the experimental result falls at one end of
the distribution — as illustrated in Figure 22.

The previous situation, as shown in Figure 21, is a two-tailed
test. This is appropriate when the null hypothesis (of no difference)
is being tested against a non-directional alternative hypothesis
(simply that there is a difference).

There is an important difference in interpretation of significance
levels for one-tailed and two-tailed tests. The 5 per cent ¢-value for a
two-tailed test becomes a 2-5 per cent value if a one-tailed test is
used. This is because the 5 per cent value in the table refers to 5 per
cent of the distribution occurring in the two tails taken together;
hence there is 2-5 per cent in each of the separate tails. So, if we
wish to use the conventional 5 per cent significance level in conjunc-
tion with a one-tail test, we must use the 10 per cent value in the
table. These values are not shown in Table E but are available in
books of Statistical Tables.

It may have occurred to you that, because of this, it can happen
that a result which would not be statistically significant if a two-tail
test is used may become statistically significant if a one-tail test is
used. Whilst this might seem somewhat fishy, remember that the
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Significance revisited

decision about what kind of hypothesis you are dealing with
should be made before doing the experiment and not after. There
are people who argue that two-tailed tests should always be used
and, starting out on experimentation as you are, it is wise to deal
almost exclusively in terms of two-tailed tests. Remember that if
you have a one-tailed test and the result comes out in the opposite
direction to that hypothesized, then you cannot conclude that the
IV had an effect on the DV, even in cases where the difference in
means is large.

Significance revisited

By this time you should be getting more of a feel of the meaning of
statisical significance. If you are not you should skip back to p. 32
and review this. It is perhaps appropriate to add a word of warning
here. In common usage ‘significant’ means something like ‘impor-
tant’. However, remember that statistical significance simply tells
us that something is unlikely to have happened by chance. This in
itself tells us little about the practical importance of the effect
which we have found. In particular you should note that by increas-
ing the sample size, that is by collecting more data, you are going
to make it more likely to get a statistically significant result. This
appears intuitively clear in the case of the z-test where increasing
the sample size (V) has the effect of decreasing the standard error
(=SD/\/JV) and hence of increasing the value of ¢ (=difference in
means/SE).

Another way of putting this is to appreciate that with a suffi-
ciently large sample size one can get a significant value of ¢ with a
very small difference in means. In practical terms this difference in
means may be trivial, particularly if we have a complex situation
where other variables are more important. So, the general message
is that statistical significance is not all-important and, once again,
that you cannot afford to switch off your common sense when
interpreting the results of experiments.
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Step-by-step procedure

t-Test — independent samples

Use with independent samples design
(NB steps A1-5 and B1-5 are identical to steps 1-5 of the standard
deviation procedure, p. 52.)

Step A1  Add all A observations together X,
Step A2 Divide Al (i.e. the result of step X, ¢

A1) by the number of A N, Xa
observations N,
Step A3 (a) Square each of the A X3
observations
(b) Add all the squares together ~ X3
Step A4 (a) Square Al EX,)?
2
(b) Divide Ada by N, EX)"
Na
2
Step A5 Subtract Adb from A3b TX2 — g],g_,\)_
A

Steps B1-5 Repeat the above 5 steps for the B observations
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Worked example

t-Test — independent samples

A observation Step A3a (A observation)® B observation

9
25
4
16
36
4
49

Step Al X, =29  Step A3b TX2 = 143

NNV DD ONW

N0 00 A Hh OO0 NN

Step A2 X, = 379- - 414

Step Ada (ZX,)? = 292

Step agp T _29° o0
Na 7
Step AS TX2 _CXD 43— 12041 = 229
A
StepBl ZXg = (6+5+7+8+9+4+7+8+9+7)
0

StepB2 X; = = =
" 10

Step B3 £X3 = (36 + 25 + 49 + 64 + 81 + 16 + 49 + 64 + 81
+ 49) = 514

Step B4a (ZXp)? = 70°
Ng 10
EX)?

