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 Keypoints 
        •      Type 2 diabetes mellitus (T2DM) is a heterogeneous disorder caused by 

a combination of genetic and environmental factors which adversely 
affect  β  - cell function and tissue insulin sensitivity.  

   •      About 10% of patients with phenotypic T2DM actually have a 
late - onset form of autoimmune diabetes while up to another 5% have 
autosomal dominantly inherited forms such as maturity - onset diabetes 
of the young and mitochondrial diabetes. The remaining 85% of 
patients have  “ garden variety ”  T2DM which is a polygenic disorder.  

   •      The preponderance of available information indicate that genetic 
factors primarily affect  β  - cell function whereas acquired factors 
(obesity, physical inactivity, glucose and lipid toxicity) are mainly 
responsible for the insulin resistance seen in this condition. Impaired 
 β  - cell function can be detected in genetically predisposed individuals 
(i.e. the monozygotic twin or fi rst - degree relative of someone who has 
T2DM) at a time when they have normal glucose tolerance and normal 
tissue insulin sensitivity.  

   •      T2DM develops because of a progressive deterioration in  β  - cell function 
coupled with the addition of acquired insulin resistance for which the 
 β  - cell cannot compensate. At time of diagnosis,  β  - cell function is 
already reduced about 50% and most of the defects demonstrable in 
people with T2DM are already present in individuals with impaired 
glucose tolerance and those genetically predisposed to develop T2DM.  

   •      Commonly found insulin secretion abnormalities include: absent 
fi rst - phase and diminished second - phase release. Responses to 
ingestion of mixed meals and to non - glucose stimuli are reduced with a 
decrease in maximal secretory capacity. The secretory pulses, both rapid 
and ultradian, are smaller and less regular. The ratio of proinsulin to 
insulin release is also elevated.  

   •      Normally there is a curvilinear hyperbolic relationship between  β  - cell 
function and tissue insulin sensitivity so that as tissue insulin sensitivity 
decreases (as in obesity and pregnancy),  β  - cell function increases in a 
compensatory fashion to maintain normal glucose tolerance. 
Prospective longitudinal studies have shown that people who have 
impaired glucose tolerance and progress to T2DM fall off this curve 
because of an inability of the  β  - cell to compensate for insulin 
resistance.  

   •      Acquired factors also adversely affect  β  - cell function and contribute to 
the development of T2DM. These include adverse effects of hyperglyc-
emia and increased plasma free fatty acids, respectively termed 
glucotoxicity and lipotoxicity, alterations in incretins (GLP - 1, GIP) and 
malnutrition  in utero  and in early life which may affect programing of 
the  β  - cell with respect to glucose sensing, apoptosis, regeneration and 
the ability to compensate for insulin resistance. Endoplasmic reticulum 
stress - induced apoptosis and the effect interleukin - 1 β  has on  β  - cell 
function and life cycle are recently receiving more attention for their 
role in the pathogenesis of T2DM.  

   •      A pathologic feature present in 90% of patients with T2DM is the 
abnormal extracellular deposits of islet amyloid. It is composed of 
insoluble fi brils formed from the protein islet amyloid polypeptide 
(IAPP). Other histologic changes include a 30 – 50% decrease in islet 
mass and an alteration in the relative proportion of the islet cell 
population.  

   •      The IAPP and its amyloid deposits have not been clearly found to be 
cytotoxic to  β  - cell and recent evidence from animal studies suggests 
that the formation of intracellular smaller IAPP oligomers is possibly the 
cytotoxic form associated with increased  β  - cell apoptosis.     

 Type 2 diabetes (T2DM) is a heterogeneous disorder, pheno-
typically, genotypically and pathogenetically. Approximately 
10% of patients have a late - onset form of autoimmune diabetes 
which may represent a hybrid of type 1 and type 2 diabetes 

(see Chapter  9 )  [1] ; up to another 5% of patients have one of 
the autosomally dominant inherited forms of maturity - onset 
diabetes of youth (MODY); another 1% may have rare genetic 
mutations involving insulin receptors and elements of the 
insulin signaling pathway (see Chapter  15 ). The remaining 
85% of patients have  “ garden variety ”  T2DM which is the subject 
of this chapter.  Textbook of Diabetes, 4th edition. Edited by R. Holt, C. Cockram, 

A. Flyvbjerg and B. Goldstein. © 2010 Blackwell Publishing.
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situation in people with IGT and T2DM produced late hyperin-
sulinemia  [17] . Moreover, restoration of early insulin responses 
either by insulin or an insulin secretogogue reduces late hyperin-
sulinemia  [18,19] .    

