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  11  Insulin Resistance in Type 2 Diabetes  
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  Department of Medicine, Division of Diabetes, University of Helsinki, Helsinki, Finland       

 Keypoints 
        •      Insulin resistance both precedes and predicts type 2 diabetes mellitus 

(T2DM). The insulin resistance preceding T2DM is commonly referred 
to as the metabolic syndrome. Development of T2DM (i.e. overt 
hyperglycemia), however, also requires the presence of a relative defect 
in insulin secretion (see Chapter  10   ).  

   •      Although obesity and physical inactivity have precipitated the epidemic 
of T2DM, these factors are poorer predictors of cardiovascular disease 
than a combination of risk factors that defi ne the metabolic syndrome. 
Diagnosis of the metabolic syndrome requires measurement of waist 
circumference, glucose, triglycerides and high density lipoprotein 
cholesterol and blood pressure. These features are not observed in all 
obese people and can occur even in normal weight individuals. Subjects 
who develop the metabolic syndrome commonly have excess fat 
deposited in ectopic locations, especially in the liver. Non - alcoholic fatty 
liver disease (NAFLD) is defi ned as excess fat in the liver in the absence 
of excess alcohol abuse or other known causes of liver disease. The 
amount of fat in the liver is closely correlated with all features of the 
metabolic syndrome independent of obesity. Thus, NAFLD frequently 
coexists in subjects with the metabolic syndrome and may indeed be 
regarded as another defi ning feature of the metabolic syndrome. As the 
metabolic syndrome, NAFLD also predicts both T2DM and 
cardiovascular disease independent of obesity.  

   •      In the liver, insulin resistance of glucose metabolism in patients with 
T2DM is characterized by an impaired ability of insulin to inhibit 
hepatic glucose production leading to mild hyperglycemia and 
stimulation of insulin secretion. Hepatic insulin resistance is also 
manifested by failure of insulin suppression of very low density 
lipoprotein production, which leads to hypertriglyceridemia. High 
density lipoprotein levels decrease because of increased exchange of 

cholesterol esters for triglyceride, mediated by cholesterol ester transfer 
protein. Small, dense, low density lipoprotein particles also predomi-
nate in insulin - resistant states, and are highly atherogenic. Hepatic 
insulin resistance is directly proportional to the amount of fat in the 
liver, although the molecular mechanisms underlying this association in 
humans are unclear. Liver fat is increased in obesity but the relation-
ship is weak, implying that many other factors regulate liver fat. These 
include genetic and dietary factors.  

   •      Insulin resistance in adipose tissue is characterized by infl ammation, 
decreased production of the insulin - sensitizing hormone adiponectin 
and by an impaired ability of insulin to suppress lipolysis. Raised 
non - esterifi ed fatty acid (NEFA) levels are the most important source of 
intrahepatocellular triglyceride both under fasting and post - prandial 
conditions. Adiponectin defi ciency may also contribute to fat 
accumulation in the liver.  

   •      Insulin stimulation of glucose uptake in skeletal muscle is decreased in 
patients with T2DM compared with subjects without diabetes if 
measured under similar conditions of hyperinsulinemia and glycemia. At 
the molecular level, insulin resistance in muscle is associated with by 
defects at multiple post - receptor sites, including impairment of insulin 
receptor substrate 1 tyrosine phosphorylation, phosphoinositide 3 ′  (PI 3 ) 
kinase activation and the glucose transporter 4 translocation, which 
mediates insulin - stimulated glucose uptake; glycogen synthesis is also 
decreased. Raised NEFA levels also interfere with glucose utilization 
and uptake by muscle.  

   •      Chronic hyperglycemia per se reduces insulin sensitivity (glucose 
toxicity) and could at least partly explain why insulin resistance is more 
severe in patients with established T2DM than in equally obese subjects 
without diabetes.     

   Insulin  r esistance  –   d efi nitions and  r ole in the 
 n atural  h istory of  t ype 2  d iabetes 

 Insulin resistance can be defi ned as the inability of insulin to 
produce its usual biologic actions at circulating concentrations 

that are effective in normal subjects. Insulin resistance in the 
context of glucose metabolism leads to impaired suppression of 
endogenous glucose production    −    under basal conditions as well 
as after eating (when the physiologic rise in insulin in response 
to glucose entry from the gut normally shuts down glucose pro-
duction by the liver)    −    and to reduced peripheral uptake of 
glucose. Resistance to the ability of insulin to suppress very low 
density lipoprotein (VLDL) cholesterol production increases cir-
culating serum triglycerides, while resistance in adipose tissue 
increases the fl ux of non - esterifi ed fatty acid (NEFA) both to the 
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  Table 11.1    Causes of variation in insulin action in patients with type 2 
diabetes. Genetic forms of insulin resistance are discussed in Chapters  12  
and  15 . 

   Factor     Change in insulin 
sensitivity  

   Reference  

   Physiologic variations   
  Physical training, increased muscle 

mass  *    
   ↑      [110]   

  Increased fat mass, fat distribution     ↓      [97]   
  Puberty     ↓      [154]   
  Pregnancy     ↓      [155]   
  Gender    Female    >    male     [156]   
  Menstrual cycle    No effect      

   Diet - induced changes   
  Overfeeding     ↓      [157]   
  Starvation     ↓      [158]   
  Alcohol     ↓      [159]   
  Saturated vs monounsaturated fat     ↓      [160]   

   Metabolite and electrolyte disturbances   
  High free fatty acid concentrations     ↓      [83]   
  Chronic hyperglycemia     ↓      [111]   
  Hypoglycemia     ↓      [161]   
  Acidosis     ↓      [162]   
  Hyperosmolality     ↓      [163]   
  Hypophosphatemia     ↓      [164]   

   Other causes           

  Excessive secretion of counter -
 regulatory hormones  

   ↓      [165 – 168]   

   •    Conditions associated with 
physical or mental stress  

   ↑         

   •    Acromegaly, Cushing disease, 
pheochromocytoma, growth 
hormone defi ciency  

   ↓       

  Hypothyroidism and hyperthyroidism     ↓      [169,170]   
  Non - alcoholic fatty liver     ↓      [3]   
  Uremia     ↓      [171]   
  Many infections     ↓      [172]   

