4 Descriptive statistics

What are descriptive statistics?

Even a quite small experiment can generate large amounts of data;
columns of times, or numbers of errors, or some other scores. It
can then be difficult to see what has been going on. This calls for
ways in which you can summarize the data. Descriptive statistics
do this — they are, in fact, sometimes referred to as ‘summary
statistics’.

This chapter concentrates on two aspects of a set of data which
are commonly summarized. These are covered by statistics which
describe the most typical value (some kind of average); and how
much variability there is about this central value. There is then
discussion of a third statistic which describes the relationship
between two sets of data (known as correlation).

While these descriptive statistics are extremely useful, do not
neglect the opportunities that graphs of various kinds present in
displaying and summarizing data. We already came across this in
the previous chapter where the histogram of Figure 4 provides a
much more vivid representation of the probabilities of different
numbers of +s than does Table 6. It is worth noting that, when
displaying a variable in the form of categories (e.g. ‘female’ and
‘male’; or different ethnic origins) it is the convention to show these
as separate, non-touching bars as in Figure 6.

Such graphs (sometimes referred to as bar charts or bar graphs)
emphasize that there are no intermediate values and that the
ordering along the axis (males on the left or right) is arbitrary.

For similar reasons the use of standard line graphs should be
restricted to situations where the variable along the horizontal axis
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Measures of central tendency

frequency

Male Female

Figure 6 Histogram (bar chart) with categorical variables

is continuous (e.g. age or height). Only then are intermediate
values between the points on the graph meaningful.

Measures of central tendency
1 The mean

This is a very commonly used measure of most typical value.
You probably already know it as the average, obtained by add-
ing all the scores together and then dividing by the number of
scores.

It can be used to provide an introduction to some of the symbols
widely used in statistics. Scores in general are commonly repre-
sented by the symbol X; the first score by X;; the second by X, and
so on. If there is a total of N scores, then the last of these is
represented by X,. The mean itself is given a special symbol X,
usually referred to as ‘X bar’.

A—,=totalofallscores =X1+X2+X3+...+XN
total number of scores N
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Descriptive statistics

This can be simplified by the use of the ‘summation’ instruction
‘2. Placed in front of a symbol, such as ‘X”, it means ‘add all the
Xs together’.
p-2X

N

(Note that £X does not mean ‘multiply by X°.)
For example, if the scores are

7,3,11,12,9, 14

then 2X=7+3+11+12+9+ 14=156

and N=6

SO

g=X_56_9g3
N 6

i.e. the mean is 9-3.

Strictly speaking, the proper label for an average calculated in
this way is the ‘arithmetic mean’. This is to distinguish it from
other kinds of mean (the ‘geometric’ and ‘harmonic’ means) which
are used for special purposes. However, the arithmetic mean is
much more commonly used and will be the one assumed if you
simply refer to the ‘mean’.

2 The median

The median is the central value in a set of scores. It is obtained by
arranging the scores in order of size. With an odd number of scores
the median is simply the score which then has equal numbers of
scores above and below it. With an even number of scores, it is the
average of the two central scores. (There are more complicated
formulae for calculating the median with an even number of
scores, but the result seldom differs appreciably from simply taking
the average of the two central scores.) If there is a cluster of scores
around the centre, all having the same value, then the simplest
procedure is to regard that value as being the median.
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Mean, median and mode compared

As an example, if the scores are:
14,9,17,21,7, 18, 16, 22
then, rearranging these scores in increasing order of size we get:
7,9, 14, 16, 17, 18, 21, 22.

As there are eight scores, the median is the average of the fourth
and fifth scores:

16 + 17 _ 165

1.e. the median is 16-5.

3 The mode

The mode is the value which occurs most frequently in a set of
scores. It usually only makes sense to use the mode as a measure of
central tendency when you have a large set of scores. Even then it
may be necessary to group scores together (i.e. to put together all
scores in a certain range, say from 21 to 25 cms, 26 to 30 cms, etc.).
If a histogram is plotted, the highest frequency is given by the
longest bar in the histogram and hence gives you the mode. Figure
7 shows an example where grouping has taken place. When dealing
with scores which are ordered in this way, it is possible for there to
be a second major peak in the distribution of scores displayed in a
histogram. This is called a bimodal distribution and is best dealt
with by displaying the histogram rather than by quoting the mode.

Mean, median and mode compared

The mean is the statistic most commonly used as a measure of central
tendency. One reason for this is its sensitivity; in the sense that if any
one of the scores in a set of scores changes, then the mean will change.
In contrast, both the median and the mode may well be unaffected by
changing the value of several scores. Try this out for yourself.

