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 Keypoints 
     •      Microvascular complications are caused by prolonged exposure to 

hyperglycemia.  
   •      Hyperglycemia damages cell types that cannot downregulate glucose 

uptake, causing intracellular hyperglycemia.  
   •      Intracellular hyperglycemia damages tissues by fi ve major mechanisms: 

increased fl ux of glucose and other sugars through the polyol pathway; 
increased intracellular formation of advanced glycation end - products 
(AGEs); increased expression of the receptor for AGEs and its activating 
ligands; activation of protein kinase C isoforms; and overactivity of the 
hexosamine pathway.  

   •      A single process  –  increased mitochondrial production of oxygen free 
radicals  –  activates each of these mechanisms.  

   •      Persistent consequences of hyperglycemia - induced mitochondrial 
superoxide production may also explain the continuing progression of 

tissue damage after improvement of glycemic levels ( “ hyperglycemic 
memory ” ).  

   •      Different individual susceptibility to microvascular complications have 
been linked to polymorphisms in the superoxide dismutase 1 gene.  

   •      Hyperglycemia - induced mitochondrial reactive oxygen species 
production impairs the neovascular response to ischemia by blunting 
hypoxia - inducible factor 1 transactivation.  

   •      Hypertension accelerates microvascular damage by increasing 
intracellular hyperglycemia through upregulation of the glucose 
transporter 1.  

   •      Potential mechanism - based therapeutic agents for diabetic 
microvascular complications include transketolase activators, poly(ADP -
 ribose) polymerase inhibitors and catalytic antioxidants.    

  Overview of  d iabetic  c omplications 

 All forms of diabetes are characterized by hyperglycemia, a rela-
tive or absolute lack of insulin action, and the development of 
diabetes - specifi c pathology in the retina, renal glomerulus and 
peripheral nerve. Diabetes is also associated with accelerated 
atherosclerotic disease affecting arteries that supply the heart, 
brain and lower extremities. As a consequence of its disease -
 specifi c pathology, diabetes mellitus is now the leading cause of 
new blindness in people 20 – 74 years of age and the leading cause 
of end - stage renal disease (ESRD) in the developed world. 
Survival of patients with diabetic ESRD on dialysis is half that of 
those without diabetes. More than 60% of patients with diabetes 
are affected by neuropathy, which includes distal symmetrical 
polyneuropathy, mononeuropathies and a variety of autonomic 
neuropathies causing erectile dysfunction, urinary incontinence, 
gastroparesis and nocturnal diarrhoea. Diabetic accelerated lower 
extremity arterial disease in conjunction with neuropathy 

accounts for 50% of all non - traumatic amputations in the USA. 
Diabetes and impaired glucose tolerance increase cardiovascular 
disease (CVD) risk three -  to eightfold. Thus, over 40% of patients 
hospitalized with acute myocardial infarction (MI) have diabetes 
and 35% have impaired glucose tolerance. Finally, new blood 
vessel growth in response to ischemia is impaired in diabetes, 
resulting in decreased collateral vessel formation in ischemic 
hearts, and in non - healing foot ulcers. The focus of this chapter 
is on the microvascular complications comprising retinopathy, 
nephropathy and peripheral neuropathy. 

 Much of the impact of chronic diabetes falls on the microcir-
culation  [1,2] . With long - standing disease, there is progressive 
narrowing and eventual occlusion of vascular lumina, resulting 
in impaired perfusion, ischemia and dysfunction of the affected 
tissues. Several processes contribute to microvascular occlusion. 
One of the earliest is increased vascular permeability, allowing 
extravasation of plasma proteins that accumulate as periodic 
acid – Schiff - positive deposits in the vessel walls. In addition, the 
extracellular matrix elaborated by perivascular cells such as peri-
cytes (retina) and mesangial cells (glomerulus) is increased, 
brought about by changes in synthesis and turnover of its com-
ponent proteins and glycosaminoglycans. As a result, the base-
ment membrane is thickened in many tissues, including retinal 
capillaries and the vasa nervorum, while mesangial matrix is 
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  2     Increased intracellular formation of advanced glycation end -
 products (AGEs);  
  3     Increased expression of the receptor for AGEs (RAGE) and its 
activating ligands;  
  4     Activation of protein kinase C (PKC) isoforms; and  
  5     Overactivity of the hexosamine pathway.    

 Despite this, the results of clinical studies in which one of these 
pathways is blocked have been disappointing. This led to the 
hypothesis in 2000 that all fi ve mechanisms are activated by a 
single upstream event: mitochondrial overproduction of the reac-
tive oxygen species (ROS) superoxide as a result of intracellular 
hyperglycemia. This provides a unifying hypothesis for the patho-
genesis of diabetic complications. 

  Increased  p olyol  p athway  fl  ux 
 The polyol pathway is based on a family of aldoketo reductase 
enzymes which can utilize as substrates a wide variety of sugar -
 derived carbonyl compounds and reduce these by nicotinic acid 

expanded in the renal glomerulus. Hypertrophy and hyperplasia 
of endothelial, mesangial and arteriolar smooth muscle cells also 
contribute to vessel wall thickening. Finally, increased coagulabil-
ity of the blood and adhesion of platelets and leukocytes to the 
endothelial surface lead to microthrombus formation and luminal 
occlusion. 

 The progressive narrowing and blockage of diabetic microvas-
cular lumina are accompanied by loss of microvascular cells. In 
the retina, diabetes induces apoptosis of M ü ller cells and ganglion 
cells  [3] , pericytes and endothelial cells  [4] . In the glomerulus, 
widespread capillary occlusion and declining renal function are 
associated with podocyte loss. In the vasa nervorum of diabetic 
nerves, endothelial cell and pericyte degeneration occur  [5]  and 
appear to precede functional abnormalities of peripheral nerves 
 [6] . Increased apoptosis of cells in the retina, renal glomerulus 
and peripheral neurons is a prominent feature of diabetic micro-
vascular tissue damage  [7 – 11]  and may also cause damage to 
adjacent cells. 

  Role of  h yperglycemia in  m icrovascular  c omplications 
 Overall, diabetic microvascular complications are caused by pro-
longed exposure to high glucose levels. This has been established 
by large - scale prospective studies for both type 1 diabetes (T1DM) 
by the Diabetes Control and Complications Trial/Epidemiology 
of Diabetes Interventions and Complications Study [DCCT/
EDIC]  [12]  and for type 2 diabetes (T2DM) by the UK Prospective 
Diabetes Study [UKPDS]  [13] ). Similar data have been reported 
by the Steno - 2 study  [14] . 