    *    Aerobic training increases glucose uptake per unit muscle mass; resistive 
training does not increase glucose uptake per unit muscle but increases 
muscle bulk.   
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     Figure 11.1     Natural history of type 2 diabetes (T2DM). Upper panel: the 
relationship between mean glucose and mean insulin concentrations during an 
oral glucose tolerance test (OGTT), in individuals with normal (NGT), impaired 
glucose tolerance (IGT) and diabetes (T2DM). There is a linear positive 
correlation between glucose and insulin concentrations during an OGTT in 
individuals with NGT and IGT. By contrast, T2DM is characterized by worsening 
relative insulin defi ciency (i.e. insulin concentrations decline with rising glucose 
concentrations). Bottom panel: the relationship between glucose concentrations 
during the OGTT and insulin sensitivity (determined by the euglycemic clamp 
technique). Insulin sensitivity decreases linearly as glucose tolerance worsens 
and, in patients with T2DM, insulin sensitivity worsens as glucose concentrations 
increase. This could be caused by effects of chronic hyperglycemia per se on 
glucose uptake, or of relative insulin defi ciency coupled with increases in 
NEFA concentrations. These data are from cross - sectional studies  [173]  but 
longitudinal studies  [1]  yield similar fi ndings.  

liver and skeletal muscle and impairs the action of insulin on 
glucose metabolism in these tissues (see Chapters  7  and  13 ). 
Resistance to other actions of insulin, such as its vasodilatator and 
antiplatelet aggregation effects, also characterize insulin resist-
ance in patients with T2DM. Insulin resistance may also become 
more severe in patients with T2DM brought about by any factor 
causing insulin resistance. Such factors are listed in Table  11.1     .   

 There has been much debate as to whether insulin resistance 
is the primary defect that precedes  β  - cell failure in the evolution 
of hyperglycemia in T2DM, or vice versa. There is a linear 
decrease in both fi rst - phase insulin release and insulin sensitivity 

in individuals who progress from normal to impaired glucose 
tolerance  [1] . Once the plasma glucose concentration 2 hours 
after an oral glucose challenge (75   g) reaches the upper limit for 
impaired glucose tolerance (11.1   mmol/L, 200   mg/dL), post - glu-
cose insulin concentrations fall and glucose then rises into the 
diabetic range (Figure  11.1 ). A similar picture has been observed 
in prospective studies. Thus, low insulin sensitivity and impaired 
fi rst - phase insulin release both predict the onset of T2DM  [1] . 
These data imply that development of overt hyperglycemia 
requires a relative decrease in insulin secretion as depicted in 
Figure  11.1 .   

 The following sections describe the pathogenesis and signifi -
cance of the cluster of clinical features of insulin resistance called 
the metabolic syndrome, which characterizes most patients with 
the common form of T2DM  [2] . The metabolic syndrome shares 
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many features in common with non - alcoholic fatty liver disease 
(NAFLD), which is therefore also briefl y described  [3] . This is 
followed by a characterization of features of insulin resistance in 
individual tissues: the liver, adipose tissue, skeletal muscle and 
additional sites. The underlying causes are also discussed, focus-
ing on acquired factors. Genetics of T2DM is discussed in Chapter 
 12   . This chapter focuses on the sites, causes and consequences of 
 “ insulin resistance ”  in the common form of T2DM. Certain con-
ditions that may resemble T2DM are discussed in detail in other 
chapters (see Chapters  2 ,  15 , and  19 ).  

  Metabolic  s yndrome and  n on -  a lcoholic  f atty 
 l iver  d isease 

  Defi nitions and  s ignifi cance 
  Metabolic  s yndrome 
 Insulin resistance in various tissues leads to hyperglycemia, 
hypertriglyceridemia and low high - density liporotein (HDL) 
cholesterol. Most patients with T2DM have these features of 
insulin resistance and, in addition, are often hypertensive and 
abdominally obese. Although each of the causes and conse-
quences of insulin resistance predicts both T2DM and increased 
cardiovascular risk, identifi cation of a cluster of abnormalities in 
a given individual confers a substantial additional cardiovascular 
risk over and above the risk associated with each individual 
abnormality  [2] . A number of expert groups have developed cri-
teria for identifi cation of such a risk cluster called the metabolic 
syndrome. The most recent is the defi nition proposed by the 
International Diabetes Federation (IDF). According to this defi -
nition, a person is identifi ed as having the metabolic syndrome if 
they have central obesity (defi ned with ethnicity specifi c values) 
plus any two of the following: raised triglycerides; reduced HDL 
cholesterol; raised blood pressure; or raised fasting plasma glucose 
(Tables  11.2  and  11.3 ). Using these criteria, 20 – 25% of the world ’ s 
adult population have the metabolic syndrome. This risk of death 
from cardiovascular disease is increased approximately twofold 
in subjects with the metabolic syndrome compared with those 
not meeting these criteria (see Part 8). In addition, subjects with 
the metabolic syndrome have a fi vefold greater risk of developing 
T2DM  [2] .    

  Non -  a lcoholic  f atty  l iver  d isease 
 Subjects with metabolic syndrome who are abdominally obese, 
have an increase in fat accumulation in the liver and hepatic 
insulin resistance independent of their obesity and body fat dis-
tribution  [4,5] . This increase in liver fat associated with insulin 
resistance is called non - alcoholic fatty liver disease (NAFLD). 
NAFLD is defi ned as excess fat in the liver ( > 5 – 10% fat histologi-
cally) which is not brought about by excess alcohol use (over 20   g/
day), effects of other toxins, autoimmune, viral or other causes 
of steatosis  [4] . NAFLD has been shown to predict both T2DM 
and cardiovascular disease in multiple prospective studies inde-
pendent of obesity  [3] . 

  Table 11.2    The International Diabetes Federation ( IDF ) defi nition of the 
metabolic syndrome. 

  According to the new IDF defi nition, for a person to be defi ned as having 
the metabolic syndrome they must have:  

  Central obesity (defi ned as waist circumference  ≥ 94   cm for Europid men and 
 ≥ 80   cm for Europid women, with ethnicity specifi c values for other 
groups; see Table  11.3 ; below) plus any two of the following four factors:  

     1     Raised triglyceride level:  ≥ 150   mg/dL (1.7   mmol/L), or specifi c treatment 
for this lipid abnormality  

  2     Reduced HDL cholesterol:  < 40   mg/dL (1.0   mmol/L) in males and  < 50   mg/
dL (1.3   mmol/L) in females, or specifi c treatment for this lipid abnormality  

  3     Raised blood pressure: systolic BP  ≥ 130 or diastolic BP  ≥ 85   mmHg, or 
treatment of previously diagnosed hypertension  

  4     Raised fasting plasma glucose  ≥ 100   mg/dL (5.6   mmol/L), or previously 
diagnosed type 2 diabetes. If above 5.6   mmol/L (100   mg/dL), an oral 
glucose tolerance test is strongly recommended but is not necessary to 
defi ne presence of the syndrome     

  If BMI is  > 30   kg/m 2 , central obesity can be assumed and waist circumference 
does not need to be measured  

  Table 11.3    Ethnic specifi c values for waist circumference. 