While this sensitivity is often an advantage it can be a disadvan-
tage. Suppose the following scores represent times in seconds to
solve some anagrams:
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frequency de
mo

S

0-4 10-14 20-24 30-34 40-44

5-9 15-19 25-29 35-39
Figure 7 Mode derived from histogram

1,2,2,3,4,5,5,6, 224

the mean works out at 28. However, this mean is a very strange
‘most typical value’. What we have in the set of scores is a quite
tightly clustered group well below ten seconds, and a ‘rogue’ score
(the technical term for this is an outlier) where, perhaps, the person
involved had some kind of block in solving the anagram. 28
seconds is not typical of either. Here, the median (4 seconds) would
be the most appropriate central tendency statistic to use, simply
because it is insensitive to the values of extreme scores.

Note that the median (and the mode) can still be calculated
when some extreme values are unknown; say when a participant
has such a block that they find an anagram impossible to solve and
all you can record is ‘over 5 minutes’.

There are some kinds of data where it is not possible to calculate
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Measures of dispersion

a mean. An example is where your data is in the form of rankings or
orderings (i.e. you know which is first, highest, longest, etc.; which is
second and so on, but don’t know any actual scores). It is still feasible
to work out a median though. If you have the kind of data displayed
in Figure 7, where all you know are frequencies and there is no
appropriate way of ordering the data, then neither mean nor median
is feasible and you are left with the mode as the only possibility.

Measures of dispersion

Sets of scores with the same mean may be very different from each
other. Consider the set:

17, 32, 34, 58, 69, 70, 98, 142
and a second set of:
61, 62, 64, 65, 65, 66, 68, 69.

Both have means of 65, but the dispersion (otherwise known as
variability or spread) of the second set is much smaller than that of
the first set. Several statistics have been devised to measure this
aspect of a set of data.

1 Range

The range is the difference between the highest and lowest scores.
It is, therefore, very easy to compute. As an example, take the
following scores arranged in order of size:

19, 21, 22,22, 25, 27, 28, 42.
The range is highest minus lowest,
i.e. range = 42 — 19 = 23,

The main disadvantage of the range as a measure of dispersion is
that it is just based on these two extreme scores. Such scores may
be suspect and it may be unwise to give them undue weight. For
example, an abnormally long time to respond in some task may be
due to the participant day-dreaming or otherwise not attending
rather than to the difficulty of the task.
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2 Semi-interquartile range

This is a more sophisticated type of range statistic. If the scores are
arranged in ascending order of size, the point that cuts off the
lowest quarter of the scores is called the first quartile (Q,). The
point that cuts off the lowest three quarters of the scores is called
the third quartile (Q5). If, for instance, there are 24 scores, the first
quartile (Q,) occurs between the 6th and 7th scores (take the
average of 6th and 7th scores, as for the median). The third
quartile (Q3) occurs between the 18th and 19th scores (again, take
their average).

The interquartile range is the difference between the third and
first quartiles. As the name suggests, the semi-interquartile range is
half of this,

Qs — O

i.e. semi-interquartile range = ——2—

This measure of range is commonly used when the median is used
as a measure of central tendency. (Note that the median, the
central point in a set of scores, has half of the scores below it and
can also be referred to as the second quartile.)

The relative sizes of the differences (@; — Q,) and (Q, — Q)
provides a useful measure of the skewness (or lack of symmetry) of
the distribution of a set of scores. Figure 8 shows three histograms.
One has a longer ‘tail’ to the left (lower scores) than to the right
(higher scores). This is called a negative skew. A second one is
symmetrical. The third has a longer tail to the right (higher scores)
than to the left (lower scores). This is called a positive skew.

In terms of the quartiles:

There is a negative skew if (@, — Q,) > (Q; — Q,),
and positive skew if (0, — Q) < (@3 — Q,).

The advantage of the semi-interquartile range over the range as a
measure of dispersion is that it is not simply dependent on the two
extreme values.
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positive skew

symmetrical

negative skew

Figure 8 Positive and negative skew

3 Mean deviation

Measures of dispersion

The deviation (x) of a score is the difference of that score from the
mean. In symbols, if X is a score, and X the mean score, then the

deviation x is given by

x=X-X

On first thoughts, it might appear very sensible to use the average
of such deviations as a measure of dispersion. However, if you do
this, taking note of the fact that some deviations will be positive
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and some negative, you will find that the average always comes out
at zero! (Try it.)

One way of rescuing this situation is to ignore the signs of the
deviations. This is what is done when using mean deviation as a
measure of dispersion. Hence, mean deviation (¥) is given by the
formula

X — X
N

X =

where N is the number of scores; X is the instruction ‘take the sum
of’; and |X — X| means ‘take the absolute value of the difference
between X and X’ (in other words, always call the difference
positive, i.e. take the smaller from the larger).