 Because every cell in the body of people with diabetes is exposed 
to abnormally high glucose concentrations, why does hypergly-
cemia selectively damage some cell types and not others? 
The targeting of specifi c cell types by generalized hyperglycemia 
refl ects the failure of those cells to downregulate their uptake 
of glucose when extracellular glucose concentrations are 
elevated. Cells that are not directly susceptible to direct hypergly-
cemic damage such as vascular smooth muscle show an inverse 
relationship between extracellular glucose concentrations and 
glucose transport. In contrast, vascular endothelial cells, a major 
target of hyperglycemic damage, show no signifi cant change in 
glucose transport rate when glucose concentration is elevated, 
resulting in intracellular hyperglycemia (Figure  35.1 ). These 
differences are caused in part by tissue - specifi c differences in 
expression and function of different glucose transporter (GLUT) 
proteins  [15] .     

  Mechanisms of  h yperglycemia -  i nduced  d amage 

 There are nearly 2000 publications supporting fi ve major 
mechanisms by which hyperglycemia causes diabetic 
complications: 
  1     Increased fl ux of glucose and other sugars through the polyol 
pathway;  
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     Figure 35.1     Lack of downregulation of glucose transport by hyperglycemia in 
cells affected by diabetic complications. (a) 2 - Deoxyglucose uptake in vascular 
smooth muscle cells pre - exposed to 5.5 or 22   mmol/L glucose. (b) 2 - Deoxyglucose 
uptake in aortic endothelial cells pre - exposed to 5.5 or 22   mmol/L glucose.  Data 
from Kaiser N, Sasson S, Feener EP, Boukobza - Vardi N, Higashi S, Moller DE, 
 et al . Differential regulation of glucose transport and transporters by glucose in 
vascular endothelial and smooth muscle cells.  Diabetes  1993;  42 :80 – 89.   
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of human aldose reductase increased atherosclerosis in diabetic 
mice and reduced the expression of genes that regulate regenera-
tion of GSH  [17] . Reduced GSH is depleted in the lens of trans-
genic mice that overexpress aldose reductase and in diabetic rat 
lens compared with non - diabetic lens  [18,19] . It has also been 
recently demonstrated that decreased glutathiolation of cellular 
proteins is related to decreased nitric oxide (NO) availability in 
diabetic rats which would decrease S - nitrosoglutathione (GSNO). 
Restoring the NO levels in diabetic animals increases glutathiola-
tion of cellular proteins, inhibits aldose reductase activity and 
prevents sorbitol accumulation. 

 Moreover, hyperglycemia can also inhibit glucose - 6 - phosphate 
dehydrogenase, the major source of NADPH regeneration, which 
may further reduce NADPH concentration in some vascular cells 
and neurons  [20] . 

 In diabetic vascular cells, however, glucose does not appear to 
be the substrate for aldose reductase, because the Michaelis con-
stant (Km) of aldose reductase for glucose is 100   mmol/L, while 
the intracellular concentration of glucose in diabetic retina is 
0.15   mmol/L  [21,22] . Glycolytic metabolites of glucose such as 
glyceraldehyde - 3 - phosphate, for which aldose reductase has much 
higher affi nity, may be the physiologically relevant substrate.  

  Increased  i ntracellular  AGE   f ormation 
 AGEs are formed by the reaction of glucose and other glycating 
compounds (e.g. dicarbonyls such as 3 - deoxyglucosone, methyl-
glyoxal and glyoxal) with proteins and, to a lesser extent, nucleic 
acids. The reactions proceed through a series of stages that are 
initially reversible and yield early glycation products, but eventu-
ally undergo irreversible changes that markedly impair the struc-
tural, enzymatic or signaling functions of the glycated proteins 
(Figure  35.3 ). A familiar example of this process yields glycated 
hemoglobin (HbA 1c ). AGEs are found in increased amounts in 

adenine dinucleotide phosphate (NADPH) to their respective 
sugar alcohols (polyols). The classic representation holds that 
glucose is converted to sorbitol, and galactose to galactitol. 
Sorbitol is then oxidized to fructose by the enzyme sorbitol 
dehydrogenase (SDH), with NAD +  being reduced to NADH 
(Figure  35.2 ).   

 The fi rst and rate - limiting step of the polyol pathway is gov-
erned by aldose reductase, which is found in tissues such as nerve, 
retina, lens, glomerulus and blood vessel wall. In these tissues, 
glucose uptake is mediated by GLUT proteins other than GLUT - 4 
and so does not require insulin; intracellular glucose concentra-
tions therefore rise in parallel with hyperglycemia. 

 Several mechanisms have been proposed to explain how hyper-
glycemia - induced increases in polyol pathway fl ux could damage 
the tissues involved. These include sorbitol - induced osmotic 
stress, decreased cytosolic Na/K +  - ATPase activity, increased 
cytosolic NADH/NAD + , and decreased cytosolic NADPH. It was 
originally suggested that intracellular accumulation of sorbitol, 
which does not diffuse easily across cell membranes, could result 
in osmotic damage, but it is now clear that sorbitol levels in dia-
betic vessels and nerves are far too low to do this. Another early 
suggestion was that increased fl ux through the polyol pathway led 
to decreased phosphatidylinositol synthesis, and that this inhib-
ited Na/K +  - ATPase activity. The latter abnormality does occur in 
diabetes, but has recently been shown to result from hyperglyc-
emia - induced activation of PKC which increases the production 
of two inhibitors of Na/K +  - ATPase, arachidonate and prostaglan-
din E 2   [16] . 

 It has also been suggested that the reduction of glucose to 
sorbitol by NADPH (Figure  35.2 ) consumes the latter. NADPH 
is a co - factor required to regenerate reduced glutathione (GSH); 
as GSH is an important scavenger of ROS, this could induce or 
exacerbate intracellular oxidative stress. Indeed, overexpression 
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     Figure 35.2     The polyol pathway. When glucose 
concentration is normal, aldose reductase reduces 
toxic aldehydes generated by reactive oxygen species 
(ROS) to inactive alcohols. With intracellular 
hyperglycemia, it can also reduce glucose to sorbitol. 
Both reactions use nicotinic acid adenine 
dinucleotide phosphate (NADPH) as a co - factor. 
When aldose reductase activity is suffi cient to 
deplete reduced glutathione (GSH), oxidative stress 
is augmented. Sorbitol - dehydrogenase (SDH) oxidizes 
sorbitol to fructose using NAD +  as a co - factor. 
GSSG, glutathione disulfi de (oxidized glutathione).  
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to glyoxal  [30] , the decomposition of an Amadori product to the 
3 - deoxyglucosone, or the fragmentation of glyceraldehyde - 3 -
 phosphate to yield methylglyoxal  [31] . All these reactive intracel-
lular dicarbonyls react readily with uncharged amino groups 
of intracellular and extracellular proteins to form AGEs. 
Methylglyoxsal is the major intracellular AGE precursor  [32,33] .  