   Country/ethnic group     Waist circumference (cm)  

  Europids    Male  ≥ 94  
  In the USA, the ATP III values (102   cm 

male; 88   cm female) are likely to 
continue to be used for clinical purposes  

  Female  ≥ 80  

  South Asians    Male  ≥ 90  
  Based on a Chinese, Malay and 

Asian - Indian population  
  Female  ≥ 80  

  Chinese    Male  ≥ 90  
  Female  ≥ 80  

  Japanese    Male  ≥ 85  
  Female  ≥ 90  

  Ethnic South and Central Americans    Use South Asian 
recommendations until more 
specifi c data are available  

  Sub - Saharan Africans and Eastern 
Mediterranean and Middle East (Arab) 
populations  

  Use European data until more 
specifi c data are available  

 NAFLD covers a spectrum of liver disease including not only 
steatosis but also non - alcoholic steatohepatitis (NASH) and 
cirrhosis (Figure  11.2 )  [4] . The reasons why the liver develops 
infl ammatory changes, as in NASH, in some individuals is 
unclear. In addition to the epidemic of obesity, T2DM and car-
diovascular disease, the incidence of serious liver damage brought 
about by NAFLD is increasing. It has even been predicted that 
NASH will become the number one cause of orthotopic liver 
transplantation by the year 2020  [6] .      
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main reason for sustained maintenance of post - meal hyperglyc-
emia  [9] . Under post - prandial conditions, approximately one -
 third of glucose is utilized in skeletal muscle, one - third is oxidized 
in the brain and the remaining third is stored in the liver  [14] . In 
patients with T2DM, the ability of the liver to store glucose 
during a meal appears intact or is only slightly diminished  [9,15] . 
In absolute terms, the overall rate of glucose utilization is also 
quantitatively normal, because hyperglycemia per se, via the mass 
action effect of glucose, acts to compensate for impaired insulin 
stimulation of glucose uptake into peripheral tissues  [16] . Finally, 
the brain utilizes similar amounts of glucose in both normal 
subjects and patients with T2DM. Thus, post - prandial hypergly-
cemia must be caused by the incomplete suppression of endog-
enous glucose production.    

  Lipoprotein  m etabolism 
 Evidence from both  in vitro   [17,18]  and  in vivo   [19]  studies has 
suggested that insulin normally suppresses the production 
of VLDL, especially VLDL1 apoB particles from the liver 
(see Chapter  40   ). This effect is brought about not only by 
decreases in NEFA availability following inhibition of lipolysis in 
fat tissue, but also by a direct hepatic effect of insulin, inhibiting 
the assembly and production of VLDL particles  [19] . In contrast 
to normal subjects, insulin fails to suppress VLDL apoB produc-
tion in those with T2DM, even though it profoundly suppresses 
NEFA concentrations  [20] . Overproduction of VLDL  [21]  and 
the defect in insulin suppression of VLDL production  [22]  
correlates with the amount of fat in the liver and appears to be 
one major contributory mechanism underlying the increase in 
serum triglycerides in patients with insulin - resistant T2DM 
(Figure  11.3 )  [23] . 

 HDL levels are reduced in insulin - resistant patients with high 
serum triglycerides. Under hypertriglyceridemic conditions, 
there is excessive exchange of cholesterol esters and triglycerides 
between HDL and the expanded pool of triglyceride - rich lipopro-
teins, mediated by cholesterol ester transfer protein (CETP)  [24] . 
HDL particles become enriched with triglycerides (predomi-
nantly separating in the lighter HDL 3  density range), rendering 
them as a good substrate for hepatic lipase which removes HDL 
particles form the circulation at an accelerated rate. Subnormal 
activity of LPL may further decrease levels of HDL cholesterol by 
decreasing the conversion of HDL 3  to HDL 2  particles  [24] . 
Elevated concentrations of VLDL particles in the serum of 
patients with T2DM also increase the CETP - mediated exchange 
of cholesterol ester and triglyceride between VLDL and low 
density lipoprotein (LDL) cholesterol particles  [25] . This increases 
the triglyceride content of LDL particles and makes them a better 
substrate for hepatic lipase  [26] , which hydrolyzes triglycerides in 
the LDL particles and increases their density. This sequence of 
events at least partly explains why patients with T2DM have 
smaller and more dense LDL particles than individuals without 
diabetes  [27,28] . The small dense LDL particles are known to be 
highly atherogenic and provide a plausible link between insulin 
resistance and cardiovascular disease  [29 – 32] .   

  Insulin  r esistance in the  l iver 

  Characteristics 
  Insulin  a ction on  g lucose  m etabolism in the  f asting  s tate 
 After an overnight fast, insulin restrains endogenous glucose pro-
duction (see Chapter  7   ). Isotopic measurements of glucose pro-
duction under truly steady - state conditions show a signifi cant 
relationship between endogenous glucose production and fasting 
plasma glucose concentration in patients with T2DM  [7] . This 
relationship is observed despite hyperglycemia and normoin-
sulinemia or hyperinsulinemia, and demonstrates that insulin 
resistance contributes to the increase in basal endogenous glucose 
production. This hepatic insulin resistance is associated with 
excess fat accumulation in the liver. After an overnight fast, when 
glucose uptake is largely insulin - independent and driven by the 
mass - action effect of hyperglycemia, the absolute rate of glucose 
utilization is normal or even increased (Figure  11.3 ). The clinical 
implications of these fi ndings are that strategies designed to lower 
fasting glucose should aim at inhibiting overproduction of 
glucose from the liver rather than further increasing glucose 
uptake in T2DM  [8] .    

