3 Statistical inference

Constant and random error

In a simple experiment, we are trying to find the effect, if any,
that the independent variable has on the dependent variable. As
discussed in the last chapter, the dependent variable may be af-
fected by variables other than the independent variable. We con-
centrated there on variables producing an order effect, but there
is a whole host of other variables which might affect the depend-
ent variable. Such variables can be thought of as producing two
kinds of errors when we are trying to work out the effect of the
independent variable — random errors and constant errors.

For example, in experiments with animals, food is often used as
a reward for food-deprived animals. The method commonly used
at one time to ensure that they were appropriately food-deprived
was to allow access to food for only a short time, say thirty
minutes, per day. However, different animals would take in differ-
ent amounts of food during this time. If performance in some task
were related to food deprivation, then there would be variations in
performance which would contribute unpredictable errors, likely to
be random in their effect, to any experiment using this method of
food deprivation.

A constant error would occur if, for some reason, all the animals
in one experimental condition were able to eat for longer than
those in another condition. Hence the direction of the error would
always be the same and constant in its effect.

Notice that random and constant errors have different effects: a
random error obscures the experimental effect we are interested in,
a constant error biases or distorts the results.
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Statistical inference

Constant errors must go!

Our business in designing an experiment is to hunt down all possible
sources of constant error. In some cases it is possible to eliminate
them completely by means of direct control. To take a fanciful but
hopefully clear example: a constant error would be introduced in
comparing heights of eskimo and pygmy children if a ruler were
used which expanded as the temperature increased (assuming pyg-
mies live in warmer climates than eskimos!). This could be controlled
and completely eliminated by using a non-expanding ruler. Less
fancifully, if we are carrying out an experiment where there are likely
to be gender differences in performance which are not in themselves
the focus of our interest then we could use direct control by working
solely with females (or solely with males). In other cases one may
not be able to control directly, but the biasing effect can be removed
either by counterbalancing (as in the case of simple order effects)
or, more generally, by randomization. However, neither counter-
balancing nor randomization eliminates the error. They merely have
the effect of transforming it from constant error to random error.
This means that they remove the error as a source of bias, but it still
remains to obscure the experimental effect in which we are interested.
Whilst it may appear desirable to eliminate all possible constant
errors by direct control, there are arguments against this.

Consider what might be called the ‘left-handed, fifty-three-year-
old introverted Isle of Wight rat-catcher’ approach to experimenta-
tion. In setting up a particular hypothetical experiment it might
appear likely that the handedness of .the subjects would be related
to their performance. Using direct control we would decide to
work either entirely with left-handers, or entirely with right-handers
— say the former. Similarly, age could be seen as a possible variable,
and using direct control we would opt for a particular age or age
range for our subjects. In like manner, personality variables, geo-
graphical location and profession might also be seen as having a
potential effect in our experiment. Clearly the end result is ludic-
rous. It is highly unlikely that we would be able to find even a
single individual to fit the bill, let alone a viable group to carry out
the experiment. And even if by some miracle this were possible, the
generality of any results we obtained would be highly questionable.
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Random errors will not go!

Put in more general terms it may well be that the effects of an IV
on a DV can be demonstrated when everything within sight is held
constant. However, it may possibly happen that this effect is
dependent on the particular values of one or more of the variables
held constant. If we had held them constant at a different value,
then the experimental effect might have disappeared.

The main alternative to direct control is randomization, i.e. we
allow things to vary but seek to ensure their random allocation to
the different conditons of the experiment. If the experimental effect
still stands when these variables have been randomized, it indicates
that the effect is reasonably robust.

Random errors will not go!

Some random errors can be eliminated as, for example, those
caused by the animals eating different amounts during their thirty-
minute feeding period. A better method, now widely used, is to
feed the animals a carefully measured amount of food which
maintains them at a given percentage of their free-feeding body
weight. Thus if we can assume that the effect of food deprivation is
directly dependent on this percentage, the random error attributable
to differences in food deprivation can be completely eliminated.