  Intracellular  e ffects of  AGE  s  
 Intracellular production of AGE precursors can damage cells by 
three general mechanisms. First, intracellular proteins modifi ed 
by AGEs have altered function. Secondly, extracellular matrix 
components modifi ed by AGE precursors interact abnormally 
with other matrix components and with matrix receptors 
(integrins) which are expressed on the surface of cells. Finally, 
plasma proteins modifi ed by AGE precursors bind to AGE recep-
tors on cells such as macrophages; binding induces the produc-
tion of ROS, which in turn activates the pleiotropic transcription 
factor, nuclear factor  κ B (NF κ B), causing multiple pathologic 
changes in gene expression  [34] . 

 It has been recently demonstrated that AGE modifi cation of 
intracellular protein can be involved in diabetic retinopathy. In 
diabetes, retinal capillary formation is regulated by complex 
context - dependent interactions among pro -  and anti - angiogenic 
factors  [35,36] , including angiopoietin - 2 (Ang - 2). When vascular 
endothelial growth factor (VEGF) levels are insuffi cient, Ang - 2 
causes endothelial cell death and vessel regression. Diabetes 
induces a signifi cant increase in retinal expression of Ang - 2 in rat 
 [37] , and diabetic Ang - 2 +/ −  mice have both decreased pericyte 
loss and reduced acellular capillary formation  [38] . 

 Moreover, in mouse kidney endothelial cells, high glucose 
causes increased methylglyoxal modifi cation of the corepressor 
mSin3A. Methylglyoxal modifi cation of mSin3A results in 
increased recruitment of O - GlcNAc - transferase, with consequent 
increased modifi cation of Sp3 by  O  - linked  N  - acetylglucosamine. 
This modifi cation of Sp3 causes decreased binding to a glucose -
 responsive GC - box in the Ang - 2 promoter, resulting in increased 
Ang - 2 expression. Increased Ang - 2 expression induced by high 
glucose in renal endothelial cells increased expression of intracel-
lular adhesion molecule 1 (ICAM - 1) and vascular cell adhesion 
molecule 1 (VCAM - 1) in cells and in kidneys from diabetic 
mice and sensitized microvascular endothelial cells to the pro - 
infl ammatory effects of tumor necrosis factor  α  (TNF -  α )  [39] .  

  Effects of  AGE  s  on  e xtracellular  m atrix 
 AGE formation alters the functional properties of several impor-
tant matrix molecules. Collagen was the fi rst matrix protein in 
which glucose - derived AGEs were shown to form covalent inter-
molecular bonds. This process is partly mediated by H 2 O 2  pro-
duction  [40,41] . With type I collagen, this cross - linking causes 
expansion of molecular packing  [42] , while AGE formation on 
type IV collagen from basement membrane inhibits the normal 
lateral association of these molecules into a network - like struc-
ture by interfering with binding of the non - collagenous NC1 
domain to the helix - rich domain  [43] . AGE formation on laminin 

extracellular structures of diabetic retinal vessels  [23 – 25]  and 
renal glomeruli  [26 – 28] , where they can cause damage through 
the mechanisms described below.   

 These AGEs were originally thought to arise from non - enzy-
matic reactions between extracellular proteins and glucose; 
however, the rate of AGE formation from glucose is orders of 
magnitude slower than that induced by glucose - derived dicarbo-
nyl precursors generated intracellularly, and it now seems likely 
that raised intracellular glucose is the primary initiating event in 
the formation of both intracellular and extracellular AGEs  [29] . 
AGEs can arise intracellularly from the autooxidation of glucose 
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     Figure 35.3     Increased production of intracellular advanced glycation 
end - products (AGE) precursors damages cells by three mechanisms: modifi cation 
of intracellular proteins; modifi cation of the extracellular matrix (upper panel); 
and interactions with AGE receptors such as RAGE in endothelial cells and 
macrophages. NF κ B, nuclear factor  κ B; ROS, reactive oxygen species.  
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have been shown to mediate signal transduction via generation 
of ROS, activation of NF κ B, and p21  ras   [73 – 75] . AGE signaling 
can be blocked in cells by expression of RAGE antisense cDNA 
 [76]  or anti - RAGE ribozyme  [77] . It has been also recently dem-
onstrated that a RAGE – NF κ B axis operates in diabetic neuropa-
thy by mediating functional sensory defi cits  [78] . 

 In endothelial cells, AGE binding to its receptor alters the 
expression of several genes, including thrombomodulin, tissue 
factor and VCAM - 1  [79 – 81] . These effects induce procoagulatory 
changes on the endothelial cell surface and increase the adhesion 
of infl ammatory cells to the endothelium. In addition, endothe-
lial AGE receptor binding appears to mediate in part the increased 
vascular permeability induced by diabetes, probably through the 
induction of VEGF  [82 – 85] . RAGE defi ciency attenuates the 
development of atherosclerosis in the diabetic apoE( − / − ) model 
of accelerated atherosclerosis. Diabetic RAGE( − / − )/apoE( − / − ) 
mice had signifi cantly reduced atherosclerotic plaque area. These 
benefi cial effects on the vasculature were associated with attenu-
ation of leukocyte recruitment, decreased expression of pro -
 infl ammatory mediators, including the NF κ B subunit p65, 
VCAM - 1, and monocyte chemotactic protein 1 (MCP - 1) and 
reduced oxidative stress  [86] . 

 It is important to note that more recent studies indicate that 
AGEs at the concentrations found in diabetic sera are not the 
major ligand for RAGE. Rather, several pro - infl ammatory protein 
ligands have been identifi ed, which activate RAGE at low concen-
trations. These include several members of the S100 calgranulin 
family and high mobility group box 1 (HMGB1), all of which are 
increased by diabetic hyperglycemia. Binding of these ligands 
with RAGE causes cooperative interaction with the innate 
immune system signaling molecule toll - like receptor 4 (TLR - 4) 
 [87,88] .  

  Increased  p rotein  k inase C  a ctivation 
 The group of PKCs consist of at least 11 isoforms that are widely 
distributed in mammalian tissues. The activity of the classic iso-
forms is dependent on both Ca 2+  ions and phosphatidylserine and 
is greatly enhanced by diacylglycerol (DAG). Persistent and 
excessive activation of several PKC isoforms might also operate 
as a third common pathway mediating tissue injury induced by 
hyperglycemia and associated biochemical and metabolic abnor-
malities. This results primarily from enhanced  de novo  synthesis 
of DAG from glucose via triose phosphates, whose availability is 
increased because raised intracellular glucose levels enhance 
glucose fl ux through the glycolytic pathway  [89 – 92] . Finally, 
recent evidence suggests that the enhanced activity of PKC iso-
forms could also result from the interaction between AGEs and 
their cell - surface receptors  [93] . Hyperglycemia primarily acti-
vates the  β  and  δ  isoforms of PKC, both in cultured vascular cells 
 [94 – 96]  and in the retina and glomeruli of diabetic animals 
 [91,92,93] , but increases in other isoforms have also been found, 
such as PKC -  α  and PKC -  ε  isoforms in the retina  [89]  and PKC -  α  
and PKC -  δ  in the glomerulus of diabetic rats  [97,98]  (Figure 
 35.4 ).   

prevents the molecules from self - assembling into a polymer and 
also decreases binding with type IV collagen and heparan sulfate 
proteoglycan  [44] . 