  Insulin  a ction on  g lucose  m etabolism in the 
 p ost -  p randial  s tate 
 After a meal, increases in insulin and glucose concentrations and 
a concomitant decrease in glucagon almost completely suppress 
endogenous glucose production under normal conditions. In 
patients with T2DM, this suppression is incomplete both because 
of hepatic insulin resistance, defi cient insulin and excessive glu-
cagon secretion  [9 – 11] . Hepatic insulin resistance has been docu-
mented by direct measurement of a reduced effect of insulin to 
decrease hepatic glucose production  [11] . This defect correlates 
closely with liver fat content (Figure  11.4 )  [12,13] . The pathogen-
esis and causes of this hepatic insulin resistance are discussed 
below. Persistent hepatic glucose production after eating is the 
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β-cell and α-cell
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NAFL (gastroenterologists) ∼ MetS (diabetologists)

Cardiovascular disease
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     Figure 11.2     Overview of the relationship between non - alcoholic fatty liver 
(NAFL), metabolic syndrome (MetS), non - alcoholic steatohepatitis (NASH), type 2 
diabetes and cardiovascular disease.  
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adipose tissue, or from post - prandial lipolysis of chylomicrons, 
which can occur at a rate in excess of what can be taken up by 
tissues (spillover), and from  de novo  lipogenesis  [33] .  In vivo  
studies using stable isotope techniques have shown that after an 
overnight fast, the majority of hepatic fatty acids originate from 
adipose tissue lipolysis  [34] . The contribution of splanchnic lipol-
ysis to hepatic free fatty acid (FFA) delivery averages 5 – 10% in 
normal weight subjects and increases to 30% in men and women 
with visceral obesity  [35] . Thus, subcutaneous adipose tissue pro-
vides the majority of hepatic FFA delivery. In the post - prandial 
state, the contribution of the spillover pathway and uptake of 

  Pathogenesis of  h epatic  i nsulin  r esistance and the 
 f atty  l iver 
 It is not ethically possible to sample human liver for research 
purposes, and therefore data on the pathogenesis of hepatic 
insulin resistance in humans are mainly based on  in vivo  
studies using stable isotope and hepatic venous catheterization 
techniques. 

  Sources of  i ntrahepatocellular  t riglyceride 
 The fatty acids in intrahepatocellular triglycerides can be derived 
from dietary chylomicron remnants, NEFAs released from 
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        Figure 11.3     Role of the fatty liver in the 
pathogenesis of hyperglycemia and (a) hyperin-
sulinemia and (b) hypertriglyceridemia. (a) Insulin 
normally restrains hepatic glucose production, which 
maintains glucose at normal levels. Once the liver is 
fatty and insulin - resistant, this action of insulin is 
impaired, leading to hyperglycemia and stimulation 
of insulin secretion. This results in the combination 
of near - normal glucose levels and hyperinsulinemia, 
as long as panreatic insulin secretion is intact. The 
insert in (a) denotes the relationship between liver 
fat and fasting serum insulin. Pink circles, female; 
blue circles, male. Data from Kotronen  et al .  [5] . If 
liver fat exceeds 5 – 10% as a result of non - alcoholic 
causes, this is defi ned as non - alcoholic fatty liver 
disease (NAFLD). (b) Insulin normally inhibits 
production of very low density lipoprotein (VLDL) 
cholesterol from the liver. If the liver is fatty and 
and insulin resistant, this ability of insulin is 
impaired. This results in hypertriglyceridemia and 
this in turn is the main reason for lowering of high 
density lipoprotein (HDL) cholesterol. The insert in 
(b) depicts the relationship between liver fat and 
fasting serum triglycerides. Pink circles, female; blue 
circles, male. Data from Kotronen  et al .  [5] .  
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receptor tyrosine kinase and decreases insulin receptor substrate 
2 (IRS - 2) tyrosine phosphorylation. In downstream signaling, 
this leads to reduced insulin activation of PI 3  - kinase, AKT2, gly-
gogen synthase kinase 3 (GSK - 3) and FOXO phosphorylation, 
which decreases hepatic glycogen synthesis and reduces inhibi-
tion of hepatic gluconeogenesis  [47] . In the human liver, diacylg-
lycerol concentrations are increased in proportion to increases in 
intrahepatocellular triglyceride  [40] . PKC ε  activity has been 
shown to be increased in the liver of patients with T2DM  [48] .   

  Acquired  c auses of  v ariation in  h epatic  i nsulin 
 s ensitivity and  l iver  f at  c ontent 
  Body  w eight 
 Obesity is related to insulin resistance, although at any given body 
mass index (BMI), insulin sensitivity, measured as the amount of 
glucose required to maintain normoglycemia during hyperin-
sulinemia (a measure of whole body insulin resistance, which 
could be both hepatic and peripheral), varies considerably (Figure 
 11.5 ). Obesity impairs both insulin stimulation of glucose uptake 
and insulin inhibition of endogenous glucose production  [11,49] . 
Liver fat content and hepatic insulin resistance are related to BMI 
and waist circumference; however, the variation at any given BMI 
is large (Figure  11.6 ).   

 Weight loss induces rapid and substantial changes in liver fat 
content and hepatic insulin sensitivity  [50,51] . In a study where 
obese women lost 8% of their body weight over 18 weeks, liver 
fat content and total body fat mass decreased by 39% and 14%, 
respectively  [52] . In another study, 7% weight loss decreased liver 
fat content by approximately 40% over 7 weeks  [53] . In this 
study, a 30% decrease in liver fat was observed as early as after 2 
days of a low carbohydrate diet ( ∼ 1000   kcal, approximately 10% 
carbohydrate). In both of these studies, there was a marked 

chylomicron remnants increase and can account for up to half of 
the fatty acids secreted as VLDL triglyceride.  De novo  lipogenesis 
accounts for less than 5% in normal subjects post - prandially  [36] ; 
however, in subjects with fatty liver, rates of  de novo  lipogenesis 
appear to be signifi cantly elevated  [34,37] . This may result from 
excess carbohydrate intake  [38] . An impaired ability of insulin -
 resistant subjects to store carbohydrate as glycogen in muscle 
could also contribute to excess  de novo  lipogenesis in the liver 
 [39] . 

 The fatty acid composition of intrahepatocellular triglyceride 
changes as a function of the amount of liver fat present. The fatty 
liver contains increased amounts of saturated fatty acids and 
decreased amounts of polyunsaturated fatty acids  [40] . Whether 
the increase in saturated fatty acids is caused by  de novo  lipogen-
esis, which produces saturated fatty acids  [41] , or other sources 
is unclear.  

  Cellular  m echanism of  h epatic  i nsulin  r esistance 
 Triglycerides themselves are inert and cannot explain hepatic 
insulin resistance. Data from animal studies suggest at least two 
lipid mediators, ceramides and diacylglycerols, which could cause 
insulin resistance. Ceramides are sphingolipids, with a sphingoid 
backbone that relies on the availability of saturated fatty acids 
 [42] . Ceramides appear to be required for insulin resistance 
induced by saturated, but not unsaturated, fatty acids in rat soleus 
muscle  [43] . Ceramides accumulate in the liver during tristearin 
(18   :   0)  –  but not triolein (18   :   1 n - 9) enriched diets  [44] . Ceramides 
are upregulated in skeletal muscle  [45]  and adipose tissue  [46]  of 
insulin - resistant subjects, but data are sparse on the ceramide 
content of human fatty liver  [40] . Diacylglycerols, which are 
immediate precursors of triacylglycerols, activate protein kinase 
C ε  (PKC ε ) in the liver, which binds to and inactivates the insulin 
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     Figure 11.4     Relationship between hepatic insulin sensitivity (measured by the 
ability of insulin to suppress hepatic glucose production by insulin) and liver fat 
in normal subjects (open circles) and in patients with type 2 diabetes (closed 
circles). Data from Kotronen  et al .  [174] .  