  Appropriateness of the  p lasma  i nsulin  l evel for the 
 p revailing  g lucose  l evel 
 The major factor acutely regulating insulin is the plasma glucose 
concentration. In addition to glucose, increases in circulating 
amino acid, free fatty acid (FFA), gastrointestinal hormones 
(incretins: glucagon - like peptide [GLP - 1], glucose - dependent 
insulinotropic peptide [GIP]) augment insulin secretion whereas 
increases in other factors such as catecholamines, cortisol, growth 
hormone, leptin, and tumor necrosis factor  α  (TNF -  α ) can 
reduce  β  - cell responses (see Chapter  6 ). 

 As glucose is the predominant stimulus for insulin secretion, 
the prevailing plasma glucose concentration must be taken into 
consideration in judging whether the plasma insulin concentra-
tion is appropriate. For example, the plasma insulin level in an 
individual with diabetes whose plasma glucose concentration is 
180   mg/dL (10   mmol/L) may be twice as great as that of an indi-
vidual without diabetes with a plasma glucose concentration of 
90   mg/dL (5   mmol/L), but is clearly inappropriate because the 
non - diabetic individual would have a plasma insulin level four 
times as great at the same hyperglycemia  [20] . Such evaluation is 
diffi cult with data from oral glucose tolerance tests (OGTT). 
Although equations exist that relate OGTT responses to those of 
hyperglycemic clamps  [21] , the latter are considered to be the 
gold standard for assessing  β  - cell function, because with this 
technique an identical stimulus for insulin release is used and 
both phases of insulin release can be evaluated.  
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     Figure 10.1     Relationship between early (30 minutes) and late (2 hour) plasma 
insulin levels and 2 - hour plasma glucose levels during oral glucose tolerance 
tests ( n    =   294, mean    ±    SEM).  Reproduced from Gerich  [2] , with permission from 
 The Endocrine Society .   

  Impaired  β  -  c ell  f unction  v s  i nsulin  r esistance 

 The common variety of T2DM results from a combination of 
genetic and acquired factors which adversely affect  β  - cell func-
tion and tissue insulin sensitivity (see Chapter  11 )  [2,3] . For 
many years it was controversial whether impaired  β  - cell function 
or tissue insulin resistance was the underlying pathogenetic 
element. Until recently, it was generally thought that insulin 
resistance preceded  β  - cell dysfunction and was the primary 
genetic factor, while  β  - cell dysfunction was a late phenomenon 
brought about by exhaustion after years of compensatory hyper-
secretion  [4 – 6] . During the past several years, however, the accu-
mulation of evidence from sophisticated studies examining  β  - cell 
function and tissue insulin sensitivity, both cross - sectionally and 
longitudinally, have swung the pendulum over to the concept 
that impaired  β  - cell function is the primary underlying, probably 
genetic, defect  [2,7 – 9] . 

 The idea that insulin resistance could be the primary defect can 
be traced back to the classic studies of Himsworth  &  Kerr  [10]  
more than 60 years ago, in which it was demonstrated that lean 
patients with early - onset diabetes were sensitive to exogenous 
injection of insulin, whereas obese patients with late - onset dia-
betes were resistant. Twenty - one years later, the fi rst measure-
ment of plasma insulin levels in patients with T2DM  [11]  found 
that they had greater than normal values in the fasting and post-
prandial state, providing further evidence for insulin resistance. 
Over the following 40 years, numerous studies (summarized in 
 [4,5,12] ) reported that patients with T2DM, people with impaired 
glucose tolerance (IGT), and fi rst - degree relatives of individuals 
with T2DM who subsequently developed T2DM were hyperin-
sulinemic and insulin resistant  [13,14] . 

 The problem with interpretation of the results of these studies 
is that they failed to take the following into consideration: 
   •      Importance of the dynamics of insulin secretion.  
   •      Appropriateness of the plasma insulin level for the prevailing 
stimulus for insulin secretion (i.e. plasma glucose level).  
   •      Relation of  β  - cell function to insulin resistance.    