Compared with the two previous range-based statistics, the mean
deviation has the advantage that it is based on all the scores. It is
not widely used though, largely because it has been supplanted by
other measures of dispersion based on deviations, which are consid-
ered below.

4 Variance

An alternative tactic to get over the problem that deviations always
add up to zero when sign is taken into account, is to make use of
squared deviations. These are always positive (as ‘minus times
minus is plus’).

The mean of the squared deviation is a commonly used statistic
and is called the variance. From our previous discussions you
would expect the formula for variance to be

v\2
Variance = ELXT;—XL

where X is the individual score
X is the mean score
X — Xis the deviation
(X — X)?is the squared deviation
¥ is the instruction ‘take the sum of”’
hence £(X — X)? means ‘take the sum of the squared deviations’
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Measures of dispersion

and N is the total number of scores.

This formula does give the variance of the actual set of scores
you have in front of you. This is appropriate when you have a
sample of scores and simply wish to describe various aspects of
that sample. Or if you have measures from the whole of a popula-
tion of some kind.

However, as has been stressed previously, the situation is more
usually that we have a sample and want to make estimates about
the state of affairs in the population from which the sample has
been drawn. In these circumstances it can be shown (magic words!)
that an unbiased estimate of the variance in the population is
obtained by use of a slightly different formula:

(X — X)?
N—1

The N — 1 in the formula, which is substituted for the N in the
previous formula, is referred to as the degrees of freedom. As the
name suggests it is the number of deviations from the mean which
are free to vary. This is one less than N because the final deviation
is fixed by the need for the overall average deviation to be zero.
This is by no means an adequate explanation for the use of N — 1
in the formula, but there is at least an intuitive rightness to the
notion that our estimate of dispersion or variability should be
divided by the number of things free to vary.

The effect of this change to the formula is to increase the
estimate of variance. However, this makes little difference unless
very small samples are used.

Variance =

5 Standard deviation

A disadvantage of the variance as a measure of dispersion is that it
is in squared units as compared with the original data (e.g. seconds
squared rather than seconds). A simple solution to this is to take
the square root of the variance. This is known as the standard
deviation (SD):

SD = /M,
N -1
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This is by far the most commonly used of the measures of dispersion
and would usually be paired with the mean as a measure of central
tendency. Its popularity also arises from its links to the ‘normal’
distribution and various statistics associated with this distribution,
as discussed in the next chapter.

If you are using a calculator (and we are now getting to statistics
where it can be a substantial chore to do things by hand) a
different version of the formula is marginally easier to deal with.
This is

SD — [EX? — @X)?/N
N-1

where X is the individual score

X? is the individual score squared

T X? is the sum of the individual scores squared

XX is the sum of the individual scores

(ZX)? is the square of the sum of the individual scores
and N is the total number of scores.

This formula can be derived by algebra from the previous one and
hence leads to exactly the same result (assuming no arithmetical
errors). You might like to check this using a small set of scores.

Just a word of warning. Take especial care not to confuse
TX? — where you first square the scores and then add those
squares together; and (ZX)? — where you first add all the scores
and then square the total.
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Step-by-step procedure

Standard deviation

What to calculate How to calculate it Usual symbols
Step 1 total Add all the X
observations together
Step 2 mean Divide the result of X e
step 1 by the number N
of observations
Step 3 uncorrected (a) Square each of the X?
sum of squares observations
(b) Add all the squares X2
together
Step 4 correction (a) Go back to the ZX)?
term total obtained in
step 1 and square it
(b) Divide the result of (ZX)?
step 4a by the N
number of
observations
Step 5 corrected  Subtract the result of sx? _ ZX)?
sum of squares step 4b from that of N
step 3b
Step 6 variance  Divide the result of X? - ZX)*/N
step 5 by (number of (N-1)

observations — 1)
NB (N — 1) is often
referred to as ‘degrees
of freedom’

Step 7 standard ~ Take the square root
deviation of the result of step 6

\/EXZ — CX)*N
N-1
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Worked example

Standard deviation

Observations Step 3a (Observations)?
4.5 20-25
6-0 36-00
7-4 54-76
82 67-24
2-1 4-41
6-5 42:25
5-4 29-16
93 86-49

10-8 116-64
8-0 Step 3b 64-00

_ uncorrected

Step 1 total = 68-2 sum of squares 521-20

Step 2 mean = % = 6-82

Step 4a = (68-2)2

Step 4b (682) _ 46512

correction term = 10 T 465-12
Step 5 corrected
sum of squares = 521-20 — 465-12 = 56-08
Step 6 variance = 2608 = 6-23

9
Step 7 standard

variation = ,/6-23 = 2:5
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Standard scores

For purposes of comparison, say, of different individuals on the
same test, or of the same person on different tests, it is often useful
to transform scores into standard scores (otherwise known as z-
scores). This is done by using deviations expressed in terms of
standard deviation units:

deviation score (x)

standard score (z) =
standard deviation (SD)

where x = X — X.