W
ho

le
-b

od
y 

gl
uc

os
e 

up
ta

ke
 (m

m
ol

/k
g/

m
in

) 80

60

40

20

0

15 30 45 60
Body-mass index (kg/m2)

     Figure 11.5     The relationship between body mass index and insulin sensitivity 
of glucose metabolism as determined by the euglycemic clamp technique in 
subjects without diabetes. Data from the European Group for the Study of Insulin 
Resistance (EGIR) (kindly provided by Professor Eleuterio Ferrannini).  
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Visceral fat also has been proposed to release more infl ammatory 
cytokines such as interleukin 6 (IL - 6) than subcutaneous adipose 
tissue, but such data do not prove cause and effect  [62,63] . Thus, 
visceral fat could be an innocent bystander as well as a culprit 
 [59] .    

  Diet  c omposition 
 Very few human data are available regarding the effects of changes 
in diet composition on hepatic insulin sensitivity and liver fat 
content. Cross - sectional data have suggested that the relative 
amount of fat, especially saturated fat in the diet, is directly cor-
related with liver fat  [52,64]  and that the percentage of dietary 
saturated fat intake is increased in NAFLD compared with con-
trols  [65] . A small intervention study suggested that a high fat 
(56% of kcal) low carbohydrate diet may increase liver fat com-
pared to a low fat (16% of kcal) high carbohydrate diet  [66] . The 
dietary carbohydrate content, however, may also be important. A 
cross - sectional study in 247 healthy subjects showed that a high 
glycemic index diet is associated with high liver fat independent 
of carbohydrate, fi ber, protein and fat intake  [67] , but there are 
no intervention studies to confi rm this fi nding.   

  Genetic  c auses  r egulating  l iver  f at and  h epatic 
 i nsulin  s ensitivity 
 Twin studies suggest that 35 – 60% of the variation in the levels of 
circulating liver enzymes in serum of subjects not using excess 
alcohol and who have no known liver disease is genetically deter-
mined  [68,69] . Recently, a genome - wide association scan of non -
 synonymous sequence variations in a population comprising 
Hispanic, African - American and European - American individu-
als identifi ed an allele in the  PNPLA3  (adiponutrin) gene to be 
strongly associated with increased liver fat  [70] . The fi nding that 
hepatic fat content is more than twofold higher in  PNPLA3  
rs738409[G] homozygotes than in non - carriers has been con-
fi rmed in multiple studies  [70,71] . The missense mutation 
I148M in adiponectin promotes triglyceride accumulation by 
inhibiting triglyceride hydrolysis  [72] .   

improvement in directly measured hepatic insulin sensitivity 
 [52,53] . Weight gain increases liver fat. In an overfeeding study 
of healthy volunteers, 9.5% weight gain over 4 weeks was associ-
ated with a 2.5 - fold increase in liver fat content, hyperinsulinemia 
and a 4.4 - fold increase in serum alanine aminotransferase (ALT) 
activity  [54] .  

  Fat  d istribution 
 Over 50 years ago, Vague  [55]  classifi ed obese subjects according 
to the degree of  “ masculine differentiation ”  into those with 
 “ gynoid ”  and those with  “ android ”  obesity. Gynoid obesity was 
characterized by lower body deposition of fat (around the thighs 
and buttocks) and relative underdevelopment of the muscula-
ture, while android obesity defi ned upper body (truncal) adipos-
ity, greater overall muscular development and a tendency to 
develop hypertension, diabetes, atherosclerosis and gout. These 
phenotypic observations have subsequently been confi rmed in 
prospective studies  [56 – 58] . 

 The mechanisms linking upper body obesity to features of 
insulin resistance are poorly understood. Regarding hepatic 
insulin resistance and liver fat, it has been suggested that truncal 
obesity is harmful because it is accompanied by visceral fat accu-
mulation within the abdomen, and because this fat depot is more 
metabolically active than subcutaneous adipose tissue. Omental 
and mesenteric adipocytes have a higher rate of lipolysis than 
subcutaneous, and could liberate excessive amounts of NEFA 
into the portal vein, thus causing the liver to become insulin 
resistant. This  “ portal theory ” , however, lacks fi rm supporting 
evidence from  in vivo  studies  [59] . Limited data suggest that 
concentrations of NEFA and glycerol in the portal vein are close 
to those in arterial plasma, and tracer studies have shown that 
NEFA released within the splanchnic (visceral) bed contribute 
only about 10% of total NEFA delivery to the liver  [60] . 
Furthermore, although the turnover rate of NEFA is higher in 
women with upper, compared to those with lower body obesity, 
the excess NEFA have been found to originate from subcutaneous 
fat in the upper body rather than from the splanchnic bed  [61] . 
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     Figure 11.6     The relationship between liver fat 
and body mass index (a), and liver fat and waist 
circumference (b) in 271 non - diabetic subjects (red 
circles denote women and blue circles men). Data 
from Kotronen  et al .  [5] .  
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  Insulin  r esistance in  a dipose  t issue 

 Adipose tissue is not merely a depot for excess energy but an 
active endocrine organ, which releases hormones such as adi-
ponectin and leptin to the circulation (see Chapter  8   ). In addi-
tion, it has recently been shown that in obese subjects  [73]  and 
in subjects with a fatty liver independent of obesity  [46] , adipose 
tissue is infl amed. This infl ammation is characterized by macro-
phage infi ltration and increased expression of proinfl ammatory 
molecules such as tumor necrosis factor  α  (TNF -  α ) and IL - 6, and 
of chemokines such as MCP - 1  [73 – 76] . The initial trigger of the 
infl ammatory changes is unknown. 

 Cinti  et al .  [77]  showed that in both obese (db/db) mice and 
humans  > 90% of the macrophages surround dead adipocytes, 
and the number of macrophages correlated positively with adi-
pocyte size  [73,77] . An increased number of macrophages sur-
rounding dead adipocytes also characterized subjects with a fatty 
liver compared to equally obese subjects with normal liver fat 
content  [46] . The infl ammation in adipose tissue may cause 
insulin resistance, not only in adipose tissue, but possibly also in 
other tissues such as the liver. Although it is in general diffi cult 
to prove cause and effect in human studies, it is likely that 
increases in NEFA from the insulin resistance of antilipolysis and 
the decrease in the concentration of adiponectin are likely media-
tors of systemic, mainly hepatic, insulin resistance as a conse-
quence of changes occurring in adipose tissue. Macrophage 
accumulation in human adipose tissue is at least in part reversible 
as weight loss can reduce both macrophage infi ltration and 
expression of genes involved in macrophage recruitment  [78] . 