B

Step B4b = 490

Step BS X2 — = 514 — 490 = 24
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Step-by-step procedure - continued

t-Test — independent samples

Step 6 Add AS and BS
zX,)? Xp)?

A B

Step 7 Divide 6 by N, minus 1 added to Ny minus 1
[ZXZ — EXA)*/Nal + [ZX5 — ZX3)/Ns]
Na—D+Ng— 1)

Step 8 Find the reciprocal of N, and the reciprocal of Ng and add
them together
1,1
Ny Ny
Step 9 Multiply 7 by 8
[ZX2 — EXA)*/Nal + [ZXF — (EXs)°/Ns] o
WNa—D+(Ng— 1)

1 1
(‘Nj * N;)
Step 10 Take the square root of 9
Step 11 Take the difference between A2 and B2
Xy — Xp
Step 12 Divide 11 by 10: the result is ¢!!
t = (X) — Xp)
- \/[ {ZXZ — GX*/NA} + {EX5 — CXo)’/Na}
Na—1)+(Ng— 1)

(5]
Ny Ny

with (N, — 1) + (Ng — 1) degrees of freedom
Step 13 Translate the result back in terms of the experiment




Worked example - continued

t-Test — independent samples

Step 6 229 + 24 = 469

469  _ 469
T7-1D+(10-1) 15

Step 7 =313

Step8 (& + %) = (01429 + 0-1000) = 0-2429
Step9 313 x 0-2429 = 0-760
Step 10 /0760 = 0-872

Step 11 4-14 — 7 = —2-86

Step12 + = —286 _ _3.8
0-872

with (7 — 1) + (10 — 1) = 15 degrees of freedom
From Table E, ¢ = 2-13 at the 0-05 level of significance
(i.e. p = 5 per cent) with 15 degrees of freedom

Step 13 We therefore conclude that the IV had an effect on the
DV, as the observed value of ¢ is numerically greater than
2-13
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Step-by-step procedure

t-Test — correlated samples

Use with matched pairs or repeated measures design

Step 1

Step 2
Step 3

Step 4

Step 5

Step 6
Step 7

Step 8
Step 9

Obtain the difference (d) between d= (X, — Xp)
each pair of scores
Add all the differences together Xd
Divide 2 (i.e. the result of step 2) Zd _ J
by the number of pairs of scores (n) n
(a) Square each of the differences d?
(b) Add all the squares together xd?
(a) Square 2 (Zd)?
2
(b) Divide 5a by n @d)”
n
2
Subtract 5b from 4b Td* - Qi)_
2d? — (Zd)?/n

Divide 6 by n(n — 1) ni = 1)

Take the square root of 7
Divide 3 by 8: the result is ¢

_ g+ [Zd’—(Zd)n
t=d7

with (n — 1) degrees of freedom

Step 10 Translate the result of the test back in

terms of the experiment
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Worked example

t-Test - correlated samples

The data represents scores obtained by 7 people in a certain test
with and without the presence of a drug

Partici-  Scores Scores Step 1 Step 4a
pant with without d d?

1 3 6 3 9

2 8 14 6 36

3 4 8 4 16

4 6 4 -2 4

5 9 16 7 49

6 2 7 5 25

7 12 19 7 49
Step2 Xd = 30

xd 30
Step3 XL =d===429
P n 7

Step 4b Xd? = 188
Step 5a (2d) = 302 = 900
2
Step 5b ﬁ%)- - @ — 12857

2
Step 6 Td? — Q‘%l — 188 — 12857 = 59-43

$d? — (Sd)/n _ 59-43
Step 7 = = 141
P nn — 1) 7% 6

Step8 /141 = 119

_g=+ [Z2—(Cd)}n_429 _ 4
Step9 t=4d E— —1‘19—361

with (7 — 1) = 6 degrees of freedom
From Table E, ¢t = 2-45 at the 0-05 level of significance,
with 6 degrees of freedom

Step 10 We therefore conclude that the IV had an effect on the
DV, as the observed ¢ is numerically greater than 2-45: the
drug produced a significant decrease in mean score on this
test (+ = 3-61 with 6 d.f. Significant at the 5 per cent level)




The normal distribution and distributions associated with it

The variance-ratio test (F-test)

In the discussion above, we have been concerned with hypotheses
about differences in means between two conditions. Although
many behavioural hypotheses can be translated into statistical
hypotheses about means, there are others where the appropriate
statistical hypothesis is concerned with the relative dispersion of
scores under two conditions. The variance-ratio test (or F-test) is
suitable for these situations.