However, there are many random errors which cannot be elimin-
ated in this way. Consider the many things which might affect a
human participant’s performance on a memory or a learning task.
In order to control these effects one would need a set of participants
with identical heredity and environment. Their learning and other
experiences before the experiment would have to be equated. They
would need to be of the same intelligence and have the same
personality and attitudes, to be in the same state of health, etc.,
etc. The list is endless and it would be impossible to contemplate
even starting any experiments if this kind of control were a
necessary prerequisite. One is forced to conclude that random error
is here to stay and that our methods will have to take this into
account.

To this end, the basic strategy is to make sure that the allocation
of participants to the different experimental conditions is random
so that any potential constant errors end up as random errors.
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Statistical inference

Statistical inference and probability

Granted, then, that random error will be present, both in its own
right and as a result of our having randomized constant errors,
how can it be disentangled from the experimental effect that we are
after? The answer is that we make use of statistical inference.

What we do is:

1 Estimate how probable it is that the random error by itself could
produce the changes in the dependent variable observed in the
experiment.

If

2 It seems unlikely that random error by itself could produce these
changes

then

3 We decide that it is the independent variable which is having an
effect on the dependent variable.

You should work through this argument several times. The idea
is very important and the process is the reverse of what many
people expect. Instead of coming to a decision about the independ-
ent variable’s effect directly, we approach it indirectly by discount-
ing the likelihood that the effect was produced by random error.

Statistics is used to make inferences about these effects — hence
the term ‘statistical inference’. Before we can do this you need to
have some understanding of the concept of ‘probability’.

Probability

The concept of probability is controversial among both statisticians
and philosophers. It is used in at least three different ways. In
everyday life the reference is usually to how likely or unlikely it is
that a future event will occur. Thus we have statements such as
‘Huddersfield Town will probably win on Saturday’ or ‘You’ll
probably be sick if you eat that third cream cake’. Sometimes this
feeling of doubt or uncertainty is expressed in numerical terms ds ‘T
think it’s 10 to 1 against him stopping smoking in the New Year’
but even so these are subjective estimates and as such this use of
the term is commonly referred to as subjective probability.
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Probability

A second use of the term derives from analyses of card games
and other games of chance. In cutting a well-shuffled pack of
playing cards what is the probability that the card turned over is an
ace? This approach defines probability as the ratio of the number of
favourable cases (here the four aces) to the total number of equally
likely cases (here the fifty-two cards, assuming a normal pack with
no jokers). The probability is then 1 in 13, otherwise expressed as
1/13. This idea, particularly the notion of ‘equally likely cases’,
enables one to work out theoretically the probability of various
events occurring in quite complex situations and is of considerable
value to casino owners and the like. You should note, however, that
this is a formal, theoretical approach to probability sometimes
referred to as mathematical probability, and the extent to which it
corresponds to real life in any situation depends on whether the
theoretical assumptions (and particularly the idea of equally likely
cases) apply in that actual situation. When playing with dice it
seems reasonable to assume that each of the six alternatives resulting
from rolling a single die is equally likely. However, such things as
loaded dice are not unknown and if over a period we find in practice
that, say, a 1 comes up in over half the rolls, then the applicability of
the theory in this case is cast into considerable doubt.

This last example illustrates a third approach to probability, the
so-called ‘relative frequency’ approach, otherwise known as empir-
ical probability. Here the probability of an event is estimated by the
ratio of the number of times the event occurs to the total number
of trials which have taken place. It is an estimate because the
actual number of trials which have taken place are regarded as a
sample from the almost infinitely large population of trials which
could theoretically take place. The probability is the state of affairs
in this population and will tend to be more and more accurately
estimated as we increase the size of the sample. Anyone with a few
days to spare might like to test this by tossing a coin repeatedly
and noting the proportion of heads obtained after, say, ten trials, a
hundred trials, a thousand trials, etc.

These three approaches to probability are not necessarily incom-
patible. In particular the mathematical and empirical approach
often helpfully complement each other. The mathematical approach
to coin tossing obviously gives a probability of a half for heads and
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Statistical inference

various lengthy series of coin tosses which have been carried out
give estimates, as one might expect subjectively, that are essentially
the same (although some types of coin give a very small but
consistent ‘heads’ bias, presumably because of a slight asymmetry
in the coin itself).