     Resistance to the  a ntilipolytic  a ction of  i nsulin 
 Lipolysis in adipose tissue is exquisitely insulin sensitive: in 
normal subjects, rates of glycerol production are half - maximally 
suppressed at a plasma insulin concentration of 13   mU/L  [79,80] . 
Triglyceride breakdown is increased and plasma NEFA concen-
trations are higher in patients with T2DM than in normal sub-
jects studied at comparable insulin levels, suggesting that adipose 
tissue is also affected by insulin resistance  [81,82] . Unrestrained 
lipolysis to a degree that could lead to ketoacidosis, however,  
does not occur spontaneously in T2DM, because insulin defi -
ciency is not suffi ciently profound. 

 Increased NEFA concentrations may contribute to worsening 
of hyperglycemia because of multiple interactions between NEFA 
and glucose metabolism. A large increase in plasma NEFA con-
centrations can decrease insulin - stimulated glucose uptake  [83]  
and NEFA may be deposited as triglycerides in skeletal muscle 
 [84,85] . Second, the increased concentration of NEFA refl ects 
increased NEFA turnover, which increases delivery to the liver, 
where NEFA can be deposited as triglycerides. In the liver, NEFA 
also stimulate glucose production, especially via gluconeogenesis. 
The biochemical mechanisms through which NEFA might inter-
fere with insulin action are discussed in Chapter  13   .  

  Adiponectin  d efi ciency 
 Adiponectin is a hormone produced in adipose tissue. Based on 
animal studies, its main target is the liver, where it has both anti -
 infl ammatory and insulin - sensitizing effects and decreases liver 
fat content  [86] . The marked increase in serum adiponectin 
observed during treatment with peroxisome proliferator - 
activated receptor  γ  (PPAR -  γ ) agonists and the close correlation 
between changes in liver fat and serum adiponectin concen-
trations  [87]  support the possibility that adiponectin regulates 
liver fat content in humans. Serum adiponectin levels are 
decreased in obese compared to non - obese subjects and in sub-
jects with the metabolic syndrome compared to those without 
the syndrome.    

  Insulin  r esistance in  s keletal  m uscle 

 There is abundant evidence that the ability of insulin to 
stimulate  in vivo  glucose disposal is decreased in skeletal muscle 
of patients with T2DM when measured under similar conditions 
in age, gender and weight - matched subjects without diabetes 
 [88 – 90] . Under real - life conditions, however, hyperglycemia 
compensates for the defect in insulin - stimulated glucose uptake, 
and maintains the rate of absolute glucose utilization at a normal 
level in patients with T2DM compared with subjects without 
diabetes  [16] . 

  Mechanisms of  i nsulin  r esistance in  m uscle 
 Multiple defects in the insulin signaling cascade have been identi-
fi ed. There do not appear to be any major disturbances in insulin -
 receptor binding, and the minor decreases in the tyrosine kinase 
activity of the receptor  β  - subunit appear to be secondary to the 
metabolic disturbances, because they are reversible with weight 
loss  [91] . 

 The abnormality must therefore lie at a post - receptor level. 
Defects in insulin signaling in human skeletal muscle have been 
demonstrated in early signaling events such as activation by 
tyrosine phosphorylation of IRS - 1    −    a substrate of the insulin 
receptor ’ s tyrosine kinase    −    and in the activation of PI 3  kinase 
 [92] , which is required for insulin ’ s stimulation of glucose trans-
port and glycogen synthesis (see Chapter  7   ). Insulin - enhanced 
glucose uptake, mediated by translocation of the glucose trans-
porter 4 (GLUT - 4) protein to the cell surface, and stimulation of 
glucose phosphorylation via hexokinase II are also diminished 
 [93,94] . 

 The defects in insulin action in skeletal muscle are generally 
more severe than in equally obese, non - diabetic subjects of the 
same age, gender and body fat distribution. This suggests that 
there is an additional genetic defect (see Chapter  12   ) or that 
metabolic disturbances such as chronic hyperglycemia (glucose 
toxicity), or extracellular NEFA or lipid accumulation within the 
myocytes (lipotoxicity) could be responsible. Indeed, intramyo-
cellular lipid content is higher in patients with T2DM than in 
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cal implication that the glycemic response to exercise is not 
blunted by insulin resistance.  

  Chronic  h yperglycemia 
 Hyperglycemia itself, independent of insulin, NEFA or counter -
 regulatory hormones, can induce insulin resistance in human 
skeletal muscle  [111] . This  “ glucose toxicity ”  induced insulin 
resistance could contribute to the lower rates of insulin - stimulated 
glucose uptake in patients with T2DM compared with weight, 
age and gender - matched subjects without diabetes and 
measured during maintenance of similar levels of glycemia and 
insulinemia. Although chronic hyperglycemia induces insulin 
resistance, however, glucose utilization is stimulated acutely via 
the mass action effects of glucose even in patients with diabetes. 
This effect explains why hyperglycemic patients with T2DM are 
able to utilize as much glucose as normal subjects at normoglyc-
emia, in spite of the insulin resistance in the subjects with diabetes 
 [111,112] . 

 The degree of insulin resistance in patients with T2DM is 
directly proportional to the severity of hyperglycemia  [111] . 
Thus, insulin resistance induced by the hexosamine pathway in 
hyperglycemic patients with T2DM could be viewed as a com-
pensatory mechanism that protects muscles against excessive 
uptake of glucose. Consistent with this, in isolated skeletal muscle 
from patients with T2DM  [112] , insulin - stimulated glucose 
transport in muscles of hyperglycemic patients with T2DM was 
similar to that in normoglycemic subjects but impaired when 
measured after short - term exposure to normoglycemia. Prolonged 
exposure to normoglycemia completely normalized the defect in 
insulin - stimulated glucose transport  [112] . Clinically, the ability 
of hyperglycemia to induce insulin resistance in patients with 
T2DM may explain why any treatment, such as sulfonylureas, 
which improves glycemic control may also improve insulin sen-
sitivity even if the primary site of action is not in insulin - sensitive 
tissues  [111] . 