 These AGE - induced cross - links alter tissue function, notably 
in blood vessels. AGEs decrease elasticity in arteries from diabetic 
rats, even after vascular tone is abolished, and increase fl uid fi ltra-
tion across the carotid artery  [45] .  In vitro , AGE formation on 
intact glomerular basement membrane increases its permeability 
to albumin in a manner that resembles the abnormal permeabil-
ity of diabetic nephropathy  [46,47] . 

 AGE formation on extracellular matrix also interferes with the 
ways in which cells interact with the matrix. For example, meth-
ylglyoxal modifi cation of type IV collagen ’ s cell - binding domains 
decreases endothelial cell adhesion and inhibits angiogenesis 
 [48] . 

 AGE formation on a 6 - amino acid, growth - promoting 
sequence in the A chain of the laminin molecule markedly reduces 
neurite outgrowth  [49] , while AGE modifi cation of vitronectin 
reduces its ability to promote cell attachment  [50] . In addition, 
matrix glycation impairs agonist - induced Ca 2+  increases which 
might adversely affect the regulatory functions of endothelium 
 [51] .  

  Receptor -  m ediated  b iologic  e ffects of  AGE  s  
 AGE - modifi ed proteins in the circulation can affect a range of 
cells and tissues. Specifi c receptors for AGEs were fi rst identifi ed 
on monocytes and macrophages. Two AGE - binding proteins iso-
lated from rat liver, identifi ed as OTS - 48 (60   kDa) and 80K - H 
(90   kDa)  [52] , are both present on monocytes and macrophages; 
antisera against either protein block AGE binding  [53] . AGE 
protein binding to this receptor stimulates macrophages to 
produce cytokines, including interleukin - 1, TNF -  α , transform-
ing growth factor  β  (TGF -  β ), macrophage colony - stimulating 
factor and granulocyte – macrophage colony - stimulating factor, as 
well as insulin - like growth factor I (IGF - I). These factors appear 
to be produced at concentrations that can increase glomerular 
synthesis of type IV collagen and induce chemotaxis and prolif-
eration of both arterial smooth muscle cells and macrophages 
 [54 – 62] . The macrophage scavenger receptor type II (class A), 
galectin - 3 and CD36 (a member of the class B macrophage 
scavenger receptor family) have also been shown to recognize 
AGEs  [63 – 67] . 

 AGE receptors have also been identifi ed on glomerular 
mesangial cells.  In vitro , AGE protein binding to its receptor on 
mesangial cells stimulates secretion of platelet - derived growth 
factor which in turn mediates mesangial cells to produce type IV 
collagen, laminin and heparan sulfate proteoglycan  [68,69] . 

 Vascular endothelial cells and other cell types also express 
specifi c AGE receptors (RAGEs), notably 35 - kDa and 46 - kDa 
AGE - binding proteins that have been purifi ed to homogeneity 
 [70 – 72] . The N - terminal sequence of the 35 - kDa protein is iden-
tical to lactoferrin, whereas the 46 - kDa AGE - binding protein is a 
novel member of the immunoglobulin superfamily, containing 
three disulfi de - bonded immunoglobulin homology units. RAGE 
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 In addition to mediating hyperglycemia - induced abnormali-
ties of blood fl ow and permeability, activation of PKC may con-
tribute to the accumulation of microvascular matrix protein by 
inducing expression of TGF -  β 1, fi bronectin and type IV collagen 
in both cultured mesangial cells  [106,107]  and in glomeruli of 
diabetic rats  [97] . This effect also appears to be mediated through 
the inhibition of NO production by PKC  [108] . Hyperglycemia -
 induced activation of PKC has also been implicated in the over-
expression of the fi brinolytic inhibitor, plasminogen activator 
inhibitor 1 (PAI - 1)  [109] , and in the activation of NF κ B in cul-
tured endothelial cells and vascular smooth muscle cells  [110,111] .  

  Increased  h exosamine  p athway  fl  ux 
 Several data suggest that hyperglycemia could cause diabetic 
complications by shunting glucose into the hexosamine pathway 
 [112 – 115] . Here, fructose - 6 - phosphate is diverted from glycoly-
sis to provide substrates for reactions that utilize UDP -  N  -

 In early experimental diabetes, activation of PKC -  β  isoforms 
has been shown to mediate the diabetes - related decreases in 
retinal and renal blood fl ow  [99] , perhaps by depressing the pro-
duction of the vasodilator NO and/or increasing endothelin - 1, a 
potent vasoconstrictor. Overactivity of PKC has been implicated 
in the decreased NO production by the glomerulus in experimen-
tal diabetes  [100]  and by smooth muscle cells in the presence of 
high glucose levels  [101] , and has been shown to inhibit insulin -
 stimulated expression of endothelial NO synthase (eNOS) in cul-
tured endothelial cells  [102] . Hyperglycemia increases the ability 
of endothelin - 1 to stimulate mitogen activated protein kinase 
(MAPK) activity in glomerular mesangial cells, and this occurs 
by activating PKC isoforms  [103] . The increased endothelial cell 
permeability induced by high glucose in cultured cells is mediated 
by activation of PKC -  α   [104] ; activation of PKC by high glucose 
also induces expression of the permeability - enhancing factor 
VEGF in smooth muscle cells  [105] . 
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     Figure 35.4     Activation of protein kinase C (PKC) by  de novo  synthesis of diacylglycerol (DAG) and some of its pathologic consequences. eNOS, endothelial NO synthase; 
ET - 1, endothelin - 1; NADPH, nicotinic acid adenine dinucleotide phosphate; NF κ B, nuclear factor  κ B; PAI - 1, plasminogen activator inhibitor 1; ROS, reactive oxygen 
species; TGF -  β , transforming growth factor  β ; VEGF, vascular endothelial growth factor.  
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30% decrease in the level of serine/threonine phosphorylation of 
Sp1; thus,  O  - GlcNacylation and phosphorylation may compete 
to modify the same sites on Sp1 (Figure  35.5 )  [122] .   