When all scores in a set of scores are transformed into z-scores
the distribution is said to be standardized. This point is returned to
in the next chapter.

Correlation

Measures of central tendency and dispersion are ways of describing
and summarizing sets of scores on a single variable. However, we
may well have data on two or more variables and want to look at
the relationship between scores on the different variables. Suppose
we have both error and time scores on a particular task from a
group of participants. It may be that those who are good at the
task do it quickly and make few errors. Those who are poor at it
take longer and make more errors. Or there might be an entirely
different relationship between scores on the two variables. Those
who do it quickly might make many errors. Those doing it slowly
and carefully make few errors. Such relationships are known as
correlations between scores on the two variables, i.e. they are co-
relationships.

A positive correlation is when high scores on one variable tend
to be paired with high scores on the second variable (e.g.
when individuals make many errors and take a long time); and
low scores on one variable tend to be paired with low scores on
the other (e.g. when they make few errors and take a short
time).

A negative correlation is when high scores on one variable tend
to be paired with low scores on the second variable (e.g. when
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Scattergrams

individuals make many errors and take a short time); and low
scores on one variable tend to be paired with high scores on the
other (e.g. when they make few errors and take a long time).

Various correlation coefficients have been devised which give a
numerical value for the correlation. They give values ranging from
+1 for a perfect positive correlation, through zero for no correla-
tion, to —1 for a perfect negative correlation. Intermediate values
give an indication of the strength of the relationship between the
two variables. We will consider how one such coefficient can be
calculated later in the chapter.

Scattergrams

A simple and useful way of displaying the relationship between two
variables is provided by the scattergram (sometimes referred to as a
scatterplot). This involves plotting one of the variables along the
horizontal dimension and the other along the vertical dimension. If
the two variables are the independent variable and dependent
variable in an experiment then the convention is to plot the inde-
pendent variable on the horizontal axis, and the dependent variable
on the vertical axis (this applies on all graphs).

However, in considering correlation, it may well be that both
variables are dependent variables; or they may arise from some
non-experimental situation where it is not appropriate to make the
distinction between independent and dependent variables. Com-
monly scores arise from individuals being measured or otherwise
contributing data on two variables, so that for each participant
there is a pair of scores.

Suppose, for example, we obtain measures of height and weight
for a class of children. To plot a scattergram each child contributes
one dot, positioned according to their height and weight. Thus a
subject with height 135 cm and weight 31 kg would be represented
as shown in Figure 9.

For a set of subjects, the scattergram might look like Figure 10.
This shows that there is some relationship between the variables.
Tall children tend to be heavier. This is an example of a positive
correlation, in that high scores on one of the variables (height) tend
to be associated with high scores on the other variable (weight).
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Figure 9 Representation on a scattergram of a participant with
height 135 cm and weight 31 kg
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Figure 10 An example of a scattergram
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Figure 11 Scattergrams for different degrees of correlation
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Spearman’s rho

Examples of several different kinds of relationship are shown in
Figure 11.

An alternative way of thinking about correlation is to say that a
high or strong correlation enables us to make accurate predictions
about an individual’s score on one variable when we know their
score on the other variable. Note that this applies with equal force
for both positive and negative correlations. If there is a strong
negative correlation, it simply means that we predict low scores for
an individual on one variable if they score highly on the other
variable.

Spearman’s rho

Several correlation coefficients have been developed. We will cover
just one of these here, Spearman’s rho (p), otherwise known as
Spearman’s rank order correlation coefficient. Appendix 2 gives
details of a second correlation coefficient, Pearson’s r.

Spearman’s rho is based on rank orders. It deals, not with the
scores themselves, but with the order of these scores when they
have been ranked in size. There are, of course, some situations
where ranks or orderings are all we have. Say that we can measure
preferences within a set of things so that one of them is placed first
(given rank one), another is placed second (given rank two) and so
on. Spearman’s rho can also be used in situations like this where
the data are in the form of ranks from the start.