 The hexosamine pathway was discovered in 1991, by Marshall 
 et al .  [113] , who found that it mediated glucose - induced insulin 
resistance in primary cultured rat adipocytes. Downregulation of 
the insulin - responsive glucose transport system was observed to 
require three components: glucose, insulin and glutamine. 
Inactivation of the glutamine - requiring enzyme, glutamine   :   fruc-
tose - 6 - amidotransferase (GFA), the rate - limiting enzyme of the 
hexosamine pathway, by glutamine analogs, prevented glucose -
 induced desensitization of glucose transport  [113] . GFA catalyzes 
the interconversion of glutamine and fructose - 6 - phosphate to 
form glucosamine - 6 - phosphate (GlcN - 6 - P) and glutamate  [114] . 
GFA is expressed in insulin target tissues such as skeletal muscle, 
where its activity is increased in patients with T2DM  [115] . The 
end - product of the pathway, UDP -  N  - acetyl - glucosamine (UDP -
  N AcGln) is attached to the OH - group of threonine and serine 
residues of proteins (these same residues can also be phosphor-
ylated), which results in O - glycation of proteins. These include 
multiple proteins involved in glucose - responsive and insulin -
 dependent transcription and signaling events  [114] .    

equally obese non - diabetic subjects  [95]  or in lean subjects 
without diabetes  [96] .  

  Causes of  i nsulin  r esistance in  m uscle 
  Obesity 
 Obesity decreases insulin - stimulated glucose uptake in skeletal 
muscle independently of changes in physical fi tness (see Chapter 
 14 ). This decrease could be partly caused by increased NEFA 
produced by adipose tissue and fat accumulation in myocytes 
 [84,85] .  

  Abdominal  o besity 
 Insulin resistance in skeletal muscle is more severe in subjects 
with android than those with gynoid obesity  [97] . Histologically, 
abdominally obese subjects have a decreased capillary density and 
an insulin - resistant fi ber type in their skeletal muscles  [98,99] .  

  Physical  i nactivity 
 The sedentary lifestyle that characterizes Westernized societies is 
an important contributor to obesity and to T2DM (see Chapters 
 4  and  23 ). Data from several prospective epidemiologic studies 
such the Nurse ’ s Health Study  [100]  have shown an inverse asso-
ciation between physical activity and the incidence of T2DM 
 [101 – 103] . 

 Insulin sensitivity of glucose uptake by skeletal muscle is 
directly proportional to physical fi tness measured by maximal 
oxygen consumption (  V̇   O 2max )  [104] . Decreased physical fi tness 
(maximal aerobic power) in muscle in patients with T2DM is 
characterized by decreased capillary density and impaired mito-
chondrial oxidative phosphorylation  [105] . Glucose tolerance 
and insulin - stimulated glucose uptake are also enhanced by resis-
tive training, which increases total muscle mass without infl uenc-
ing glucose uptake per unit muscle mass  [104] . 

 Insulin and exercise stimulate glucose uptake through inde-
pendent mechanisms. While insulin enhances glucose uptake in 
skeletal muscle via the classic insulin signaling pathway (see 
Chapter  7   ), exercise has no effect on tyrosine phosphorylation of 
the insulin receptor or of IRS - 1  [106] . The mechanism of 
contraction - stimulated glucose uptake involves adenosine 5 ′ 
monophosphate - activated protein kinase (AMPK)  [107] . AMPK, 
especially its  α 2 isoform, is activated by muscle contraction in 
human skeletal muscle, and this results in GLUT - 4 translocation 
to the cell membrane and an increase in inward glucose transport 
 [107] . 

 In insulin - resistant patients with T2DM, the ability of insulin 
to stimulate tyrosine phosphorylation of the insulin receptor and 
of IRS - 1, IRS - 1 associated PI 3  kinase activity  [92]  and transloca-
tion of GLUT - 4  [108]  are all subnormal. Aerobic training, 
however, has been shown to increase the GLUT - 4 content in 
skeletal muscle  [109]  and the expression and activity of glycogen 
synthase  [110]  to a comparable degree to normal subjects. Thus, 
the signaling pathways through which exercise enhances glucose 
uptake may be intact in patients with T2DM. This has the practi-
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fi brinolysis and increased levels of PAI - 1, and defects in platelet 
function are frequently associated with insulin resistance, espe-
cially in obese patients with T2DM. These abnormalities predis-
pose to atherothrombotic vascular disease (see Part 8).  

  Effects of  i nsulin on  u ric  a cid  m etabolism 
 In normal subjects, insulin acutely reduces the renal clearance of 
both sodium and uric acid  [135] . These actions are preserved in 
insulin - resistant states such as obesity, diabetes and essential 
hypertension, and so provide a potential mechanistic link for the 
clustering of hyperinsulinemia with hyperuricemia and hyperten-
sion  [136,137] .  

  Other  e ffects of  i nsulin 
 Insulin acutely lowers serum potassium concentrations by stimu-
lating potassium uptake into skeletal muscle and the splanchnic 
bed  [138] . It also attenuates agonist - induced intracellular 
increases in Ca 2+  concentrations in vascular smooth muscle cells 
 [139]  and inhibits sodium, potassium and phosphate excretion 
by the kidney  [138] . The hypokalemic antinatriuretic actions of 
insulin are both preserved in patients with insulin resistance 
affecting glucose metabolism and essential hypertension  [140,141]  
and in those with T2DM  [142] .  

  Relationship of  i nsulin  r esistance to  h ypertension 
 Of the putative components of the  “ insulin resistance syndrome, ”  
the association between insulin resistance and hypertension is 
perhaps the most controversial. Hypertension and insulin resist-
ance have been shown to be linked, independently of confound-
ing factors such as obesity  [143] , but the relationship appears 
inconsistent  [144 – 146] . Numerous mechanisms have been pos-
tulated to explain this association, but it is currently unclear 
which  –  if any  –  are relevant. In insulin - resistant patients with 
essential hypertension, basal intracellular Ca 2+  levels have been 
shown to be elevated, and the normal ability of insulin to attenu-
ate angiotensin II induced increases in intracellular Ca 2+  is 
blunted in skin fi broblasts  [139] ; however, there are no data in 
patients with T2DM. The renal action of insulin to reabsorb 
sodium is similar in normotensive and hypertensive insulin -
 resistant subjects and in patients with T2DM  [142] , which implies 
that changes in the antinatriuretic effect of insulin cannot explain 
the increased prevalence of hypertension in insulin - resistant indi-
viduals or those with T2DM. The suggestion that insulin sensitiv-
ity infl uences salt sensitivity is controversial  [147 – 151] . Insulin 
resistance has consistently been found to correlate with high 
sodium – lithium counter - transport in erythrocyte membranes; 
this is thought to parallel increased activity of the Na +  – H +  pump 
in the cell membrane of other tissues, which could raise intracel-
lular Na +  and Ca 2+  concentrations and enhance vascular smooth 
muscle contractility. Such defects may contribute to the develop-
ment of hypertension in both insulin - resistant subjects without 
diabetes and in patients with T2DM (see Chapter  40   ). 