 GlcNac modifi cation of Sp1 may regulate other glucose -
 responsive genes in addition to TGF -  β 1 and PAI - 1. Glucose -
 responsive transcription of the acetylcoenzyme A carboxylase 
gene (the rate - limiting enzyme for fatty acid synthesis) is regu-
lated by Sp1 sites, and post - transcriptional modifi cation of Sp1 
may similarly be responsible  [123,124] . Because so many RNA 
polymerase II transcription factors are  O  - GlcNacylated  [120] , 
others in addition to Sp1 may be regulated by reciprocal modifi -
cation (glycosylation vs phosphorylation) at key serine and 
threonine residues and so cause gene transcription to be 
glucose - responsive. In addition to transcription factors, many 
other nuclear and cytoplasmic proteins can be modifi ed by  O  -
 GlcNac moities perturbing their normal function and regulation. 
One example relevant to diabetes is the inhibition of eNOS activ-
ity by  O  - GlcNacylation at the Akt site of eNOS protein  [125 –
 127] . Hyperglycemia also increases GFAT activity in aortic 
smooth muscle cells which increases  O  - GlcNac modifi cation of 
several proteins in these cells  [128] . Overall, activation of the 
hexosamine pathway by hyperglycemia may result in many 
changes in both gene expression and in protein function that 

 acetylglucosamine, particularly the formation of  O  - linked 
 N  - acetylglucosamine. This pathway has been shown to have an 
important role in hyperglycemia - induced and fat - induced insulin 
resistance  [116 – 118] . The rate - limiting step in the conversion of 
glucose to glucosamine is regulated by glutamine   :   fructose - 6 -
 phosphate amidotransferase (GFAT), and inhibition of this 
enzyme blocks hyperglycemia - induced increases in the transcrip-
tion of both TGF -  α   [112]  and TGF -  β 1  [113] . 

 It is not entirely clear how increased glucose fl ux through the 
hexosamine pathway mediates hyperglycemia - induced increases 
in the gene transcription of key genes such as TGF -  α , TGF -  β 1 
and PAI - 1, however, it has been shown that the transcription 
factor Sp1 regulates hyperglycemia - induced activation of the 
PAI - 1 promoter in vascular smooth muscle cells  [119] , raising 
the possibility that covalent glycation of Sp1 by  N  -
 acetylglucosamine to form its  O  - GlcNacylated derivative could 
explain how hexosamine pathway activation might operate. 
Virtually every RNA polymerase II transcription factor examined 
is  O  - GlcNacylated  [120] , and this glycosylated form of Sp1 
appears to be more transcriptionally active than its non - 
glycosylated counterpart  [121] . A fourfold increase in Sp1 
 O  - GlcNacylation (caused by inhibition of the enzyme 
 O  - GlcNac -  β  -  N  - acetylglucosaminidase) resulted in a reciprocal 
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Glucosamine - 6 - phosphate is generated from 
fructose - 6 - phosphate and glutamine, by glutamine: 
fructose - 6 - phosphate amidotransferase (GFAT), the 
rate - limiting enzyme of this pathway. Glucosamine -
 6 - phosphate is converted to UDP -  N  -
 acetylglucosamine (UDP - GlcNac), which can 
glycosylate transcription factors and thus enhance 
transcription of genes including plasminogen 
activator inhibitor 1 (PAI - 1) and transforming 
growth factor  β 1 (TGF -  β 1). OGT, O - linked 
N - acetylglucosamine (GLcNac) transferase.  
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 Intracellular glucose oxidation begins with glycolysis in the 
cytoplasm, which generates NADH and pyruvate. Cytoplasmic 
NADH can donate reducing equivalents to the mitochondrial 
electron - transport chain via two shuttle systems, or it can reduce 
pyruvate to lactate, which leaves the cell to act as a substrate for 
hepatic gluconeogenesis. Pyruvate can also be transported into 
the mitochondria where it is oxidized by the tricarboxylic acid 
(TCA) cycle to produce CO 2 , H 2 O, four molecules of NADH and 
one molecule of reduced fl avine adenine dinucleotide (FADH 2 ). 
Mitochondrial NADH and FADH 2  provide energy for ATP pro-
duction via oxidative phosphorylation by the electron transport 
chain. Electron fl ow through the mitochondrial electron trans-
port chain is effected by four enzyme complexes, plus cytochrome 
 c  and the mobile carrier ubiquinone, all of which lie in the inner 
mitochondrial membrane  [137] . NADH derived from both 
cytosolic glucose oxidation and mitochondrial TCA cycle activity 
donates electrons to NADH   :   ubiquinone oxidoreductase 
(Complex I) which ultimately transfers its electrons to ubiqui-
none. Ubiquinone can also be reduced by electrons donated from 
several FADH 2  - containing dehydrogenases, including succi-
nate   :   ubiquinone oxidoreductase (Complex II) and glycerol - 3 -
 phosphate dehydrogenase. Electrons from reduced ubiquinone 
are then transferred to ubiquinol   :   cytochrome  c  oxidoreductase 
(Complex III) by the Q cycle which generates ubisemiquinone 
radicals  [138] . Electron transport then proceeds through cyto-
chrome  c , cytochrome  c  oxidase (Complex IV) and, fi nally, 
molecular oxygen. 

 Electron transfer through Complexes I, III and IV extrudes 
protons outwards into the intermembrane space, generating a 
proton gradient that drives ATP synthase (Complex V) as protons 

together contribute to the pathogenesis of diabetic complications. 
Recently, increased modifi cation of key signaling molecules by 
 O  - GlcNAc was shown to cause reduced insulin signal transduc-
tion  [129] . Pathway selective insulin resistance in vascular cells 
and resultant overactivation of the MAPK pathway by hyperin-
sulinemia could contribute further to diabetic microvascular 
damage  [130] .   

  A  s ingle  p rocess  u nderlying  d ifferent 
 h yperglycemia -  i nduced  p athogenic  m echanisms: 
 m itochondrial  s uperoxide  p roduction 

 Specifi c inhibitors of aldose - reductase activity, AGE formation, 
RAGE ligand binding, PKC activation and hexosamine pathway 
fl ux each ameliorate various diabetes - induced abnormalities in 
cell culture or animal models, but it has not been clear whether 
these processes are interconnected or might have a common 
cause  [99,131 – 134] . Moreover, all the above abnormalities are 
rapidly corrected when euglycemia is restored, which makes the 
phenomenon of hyperglycemic memory conceptually diffi cult to 
explain. 