Suppose we have two people ranking a set of eight politicians on
some quality, say honesty. The ranks may be as follows:

Table 7 Rankings of politicians’ honesty given by two persons

Rank given to politician

A B C D E F G H
person 1 1 2 3 4 5 6 7 8
person 2 1 4 2 5 8 6 3 7

We have taken the first person’s ordering as the basis and shown
how the second person compares — thus they agree about who is
most honest, but the politician ranked second by the first person is
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ranked fourth by the second person. In attempting to measure the
correlation between these rankings it is clear that if they are
perfectly correlated we have two possibilities. Either the rankings
given by the two persons are identical (a perfect positive correla-
tion); or one ranking is the reverse of the other. Whoever person
one ranks first is ranked last by person two, and so on (a perfect
negative correlation).

Spearman’s rho is based upon the amount of disagreement
between the two rankings. Specifically, the measure used is the sum
of the squared difference in ranks (i.e. £d?, where d is the difference
in rankings for each of the things ranked).

In the example given above, d = 0 for politician A, d = —2 for
politician B, d = 1 for politician C, etc. and

A =02+ (=2 + 124+ (=12 + (=32 +0*+42+ 12 =32
It is clear that 4% will be a minimum, in fact zero, when the two

rankings are identical. Similarly £4? will be a maximum when one
rank order is the exact reverse of the other. Hence the equation

234

maximum value of Zd?

Spearman’srtho (p) = 1 —

gives a correlation coefficient of +1 when there is no disagreement
(Zd* = 0) and a correlation coefficient of —1 where the disagree-
ment is a maximum. You can check this by substituting £d? for
‘maximum value of £d%’ into the equation for Spearman’s rho.

It is not unreasonable to think of a total lack of correlation as
being half-way between these two extremes of perfect agreement
and perfect disagreement. If we take the value of £d? as half of its
maximum value, you find that this produces a value of zero for
Spearman’s rho. If £4? is less than half of its maximum a positive
correlation results; if more than half there will be a negative
correlation.

While the equation given above is not difficult to use, a version
which looks rather different is more commonly used. This relies on
the fact that the maximum value of Zd* can be worked out
directly from N, the number of things ranked.
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Spearman’s rho

Spearman’srho (p) = 1 — _62
N(N* - 1)

where £d? is the sum of squared differences in rank and N =
the number of pairs of ranks.

Note, by the way, that the ‘6’ in the formula is, rather surprisingly,
derived from the algebra, and is always there no matter how many
pairs of scores you have.

Spearman’s rho is a descriptive statistic. It simply describes and
summarizes the direction and degree of the relationship between
the variables. It is, however, possible to assess the statistical signific-
ance of the relationship between the variables in a similar way to
that discussed with the sign test (p. 37). Table C gives figures for
the smallest values of Spearman’s rho significant at the 0-05 level
of significance, for different numbers of pairs of scores.

If p exceeds the table value for the number of pairs of scores in
the experiment, then there is a statistically significant agreement
between the rankings under the two conditions (at the p = 0-05
level). If p does not exceed the table value, then there is no
significant agreement between the rankings under the two condi-
tions (at the p = 0-05 level).
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Step-by-step procedure

Spearman’s rho

Step 1 Rank data (for each group separately) giving rank 1 to
the highest score, and so on
Note If two or more scores in a group are the same then
give the average rank for these tied scores

Step 2 Obtain the difference (d) between d
each pair of ranks

Step 3 Square each of the differences d?
Step 4 Add all the squares together xd?
Step 5 Calculate N x (N2 — 1) where N(N? —1)
N is the number of pairs of scores
6xd?

Step 7 If required, assess the significance of p using Table C
Step 8 Translate the result back in terms of the experiment.

Note The procedure can be followed if the data is given directly
in the form of ranks by simply omitting Step 1
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Worked example

Spearman’s rho

Participant Scores

A B
P, 3 5
P, 7 9
P, 3 7
P, 12 11
Ps 8 11
P, 14 1
P, 2 2
Step 1 ranks Step2  Step3
Participant A B d d?
P, 55 6 —05 025
P, 4 4 0 0
P, 55 5 0-5 0-25
P, 2 2 0 0
P 3 2 1 1
P, 1 2 —1 1
P, 7 7 0 0

Step 4 Td2 = 2:50
Step5 N x (N2 —1)=7 x (49 — 1) = 336

Step 6
6Xd? | — 6 x 2-50

TNNT-1) 336
=1 — 0045 = +0:955

Step 7 From Table C, p must exceed 0-71 for N = 7. As p = 0-955
there is a statistically significant agreement between the
orderings of the data at the p = 0-05 level

p=1

Step 8 There is a statistically significant positive correlation (p =
+0-955) between the scores on the two variables

Note Spearman’s rho should be treated with caution when there
is a high proportion of ties as in this example
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