 In theory, an increase in peripheral vascular resistance (which 
would raise diastolic blood pressure) could also be a consequence 
of impaired insulin - induced vasodilatation. Such defects, 

  Resistance to  o ther  a ctions of  i nsulin 

  Vascular  e ffects of  i nsulin 
 At physiologic concentrations and within a physiologic time-
frame, insulin decreases the stiffness of large arteries  [116] . This 
effect is blunted in obesity  [117] . These data are consistent with 
epidemiologic data that indicate that insulin resistance and arte-
rial stiffness are independently associated in subjects without 
diabetes. Patients with T2DM have stiffer arteries than age and 
weight - matched healthy subjects  [118,119] . 

 Another vascular effect of insulin is vasodilatation of periph-
eral resistance vessels  [120] , mediated at least in part by enhanced 
nitric oxide (NO) production by the endothelium  [121] . Because 
this effect requires prolonged or high doses of insulin, its physi-
ologic signifi cance has thus been questioned  [120] . In patients 
with T2DM, defects in insulin action on blood fl ow have not been 
observed when tested at insulin concentrations within the physi-
ologic range, but have been observed at grossly supraphysiologic 
insulin levels (600   mU/L)  [120] . 

 Insulin stimulates NO production in endothelial cells  [122] , 
and acutely increases endothelium - dependent but not endothe-
lium - independent vasodilatation in normal subjects  [121] . 
Endothelium - dependent vasodilatation is known to be impaired 
in T2DM and other insulin - resistant states  [123,124] . Whether 
this defect is caused by insulin resistance at the level of endothelial 
cells  [125]  or to indirect causes of endothelial dysfunction such 
as chronic hyperglycemia  [126]  or dyslipidemia  [124]  cannot be 
determined from cross - sectional human data.  

  Effects of  i nsulin on  a utonomic  n ervous  t one 
 Another of the many actions of insulin is its effect on the auto-
nomic nervous system. Insulin can enter the hypothalamus and 
other parts of the brain, where insulin receptors are expressed at 
high levels, and it acts centrally to stimulate the sympathetic 
nervous system. Manifestations include increases in muscle sym-
pathetic nervous activity  [127]  and in norepinephrine spillover 
rate (a measure of norepinephrine release from sympathetic 
nerve endings in the tissues)  [128] . Insulin also regulates the 
autonomic control of heart rate, decreasing vagal tone and 
increasing sympathetic drive  [129] . In insulin - resistant obese 
subjects, basal sympathetic tone is increased and the subsequent 
response to insulin blunted  [130] . This defect is also observed in 
non - obese but insulin - resistant subjects  [129] , and in patients 
with T2DM  [131] . Enhanced central effects of the associated 
hyperinsulinemia may contribute.  

  Insulin  r esistance,  h emostasis and  c oagulation 
 Insulin normally inhibits platelet aggregation  [132] , and this 
action is blunted both  in vitro   [132]  and  in vivo   [133]  in insulin -
 resistant obese subjects without diabetes and those with T2DM. 

 Plasminogen activator inhibitor 1 (PAI - 1) is an inhibitor of 
fi brinolysis, and raised plasma levels predict increased risk of a 
coronary event  [134] . Procoagulant changes, such as impaired 



Part 3 Pathogenesis of Diabetes

184

acid metabolism, vascular function, hemostasis and coagulation. 
These consequences of insulin resistance (normal or impaired 
glucose tolerance, hypertriglyceridemia, a low HDL cholesterol 
concentration, small LDL size, hypertension, increases in uric 
acid and PAI - 1 concentrations) and fasting hyperinsulinemia 
were called  “ syndrome X ”  by Reaven  [153]  to emphasize that 
insulin resistance comprises a cluster of abnormalities. 

 This syndrome, now called the metabolic syndrome (Table 
 11.2 ) rather than syndrome X, is important to recognize clinically 
as it is associated with many components that can potentially be 
modifi ed to prevent premature atherosclerosis and cardiovascu-
lar disease, the main cause of excessive mortality in those with 
T2DM. Various mechanisms have been proposed to explain how 
insulin resistance and/or the accompanying hyperinsulinemia 
could cause these abnormalities. Accumulation of fat in the liver 
appears to occur in those individuals who develop the metabolic 
syndrome, independent of obesity. The liver, once fatty, is insulin 

however, have not been documented under physiologic condi-
tions  [120] . It is also unclear whether the defects in endothelium -
 dependent vasorelaxation observed at very high insulin 
concentrations are specifi c to insulin or are a consequence of a 
more generalized defect in endothelial or smooth - muscle func-
tion, or of structural changes in arteries secondary to hyperten-
sion. Increased systolic blood pressure is, in most hypertensive 
individuals, a consequence of increased arterial stiffness  [152] . 
Resistance to the normal ability of insulin to decrease stiffness 
could therefore increase systolic blood pressure  [117] .   

  Conclusions 

 Insulin resistance, even when present in individuals without dia-
betes, is characterized not only by abnormalities in glucose home-
ostasis, but also by defects in insulin regulation of lipid and uric 
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     Figure 11.7     Causes and consequences of insulin resistance and pathogenesis 
of the metabolic syndrome. Overeating and inactivity are common and important 
causes of obesity. In many obese but also sometimes in non - obese subjects, fat 
accumulates in the liver. Saturated fat and high refi ned carbohydrate intake may 
be particularly harmful. Genetic predisposition also has a role, at least in fat 
accumulation in the liver. In obese subjects with a fatty liver, adipose tissue is 
infl amed. This infl ammation is characterized by increased expression of cytokines 
such as tumor necrosis factor  α  (TNF -  α ), and increased macrophage infi ltration 
around dead adipocytes. The cause of the infl ammation poorly understood. 

Infl amed adipose tissue is insulin - resistant and overproduces free fatty acids 
(FFA) which contribute to excess triglyceride storage (TG) in the liver. 
Adiponectin defi ciency also characterizes infl amed adipose tissue and decreases 
insulin sensitivity. Once fatty the liver overproduces glucose and VLDL as 
depicted in Figure  11.3 , and also other factors such as plasminogen activator 1 
(PAI - 1) and coagulation factors. Excess refi ned carbohydrate may increase  de 
novo  lipogenesis in the liver (DNL), thus increasing intrahepatocellular 
triglyceride. Overeating and inactivity are also characterized by insulin resistance 
of glucose uptake by skeletal muscle.  
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resistance.  
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