 It has now been established that all of the different pathogenic 
mechanisms described above stem from a single hyperglycemia -
 induced process, overproduction of superoxide by the mitochon-
drial electron - transport chain  [135,136] . Superoxide is the initial 
oxygen free radical formed by the mitochondria which is then 
converted to other, more reactive species that can damage cells 
in numerous ways.  [137] . To understand how this occurs, mito-
chondrial glucose metabolism is briefl y reviewed (Figure  35.6 ).   
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electron transport system
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     Figure 35.6     Mitochondrial metabolism. Flow of 
electrons (e  −  ) through the electron transport chain in 
the inner mitochondrial membrane pumps H +  ions 
into the intermembrane space; superoxide is 
generated as a consequence of one electron leak. H +  
ions can pass back across the inner membrane along 
their concentration gradient, either via ATP synthase 
(to produce ATP) or via uncoupling proteins (UCP). 
When intracellular hyperglycemia increases electron 
fl ux by generating more NADH and FADH 2 , more 
superoxide is produced. Cyt c, cytochrome  c ; 
Q, ubiquinone.  
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activates the AGE pathway because the major intracellular AGE 
precursor methylglyoxal is formed non - enzymatically from glyc-
eraldehyde - 3 phosphate. Hyperglycemia - induced methylglyoxal 
formation has recently been shown to cause both increased 
expression of RAGE and its activating ligands S100 calgranulins 
and HMGB1 (M. Brownlee, unpublished). 

 Increased glyceraldehyde - 3 - phosphate also activates the classic 
PKC pathway, because the activator of PKC, DAG, is also formed 
from glyceraldehyde - 3 phosphate. Further upstream, levels of the 
glycolytic metabolite fructose - 6 phosphate increase, which 
increases fl ux through the hexosamine pathway, where fructose - 6 
phosphate is converted by the enzyme GFAT to UDP –  N  -
 acetylglucosamine (UDP - GlcNAc). Finally, inhibition of GAPDH 
increases intracellular levels of the fi rst glycolytic metabolite, 
glucose. This increases fl ux through the polyol pathway where the 
enzyme aldose reductase reduces it (or glyceraldehyde - 3 - 
phosphate), consuming NADPH in the process (Figure  35.7 ). 
Inhibition of GAPDH in 5   mmol/L activity using antisense DNA 
elevates the activity of each of the major pathways of hyperglyc-
emic damage to the same extent as that induced by hyperglycemia 
 [146] .    

  Hyperglycemia -  i nduced  m itochondrial  s uperoxide 
 p roduction  i nhibits  GAPDH  by  a ctivating 
 p oly( ADP  -  r ibose)  p olymerase 
 Hyperglycemia - induced superoxide inhibits GAPDH activity 
 in vivo  by modifying the enzyme with polymers of ADP - 
ribose  [146] . By inhibiting mitochondrial superoxide production 
with either UCP - 1 or MnSOD, both modifi cation of GAPDH 
by ADP - ribose and reduction of its activity by hyperglycemia 
are prevented. Most importantly, both modifi cation of GAPDH 
by ADP - ribose and reduction of its activity by hyperglycemia 
are also prevented by a specifi c inhibitor of poly(ADP - 
ribose) polymerase (PARP), the enzyme that makes these 
polymers of ADP ribose. Normally, PARP resides in the nucleus 
in an inactive form, waiting for DNA damage to activate it. 
When increased intracellular glucose generates increased ROS 
in the mitochondria, free radicals induce DNA strand breaks, 
thereby activating PARP. Both hyperglycemia - induced processes 
are prevented by either UCP - 1 or MnSOD  [146] . Once activated, 
PARP splits the NAD +  molecule into its two component 
parts: nicotinic acid and ADP ribose. PARP then proceeds to 
make polymers of ADP ribose, which accumulate on GAPDH 
and other nuclear proteins. GAPDH is commonly thought to 
reside exclusively in the cytosol. In fact, it normally shuttles 
in and out of the nucleus, where it has a critical role in DNA 
repair (a summary of the integrated mechanism is shown in 
Figure  35.8 )  [147,148] .     

  Glycemic  m emory 

 In 1993, the results of the landmark DCCT study showed that, 
in people with short - duration T1DM, intensive glycemic 

pass back through the inner membrane into the matrix. That is 
what happens in normal cells. In contrast, in diabetic cells with 
high glucose inside, there is more glucose being oxidized in the 
TCA cycle which in effect pushes more electron donors (NADH 
and FADH 2 ) into the electron transport chain. As a result of this, 
the voltage gradient across the mitochondrial membrane increases 
until a critical threshold is reached. At this point, electron transfer 
inside Complex III is blocked  [139] , causing the electrons to back 
up to co - enzyme Q which donates the electrons one at a time to 
molecular oxygen and thereby generating superoxide. The mito-
chondrial isoform of the enzyme superoxide dismutase degrades 
this oxygen free radical to hydrogen peroxide which is then con-
verted to H 2 O and O 2  by other enzymes. Intracellular hyperglyc-
emia did, indeed, increase the voltage across the mitochondrial 
membrane above the critical threshold necessary to increase 
superoxide formation  [140]  and, subsequently, increase in pro-
duction of ROS. 

 It has been also recently demonstrated that dynamic changes 
in mitochondrial morphology are associated with high glucose -
 induced overproduction of ROS and inhibition of mitochondrial 
fi ssion prevented periodic fl uctuation of ROS production during 
high glucose exposure  [141] . Hyperglycemia does not increase 
ROS and does not activate any of the pathways when either the 
voltage gradient across the mitochondrial membrane is collapsed 
by uncoupling protein 1 (UCP - 1), or when the superoxide pro-
duced is degraded by manganese superoxide dismutase (MnSOD) 
 [142] . Overexpression of either MnSOD and UCP - 1 also prevents 
inhibition of eNOS activity by hyperglycemia  [125] . Importantly, 
inhibition of hyperglycemia - induced superoxide overproduction 
using a transgenic approach (superoxide dismutase [SOD]) also 
prevents long - term experimental diabetic nephropathy and retin-
opathy [143  ]. In humans, skin fi broblast gene expression profi les 
from two groups of patients with T1DM  –  20 with very fast (fast 
track) versus 20 with very slow (slow track) rate of development 
of diabetic nephropathy lesions  –  showed that the fast - track 
group has increased expression of oxidative phosporylation 
genes, electron transport system Complex II and TCA cycle genes 
compared to that of the slow track group. This association is 
consistent with a central role for mitochondrial ROS production 
in the pathogenesis of diabetic complications  [144] . 

  Hyperglycemia -  i nduced  m itochondrial  s uperoxide 
 p roduction  a ctivates the  fi  ve  d amaging  p athways 
by  i nhibiting  GAPDH  
 Diabetes in animals and humans and hyperglycemia in cells 
decrease the activity of the key glycolytic enzyme glyceralde-
hyde - 3 phosphate dehydrogenase (GAPDH) in cell types that 
develop intracellular hyperglycemia. Inhibition of GAPDH activ-
ity by hyperglycemia does not occur when mitochondrial over-
production of superoxide is prevented by either UCP - 1 or 
MnSOD  [145] . When GAPDH activity is inhibited, the level of 
all the glycolytic intermediates that are upstream of GAPDH 
increase. An increased level of the upstream glycolytic metabolite 
glyceraldehyde - 3 - phosphate activates two major pathways. It 
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     Figure 35.8     The unifying mechanism of 
hyperglycemia - induced cellular damage.  

control dramatically reduced the occurrence and severity of dia-
betic microvascular complications. After the announcement of 
the DCCT results, many patients who had been in the standard 
therapy group adopted more intensive therapeutic regimens, and 
their level of glycemic control improved, as measured by HbA 1c . 