(What is variance? If you have forgotten or are not sure return
to p. 48.)

As an example, consider performance in some task with the
preferred hand as against the non-preferred hand. Suppose we get
our participants to play shove ha’penny with the preferred hand on
some occasions, the non-preferred hand on others. One obvious
way of comparing performance with the two hands would be by
comparing the variability in aiming by the two hands, i.e. by using
the variance-ratio test to compare the two variances.

You should note that the values shown in Table F relate to
significance for a two-tailed test. Many books of tables give values
for a one-tailed test which are appropriate for other uses of the
variance-ratio test.

Assumptions underlying the variance-ratio test

As with the ¢-test, the variance-ratio test makes assumptions about
the underlying population distribution. Again the assumption is of
normality. However, once again, the test is robust and the recom-
mended action is to carry on with the variance-ratio test unless the
distributions are very far from normal.
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Step-by-step procedure

Variance-ratio test (F-test)

Step 1 Obtain the variance separately for each set of scores (use
the standard deviation step-by-step procedure as far as step

6; see p. 52)
Step 2 Obtain F — JATger variance
smaller variance

Step 3 Look up the significance of F in Table F. Note that you
need two sets of degrees of freedom to do this. The columns
in the table refer to the degrees of freedom of the top line
of F(N, = N, — 1, where N, is the number of scores
making up the larger variance). The rows in the table refer
to the degrees of freedom of the bottom line of F (N, =
Ny — 1, where Ny is the number of scores making up the
smaller variance)

Step 4 Translate the results of the test back in terms of the
experiment

Note The values in Table F are appropriate for a two-tail test
(i.e. testing for a difference in the variances without a priori
specifying the direction of the difference). Many tables of F
refer to a one-tail test, which is useful in a different
application of F
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Worked example

Variance-ratio test (F-test)

The following error scores were obtained in an aiming test
Non-preferred hand (A): 3-3,2-1,4-7,0-1, 5-6, 0-0, 4.7
Preferred hand (B): 5-6,4-9, 6-2,5-1, 58, 63

Step 1 (using the method on p. 52)

Xa (3a) X3

33 10-89
21 441
4.7 22:09
01 001
56 31-36
00 0-00
4.7 22:09

(1)IX, = 205 (3b)EX2 = 90-85
@ X, = &7'5 =293
(4a) (TX,)? = 20-5% = 420-25

(EX)? _ 42025
N. T
EX,)?

Na
= 3081

(6) variance, = isl— =51

(4b) = 60-04

(5) TX2 — = 90-85 — 60-04

5-14
0-322

Step3 N, =N, —1=6;

Step2 F = =159

Xp (3a) X§

56 3136
4.9 2401
62 3844
51 2601
58 3364
63 39-69

(1) =Xy = 339 (3b)TX2 = 19315

Q) Xy = 336—'9 = 565

(d4a) (ZXp)? = 339% = 1149-21

2
ap EX 119020 o
Ny 6
2
@) zxz — EX° _ 19315 _ 191.54
Ng
- 161
(6) variance, = 156—' - 0322

N2=NB—1=5

Table value of F = 6-98 (p = 0-05)
As the observed value of F exceeds the table value, there is
a significant difference between the variances at the 5 per

cent level

Step 4 Inspection of the results shows that the variance for the
non-preferred hand exceeds that for the preferred hand.
This difference is significant at the 5 per cent level