Probability (given the symbol p) is commonly expressed numeri-
cally with a minimum value of 0 and a maximum value of 1: 0
refers to something which never occurs and 1 to something which
always occurs. In practice, of course, most of the things in which
we are interested are somewhere between these extremes and hence
have values larger than 0 and smaller than 1.

Consider an experiment. Suppose that in a design where we have
pairs of scores (either the matched pairs or repeated measures
design) we found that in seven out of eight pairs, scores are larger
in condition A than in condition B. And that in only one out of
eight pairs the score was higher in condition B than in condition A.
(We are going to assume, to make things simpler, that it is not
possible to get a tie.) What is the probability that we would have
obtained that result on a chance basis, i.e. if only random effects
are involved and there is no effect due to the experimental condi-
tions (i.e. no effect of the IV on the DV)?

To simplify the explanation let us refer to the pair where condi-
tion A scores are higher than condition B as a ‘+’; and the pair
where they score lower as a ‘—’. Using mathematical probability
we can take the assumption that only random effects are involved
as equivalent to the assumption of equally likely outcomes. That is,
the probability of getting a + with any pair is 4 (a half), and the
probability of getting a — is also 3. If you find it easier, think in
terms of the probability of getting ‘heads’ when you toss a coin.

Suppose we consider two pairs together. There are then three
possibilities: two +s (i.e. both pairs A scores larger than B scores);
one + (one pair A larger than B, the other B larger than A); and
zero +s (both pairs B larger than A). What are the probabilities
associated with these? A ‘family tree’ helps to demonstrate this
(Figure 2).

There is a total of four possible outcomes. It is reasonable to
assume that each of the four are equally likely. They are — first,
pair 1 getting + and pair 2 getting +; second, pair 1 getting +
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subject 1 /+ -
subject2 + \\— / \_
Figure 2 ‘Family tree’ for two participants

and pair 2 getting —; third, pair 1 getting — and pair 2 getting +;
fourth, pair 1 getting — and pair 2 getting —. Considering these
four possible outcomes, two +s occurs once in four (i.e. p = § =
0-25), one + occurs twice in four (i.e. p =% = 0-5) and zero +s
occurs once in four (i.e. p = 1 = 0-25).

In this way it is possible to work out the probability, on a chance
basis, of getting any given number of +s with any total number of
pairs. For example, with four pairs, the ‘family tree’ looks like
Figure 3.
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Figure 3 ‘Family tree’ for four participants

There is a total of sixteen possible outcomes and a table of
probabilities can be obtained as shown in Table 5.

Table 5 Probabilities for different numbers of +s with four pairs

Number of +s  Probability (= fraction of outcomes)

4 £ = 00625
3 & = 0-2500
2 & = 0-3750
1 & = 0-2500
0 & = 00625

Returning to our original example of eight pairs, the drawing of
the family tree is left to the reader, the total number of possible
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Table 6 Probabilities for different numbers of +s with eight pairs

Number of +s  Probability (= fraction of outcomes)

8 b5 — 0004
7 %5 = 0-031
6 28 = 0110
5 28 = 0220
4 25 = 0270
3 28 = 0220
2 28 = 0110
1 225 = 0-031
0 745 = 0004

outcomes now being 256. The table of probabilities is given in
Table 6. We can see from the table that the probability of obtaining
seven +s out of eight is 0-031.

But how does this relate to our analysis of the experiment? This
can be shown in graphical form in what is called a histogram or
bar chart (discussed in more detail in the next chapter, p. 40). A
bar is drawn for each number of +s, the height of the bar
representing the probability of that number of + s (Figure 4).

Significance level

Recall that the decision is made that the independent variable has
affected the dependent variable when the probability of getting the
result obtained, if random errors only are involved, is sufficiently
low.

The histogram shown in Figure 4 gives the distribution of the
number of +s out of eight when it is pure chance whether or not
any particular result ends up as + or —. Look at the extremes of
this distribution. The probability of getting no +s at all is 0-004, i.e
very low. Similarly the probability of getting all +s is 0-004. We
might feel that these probabilities are so low that we are justified in
deciding that results as extreme as this (i.e. all of the eight going in
the same direction) are not due to random errors alone. If they are
not due to the random errors, and we have got rid of the constant
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Significance level

probability
o3

number of +s

Figure 4 Histogram showing the probabilities for different
number of +s with eight participants

errors, then this result must be due to the effect of the independent
variable.