  Importance of the  d ynamics of  i nsulin  s ecretion 
 Although the fi nding was originally described by Yalow  &  Berson 
in 1960, it was not well appreciated until 1967 that, during oral 
glucose tolerance tests, the elevated 2 - hour post - challenge plasma 
insulin levels in people with T2DM were accompanied by reduced 
early (30 minute) insulin responses  [15] . These decreases in early 
insulin release are evident even in individuals with mild IGT 
(Figure  10.1 ). This reduction in early insulin response has been 
shown to diminish suppression of endogenous glucose produc-
tion after glucose ingestion  [16] ; the resultant hyperglycemia 
provides a greater stimulus to the  β  - cell, explaining the late (2 
hour) hyperinsulinemia. The latter had often been erroneously 
interpreted to be the result of insulin resistance  [4 – 6] . Studies in 
normal volunteers, however,  in whom early insulin responses 
were diminished by infusion of somatostatin so as to simulate the 
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ing the ability of their pancreatic  β  - cells to compensate for insulin 
resistance. In genetically predisposed individuals with normal 
glucose tolerance, impaired  β  - cell function is demonstratable 
even when no insulin resistance is apparent  [27 – 29] . During stage 
2, decreases in insulin sensitivity emerge usually as a result of 
unhealthy lifestyles (environmental), and these, at least initially, 
are compensated for by an increase in  β  - cell secretion so that 
glucose tolerance remains normal. Nevertheless, despite this 
increase in insulin secretion, a reduction in  β  - cell function can 
be demonstrated even when individuals ’  plasma glucose levels are 
in the normal range  [27 – 31] . During stage 3,  β  - cell function 
deteriorates further to the point that when challenged, as during 
a glucose tolerance test or a standardized meal, postprandial 
glucose tolerance becomes abnormal. At this point,  β  - cell func-
tion is clearly abnormal but suffi cient to maintain normal fasting 
plasma glucose concentrations. In stage 4, there is further deterio-
ration in  β  - cell function noted at least in part from glucose toxic-
ity as a result of postprandial hyperglycemia. This also can reduce 
insulin sensitivity. Fasting plasma glucose concentrations increase 
in this stage because of an increase in basal endogenous glucose 
production. Finally, in stage 5, as a result of further deterioration 

  Relation of  β  -  c ell  f unction to  i nsulin  r esistance 
 Obesity and other acquired factors that cause insulin resistance 
result in an adaptation of the  β  - cell so as to maintain normal 
glucose homeostasis  [7,22] . This adaptation, fi rst demonstrated 
in the case of obesity in 1974, results in an increase in the  β  - cell 
sensitivity to glucose  [23] . The hyperbolic relationship between 
 β  - cell function and tissue insulin sensitivity, fi rst demonstrated 
by Bergman  et al .  [24]  in 1981 and subsequently confi rmed in 
numerous other studies  [7,22,25] , exists in such a way that as 
tissue insulin sensitivity decreases,  β  - cell function increases to 
maintain normal glucose homeostasis (Figure  10.2 ). Thus, in 
addition to the prevailing stimulus for insulin secretion (e.g. 
plasma glucose concentration) the status of an individual ’ s 
insulin sensitivity must be taken into consideration in order to 
assess the appropriateness of  β  - cell function  [7,8] .     

  Role of  β  -  c ell  d efects in the  n atural  h istory of 
 t ype 2  d iabetes 

 Longitudinal and cross - sectional studies indicate that most indi-
viduals destined to develop T2DM pass through fi ve stages 
(Figure  10.3 )  [7,8,26] . The fi rst stage begins at birth, when glucose 
homeostasis is normal but individuals are at risk for T2DM 
because of genetic polymorphisms (diabetogenic genes) or an  in 
utero  environment predisposing them to become obese and limit-
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     Figure 10.2     Curvilinear relationship between  β  - cell function (represented by 
the acute insulin response to intravenous arginine) and insulin sensitivity 
(represented by the glucose infusion rate necessary to maintain euglycemia [M] 
during a hyperinsulinemic clamp). People who maintained normal glucose 
tolerance (NGT) stayed on the curvilinear line. People whose glucose tolerance 
deteriorated to impaired glucose tolerance (IGT) and to type 2 diabetes (DM) fell 
below the line, demonstrating inadequate  β  - cell compensation for insulin 
resistance.  Reproduced from Weyer  et al .  [22] , with permission from the 
American Society for Clinical Investigation.   
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     Figure 10.3     The stages of glucose tolerance and associated  β  - cell function 
and insulin sensitivity, from normal glucose tolerance (NGT) through impaired 
glucose tolerance (IGT), with or without impaired fasting glucose (IFG), and 
fi nally type 2 diabetes mellitus (DM).  
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dependent upon glucose entry in the  β  - cell and its metabolism, 
synthesis of insulin and insulin granules, cytochemical structures 
(microfi laments/microtubules) and other proteins necessary for 
moving granules toward the  β  - cell membrane and facilitating 
their melting into the membrane so that their contents can be 
released.   