At the same time, the mean level of HbA 1c  worsened for patients 
who had been in the intensive therapy group. The post - DCCT 
HbA 1c  values for both groups became statistically identical 
during the approximate 14 years of follow - up in the ongoing 
EDIC Study. 
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among overweight patients  [149 – 151] . Glycemic memory has 
several important clinical implications: 
  1     Early tight control is very important;  
  2     Cure of diabetes may not prevent subsequent development of 
complications; and  
  3     Novel therapies that reverse hyperglycemic memory may be 
needed.      

 Hyperglycemia - induced mitochondrial superoxide production 
may provide an explanation for the continuing progression of 
tissue damage after the correction of hyperglycemia ( “ hypergly-
cemic memory ” ). Post - translational modifi cations of histones 
cause chromatin remodeling and changes in levels of gene expres-
sion  [152 – 154] . Because these modifi cations do not involve dif-
ferences in DNA sequence, they are called  “ epigenetic ”  (Figure 
 35.10 a). Transient hyperglycemia was recently shown to induce 
long - lasting activating epigenetic changes in the promoter of the 
NF κ B - subunit p65 in human aortic endothelial cells (16 hours 
exposure) and in aortic cells  in vivo  in non - diabetic mice (6 hours 
exposure) which cause sustained increases in p65 gene expression 
(Figure  35.10 b) and in the expression of p65 - dependent pro -
 infl ammatory genes. Both the epigenetic changes and the gene 
expression changes persist for at least 6 days of subsequent 
normal glycemia. Hyperglycemia - induced epigenetic changes 
and increased p65 expression are prevented by normalizing mito-
chondrial superoxide production or superoxide - induced methyl-
glyoxal (Figure  35.10 b,c)  [155] . These results highlight the 
dramatic and long - lasting effects that short - term hyperglycemic 
spikes can have on vascular cells and suggest that transient spikes 
of hyperglycemia may be an HbA 1c  - independent risk factor for 
diabetic complications.   

 Demethylation of another histone lysine residue, H3K9, is also 
induced by hyperglycemia - induced overproduction of ROS. This 
reduces inhibition of p65 gene expression, and thus acts syner-
gistically with the activating methylation of histone 3 lysine 4 
 [156] . Consistent with these observations, others have shown 
similar epigenetic changes in lymphocytes from patients with 
T1DM  [157]  and in vascular smooth muscle cells derived from 
 db/db  mice  [158,159] .  

  Determinants of  i ndividual  s usceptibility to 
 h yperglycemia -  i nduced  d amage 

 As with all complex diseases, the occurrence and progression of 
diabetic complications vary markedly among patients. Some 
patients have T1DM for over 50 years with minimal complica-
tions, while others manifest severe disease or death within 15 
years after diagnosis. The control of blood glucose, as well as 
blood pressure and blood lipid profi les, are important factors in 
predicting the risk of complications, but they only partially 
explain the risk of complications for an individual patient. 
Therefore, genetic factors have been investigated for their infl u-
ence on the risk of developing complications. An understanding 
of the genes involved in the susceptibility to or protection from 

 Surprisingly and provocatively, however, the effects of a 6.5 -
 year difference in HbA 1c  during the DCCT on the incidence of 
retinopathy and nephropathy have persisted and have even 
become greater over the subsequent 14 years of follow - up. People 
in the standard therapy group continue to have a higher incidence 
of complications, even with an improvement in glycemic control 
during the 14 years of EDIC, while people in the intensive therapy 
group continue to have a lower incidence of complications, even 
with a deterioration in glycemic control during the EDIC years. 
This phenomenon has been given the name  “ glycemic memory ”  
(Figure  35.9 ). More recent data indicate that glycemic memory 
also occurs in patients with T2DM. Indeed, the tight glucose 
control group from the UKPDS demonstrated a continued reduc-
tion in microvascular risk and emergent risk reductions for myo-
cardial infarction and death from any cause, despite an early loss 
of glycemic differences (also termed  “ the legacy effect ” ). A con-
tinued benefi t was evident during the 10 - year post - trial follow - up 
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     Figure 35.9      “ Hyperglycemic memory ” : previous higher blood glucose levels 
make people with diabetes more susceptible to damage from subsequent lower 
blood glucose exposure. After the end of the Diabetes Control and Complications 
Trial (DCCT) study, the group that had been poorly controlled on conventional 
insulin therapy continued to have a higher incidence of diabetic retinopathy than 
the tightly controlled group given intensive therapy, even though post - trial 
HbA 1c  levels were comparable in the two groups. EDIC, Epidemiology of 
Diabetes Interventions and Complications Study.  
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 In two studies of families that have two or more siblings with 
T1DM, if one sibling had advanced diabetic nephropathy, the 
other sibling with diabetes had a nephropathy risk of 83% and 
72%, respectively. By contrast, the risk was only 17% or 22% if 
the index patient did not have diabetic nephropathy  [160,161]  or 

diabetic complications can lead to both a better understanding of 
the pathophysiologic mechanisms, as well as new biomarkers and 
molecular targets for drug development. Familial clustering 
studies strongly support a role for genetic determinants of sus-
ceptibility to hyperglycemic damage. 
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     Figure 35.10     Transient hyperglycemia causes 
persistent epigenetic changes and altered gene 
expression during subsequent normoglycemia. 
(a) Schematic representation of several histone 
modifi cations (acK: acetylated lysine; meK, 
methylated lysine; meR: metylated arginine). (b and 
c) Transient hyperglycemia induces persistent 
increased expression of the NF κ B - p65 subunit, 
caused by persistent epigenetic changes, including 
histone 3 lysine 4 monomethylationn (H3K4me1) in 
the proximal promoter of the NF κ B - subunit p65. 
HG, high glucose; LG, low glucose.  Data from 
El - Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, 
Roeder RG,  et al . Transient high glucose causes 
persistent epigenetic changes and altered gene 
expression during subsequent normoglycemia.  J Exp 
Med  2008;  205 :2409 – 2417.   
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expression, and normalized tissue survival. In hypoxic fi broblasts 
cultured in high glucose, overexpression of GLO1 prevented 
reduced expression of both the EPC mobilizing chemokine 
stromal cell - derived factor 1 (SDF - 1) and of VEGF which modu-
lates growth and differentiation of recruited EPCs. In hypoxic 
EPCs cultured in high glucose, overexpression of GLO1 pre-
vented reduced expression of both the SDF - 1 receptor CXCR4, 
and endothelial nitric - oxide synthase, an enzyme essential for 
EPC mobilization. HIF - 1 α  modifi cation by methylglyoxal 
reduced heterodimer formation, and HIF - 1 α  binding to all rel-
evant promoters  [171] . These results provide a basis for the 
rational design of new therapeutics to normalize impaired 
ischemia - induced vasculogenesis in patients with diabetes such 
as occurs in non - healing foot ulcers.  