How low does the probability have to be for us to make this
kind of decision? There is no definitive answer to the question.
Whatever level we choose, it is possible to make an error. In fact,
there are two possible kinds of error. What is usually called a type
1 error occurs when we decide that the independent variable had an
effect on the dependent variable when it did not have an effect (i.e.
when, in fact, the change in the dependent variable was due to the
random effects alone). A type 2 error occurs when we conclude that
the independent variable had no effect on the dependent variable
when, in fact, there was a genuine relationship.

What is normally done is to choose a significance level. The
significance level is simply the probability of making a type 1 error.
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The meaning of significance level is quite often misunderstood, and
it will perhaps be useful to talk around this a little more.

Refer back to Figure 4. Suppose that we set a significance level
of p < 0-01 (i.e. probability of making a type 1 error less than 1 in
a hundred) then, with a result of 8 +s or of 0 +s, we would come
to the decision that the IV had an effect on the DV, i.e. that the
result was sufficiently improbable for us to decide that it was not
due to random errors alone. Note that this is because the probabil-
ity of 8 +s and that of 0 +s adds up to 0-008 which is smaller than
0-01.

Suppose that we are willing to take a somewhat higher risk of
making a type 1 error, say p < 0-1. You can see that with results of
8, 7,1 or 0 +s we would decide that the IV had an effect on the
DYV. This is because their combined probability adds up to 0-070,
which is smaller than 0-1. Notice here that, if you are going to say
that with 7 +s the decision is that the IV has an effect, you
obviously must also say this for 8 +s, i.e. for any more extreme
result. Also that we are deciding this irrespective of the direction of
the difference, i.e. that both a large proportion of +s and a small
proportion of +s (hence a large proportion of —s) are evidence of
an effect.

The lower the probability set for the significance level — and
hence the less chance of making a type 1 error — the greater the
chance of making a type 2 error. In other words, by limiting your
decision that the IV affects the DV to the very extreme cases, you
are making it more likely that in some cases you will decide
incorrectly that there was no effect. So some kind of balance has to
be struck between these two errors.

There is a convention whereby a significance level of probability
p < 0:05 (the 5 per cent significance level) is referred to as statist-
ically significant (sometimes simply referred to as significant). It
must be stressed that this is simply a convention, an agreement
between consenting experimentalists. There is nothing magic about
the 5 per cent figure. It may be (for example, in exploratory
research into an area) that one is worried about type 2 errors, i.e.
about regarding as non-significant a relationship which perhaps
ought to be followed up, and hence that a significance level of
p < 0-1 might be preferable. On the other hand, there are situations
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probability
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number of +s
Figure 5 Histogram from Figure 4 with cut-off points added

where the consequences of making a type 1 error might be particu-
larly worrying (owing, perhaps, to one’s findings and conclusions
being at variance with other published work), and a significance
level of p < 0-01 or smaller might be indicated. Incidentally the
p < 0:01 or 1 per cent significance level is sometimes referred to as
highly significant.

If we decide, however, to be conventional and to use, say, a 5 per
cent (p < 0-05) significance level, what decision do we come to in
our experiment? Referring back to the histogram showing the
distribution of +s (Figure 4), the significance level is used to divide
the dependent variable into two regions — a region where we will
decide that random effects alone are involved and one where we
will decide that the independent variable did have an effect on the
variable. A glance at Table 6 (p. 32) reveals that, if the cut-off
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points are marked as shown in Figure 5, the total probability of
making a type 1 error is p = 0-008.

If the cut-off point had been moved in to include the 1 + and 7
+ cases, the total probability of making a type 1 error increases to
p = 0-:070. This latter value would exceed the significance level,
which we had set at p < 0-:05 — i.e. too much of the distribution is
being cut off and the cut-off points actually shown on the diagram
should be used. As our observed number of +s in the experiment
was 7, we see that this lies in the region ‘decide I'V had no effect on
DYV’ and hence we cannot regard this as evidence for a relationship
between independent variable and dependent variable.

Hypotheses and hypothesis testing

You will often find that issues about whether or not the IV affects
the DV are referred to in terms of the null hypothesis (H,) and the
alternative hypothesis (H,). In this language, the null hypothesis is
that the I'V does not affect the DV. Various alternative hypotheses
are possible, but the most general one would be that the IV does
affect the DV (stated in terms of the particular IV and DV in your
experiment).
When the experiment and analysis are completed we then

either reject Hy and accept H,, if the result is less probable than
the chosen significance level;

or accept H, and reject H, if the result is equal to or more
probable than the chosen significance level.

Some statisticians consider it inappropriate to talk about ‘accept-
ing’ Hy and prefer ‘fail to reject’” H, instead. This is because in
‘accepting’ H, we don’t mean that it is likely that Hy is true, only
that we don’t have evidence to reject it.

A warning about the (lack of) significance of statistical
significance

There is some tendency for experimenters to worship statistical
significance. This is in part because it is much easier to secure
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publication for a ‘significant’ finding than for one which is ‘non-
significant’. In some ways this is very understandable. The discovery
of causal relationships between variables is central to much science.
Also, poorly performed and controlled experiments are likely to
produce non-significant findings.

The difficulty with the concept is that there is a tendency to jump
from ‘statistical significance’ to ‘significance’ in the sense of ‘impor-
tance’. All that statistical significance tells you is that what you have
found is unlikely to be explicable in terms of random errors. Given a
well-designed experiment you can make the leap to saying that it is
likely that the I'V has had a causal effect on the DV. It says nothing
about the size or importance of the effect. In fact, an almost sure-fire
way of achieving statistical significance is simply to increase the size
of the sample taking part in your experiment. Larger samples provide
a more sensitive test of differences between the experimental condi-
tions and there will almost inevitably be some kind of effect which is
detectable with a sufficiently large sample. So while it is tempting,
and true, to say that your non-significant result in an experiment may
point to the need for a larger-scale study, it is actually the significant
results from well-designed relatively small-scale studies that are
going to pick up the more important ‘robust’ experimental findings.

The sign test

It is perfectly possible to work out the probabilities of different
outcomes for any number of pluses and minuses, through the
‘family tree’ method. This does, however, become somewhat labori-
ous — particularly for large samples. The sign test provides a
simple way of reaching the same conclusions. It involves looking
up the number of pluses (or the number of minuses; whichever is
the smaller) against the total number of pluses and minuses in a
table. The table then tells you whether the result you have obtained
is statistically significant at the 5 per cent level.

A step-by-step procedure and worked example for doing this are
given overleaf on pp. 38 and 39.
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Step-by-step procedure

Sign test

Use this test when you have pairs of scores (i.e. matched pairs
or repeated measures designs)

Step 1

Step 2

Step 3

Step 4

Step 5

Give each pair of scores a plus (+) if the score in the left-
hand condition exceeds that in the right-hand condition, a
minus (—) if the score in the left-hand condition is less
than that in the right-hand condition, a zero (0) if there is
no difference.

Note the number of times (L) the less frequent sign occurs
and the total number (7") of pluses and minuses. Ignore all
zeros, i.e. do not include them in 7.

Look up in Table B (p. 161) the highest value of L which
is significant at the 5% level for this value of 7.

If your value of L is equal to or lower than the value
obtained from the table, the decision is made that the IV
had an effect on the DV - the results are referred to as
‘significant at the 59 level’. If your value of L is greater
than the table value, then the decision is made that the
independent variable had no effect on the dependent vari-
able — the results are ‘not significant’.

Translate the result of the statistical test back in terms of
the experiment.
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Worked example

Sign test

The following scores were obtained in a matched pairs design with
nine pairs of participants.

A B Stepl

12
10
15 1
8
7
10
8
7
13

O W B \O 000 = 00
++4++ 1 o+ ++

Step2 L=1,T=38
Step 3 From Table B, highest value of L = 0 for significance
when T = 8.
Step 4 As our value of L is greater than this we decide that the IV
has no effect on the DV —i.e. the results are not significant.
Step 5 The difference between condition A and condition B is not
significant at the 5% level.
Note (a) The results obtained are identical to those obtained by a
direct calculation of probabilities (p. 36).
(b) Although the results are not significant, there is a
suggestion that there are higher scores under condition
A; this should perhaps be explored in a more extensive
experiment (or with a more sensitive test).
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