  Hemodynamic  f actors 

 Hypertension is one of the most signifi cant secondary risk factors 
for the development of microvascular vascular diabetic complica-
tions. In both retina and glomerulus, reduction of vascular 
surface area appears to occur fi rst in microvessels with high per-
fusion pressure, and in patients with unilateral ophthalmic or 
renal artery stenosis there is a pronounced decrease in the severity 
of retinopathy or nephropathy on the affected side. 

 Tight control of blood pressure delays the progression of retin-
opathy and nephropathy, while elevated blood pressure acceler-
ates the onset of nephropathy and its progression  [172 – 174] . In 
the kidney, glomerular hypertension occurs with diabetes as a 
result of altered afferent and efferent arteriolar tone, increasing 
renal damage. This is one of the major targets of blockers of the 
angiotensin system (ARBs). How might hypertension connect to 
intracellular ROS generation, and activation of the fi ve mecha-
nisms of hyperglycemic damage? In hypertensive rats with 
glomerular hypertension, there is an 80% increase in glomerular 
GLUT - 1 expression, associated with glomerulosclerosis and pro-
teinuria. When mesangial cells, an important target for mechani-
cally induced glomerular injury, were subjected to mechanical 
stretch, GLUT - 1 protein expression was also upregulated, causing 
an increase in basal glucose transport. It has also been demon-
strated that overexpression of GLUT - 1 in mesangial cells grown 
in normal glucose concentration induces a diabetic cellular phe-
notype, with diabetic changes in gene expression  [175,176] . 
Together, these data suggest that hypertension contributes to 
diabetic microvascular complications by further increasing intra-
cellular hyperglycemia.  

  Potential  m echanism -  b ased  t herapeutic  a gents 
for  d iabetic  c omplications 

  Transketolase  a ctivators 
 The fi rst new class of potential therapeutic agents is transketolase 
activators. This concept originated from a feature of the unifying 

retinopathy. Numerous associations have been made between 
various genetic polymorphisms and the risk of various diabetic 
complications. Those include the HLA - DQB10201/0302 alleles 
 [162] , polymorphisms of the aldose reductase gene  [163] , of the 
sorbitol dehydrogenase gene  [164]  and of the promoter of eryth-
ropoietin gene  [165] . Study in European descent families of 
patients with T1DM showed a positive linkage and association 
with diabetic nephropathy of simple tandem repeat polymor-
phisms and single nucleotide polymorphisms in 20 genes. Five 
genes code for transcription factors and signaling molecules 
( HNF1B1/TCF2 ,  NRP1 ,  PRKCB1 ,  SMAD3  and  USF1 ). Three 
genes code for components of the extracellular matrix ( COL4A1 , 
 LAMA4  and  LAMC1 ), and two are involved in its degradation 
( MMP9  and  TIMP3 ). Three genes code for growth factors or 
growth factors receptors ( IGF - IR ,  TGFBR - 2  and  TGFBR - 3 ). The 
others are genes likely to be important in kidney function ( AGRT1 , 
 AQP1 ,  BCL2 ,  CAT ,  GPX1 ,  LPL  and  p22phox )  [166] . 

 The DCCT/EDIC trial also reported familial clustering and 
association with gene polymorphisms. The odds ratio for risk of 
severe retinopathy in diabetic relatives of positive versus negative 
subjects from the conventional treatment group is 5.4; coronary 
artery calcifi cation also showed familial clustering  [167] . In the 
same cohort, an association of multiple superoxide dismutase 1 
variants is associated with the development and progression of 
diabetic nephropathy  [168] . 

 In the future, the challenge will be to identify specifi c genes 
involved in the varying clinical severity of diabetic complications. 
Recent emphasis in human disease genetics has been on so - called 
modifying genes, i.e. genetic variants that are distinct from disease 
susceptibility genes and that modify the phenotypic and clinical 
expression of the disease genes. Studies show that genetic modi-
fi ers can be  “ tipping point ”  genes. This means that one gene 
changes the whole phenotype in an all - or - nothing fashion, in 
contrast with the incremental effects seen with changes in a large 
number of non - modifi er genes. Many examples of modifi er genes 
are known in model organisms, and several have been identifi ed 
in humans  [169,170] .  

  Impaired  n eovascular  r esponse to  i schemia 

 Tissue ischemia promotes vasculogenesis through chemokine -
 induced recruitment of bone marrow - derived endothelial pro-
genitor cells (EPCs). Diabetes signifi cantly impairs this process in 
tissues whose cells develop intracellular hyperglycemia. Many of 
the defects responsible for impaired vasculogenesis involve 
hypoxia - inducible factor 1 (HIF - 1) regulated genes. Recently, 
HIF - 1 function was shown to be impaired in diabetes because of 
ROS - induced modifi cation of HIF - 1 α  and its coactivator p300 by 
the glyoxalase 1 (GLO1) substrate methylglyoxal (Brownlee, 
unpublished data)  [171] . Decreasing superoxide in diabetic mice 
by either transgenic expression of MnSOD or by administration 
of a small molecular weight SOD mimetic corrected post - ischemic 
defects in neovascularization, oxygen delivery and chemokine 
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production of superoxide is a continuous process. What is 
needed then is a new type of antioxidant, a catalytic antioxidant, 
such as an SOD/catalase mimetic  [186] , that works continuously. 
Hyperglycemia - induced reactive oxygen overproduction directly 
reduces eNOS activity in diabetic aortas by 65%; however, when 
these diabetic animals are treated with an SOD/catalase mimetic, 
there is no reduction in activity of this anti - atherogenic enzyme. 
Similarly, but more dramatically, hyperglycemia - induced reac-
tive oxygen overproduction directly reduces prostacyclin syn-
thase activity in diabetic aortas by 95%. Treatment of these 
diabetic animals with an SOD/catalase mimetic completely pre-
vents diabetes - induced oxidative inactivation of aortic prostacy-
clin synthase, and also normalizes all fi ve of the pathways 
implicated in hyperglycemic damage. Inhibition of hypergly-
cemia - induced ROS production in diabetic mice using either 
transgenic antioxidant enzyme expression or combinations of 
antioxidant compounds prevents the development of experimen-
tal diabetic retinopathy, nephropathy, neuropathy and cardiomy-
opathy  [143,187 – 192] . Together, these data strongly suggest that 
therapeutic correction of diabetes - induced superoxide over-
production may be a powerful approach for preventing diabetic 
microvascular complications.   
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