 The insulin secretion pattern throughout the day is more com-
plicated than that seen during acute square wave of hyperglyc-
emia in hyperglycemic clamp experiments.  In vivo  insulin 
secretion was found to be pulsatile, undergoing short (rapid) and 
long (ultradian) oscillations. The basis for these is still poorly 
understood, but there is evidence that the integrity of these 
responses is necessary for maintenance of normal glucose home-
ostasis  [41] . The rapid oscillations correspond to serial secretory 
insulin bursts (Figure  10.5 ). These high frequency bursts occur 
every 5 – 15 minutes and account for the majority of insulin 
secreted in humans  [42 – 44] . Additionally, enhanced insulin 
secretion following stimulation with GLP - 1, sulfonylureas, or 
oral glucose can be accounted for by increase in the amplitude of 
these secretory pulses  [45 – 48] . By contrast, inhibition of insulin 

in  β  - cell function, both fasting and postprandial glucose levels 
reach levels diagnostic of diabetes.   

 Insulin secretion normally decreases with age. The decline rate 
has been shown to be about 0.7 – 1% per year for basal and glu-
cose - stimulated insulin secretion during adult human life in indi-
viduals with normal glucose tolerance  [32 – 36] . The rate of decline 
is about twofold greater in people with IGT  [33]  and reaches 
approximately 6% per year in patients with T2DM  [37,38] . 
Insulin sensitivity does not decrease per se with aging and 
decreases in insulin sensitivity when observed are most likely 
related to other factors such as changes in body composition and 
physical fi tness.  

  Insulin  s ecretion in  t ype 2  d iabetes, in  IGT  and 
in  g enetically  p redisposed  i ndividuals with 
 n ormal  g lucose  t olerance 

  Overview of  i nsulin  s ecretion in  h ealthy  i ndividuals 
 Proinsulin, the insulin precursor, is converted to insulin and C 
peptide within the  β  - cell secretory granule. The conversion 
process requires the sequential action of three peptidase enzymes 
(prohormone convertases 2 and 3, and carboxypeptidase H) and 
produces four proinsulin conversion intermediates (32,33 - split, 
65,66 - split, des - 31,32 - split, and des - 64,65 - split proinsulins) 
before ultimately yielding insulin and C peptide (see Figure  6.5 ). 
Normally, a small amount of intact proinsulin and its conversion 
intermediates, mostly the des - 31,32 - split proinsulin, are released 
into the circulation along with insulin and C peptide. They are 
estimated to constitute 10 – 20 % of total immunoreactive insulin 
measured in the circulation during the basal state  [39,40] . 

 The events that lead to release of insulin from  β  - cells are 
complex (see Chapter  6 ). In response to an acute square wave of 
hyperglycemia such as that used in hyperglycemic clamp experi-
ments in humans or in studies of perfused rat pancreas, insulin 
release is biphasic (Figure  10.4 ). It is characterized by an acute 
increase in insulin release lasting approximately 10 minutes, 
termed fi rst - phase release, followed by a slowly increasing second 
phase of insulin release that is more sustained and typically per-
sists as long as glucose is elevated. The fi rst - phase release has been 
related to insulin - secretory granules located close to the  β  - cell 
plasma membrane (immediate releasable pool). In response to an 
increase in extracellular glucose, islet ATP and cyclic adenosine 
monophosphate (cAMP) levels increase, causing closure of ATP -
 sensitive potassium channels; this causes depolarization of the 
 β  - cell membrane and an infl ux of calcium through voltage - sen-
sitive calcium channels; the resultant increase in intracellular 
calcium leads to movement of insulin - containing granules toward 
the  β  - cell membrane, where they merge/incorporate/melt into 
the membrane with release of the granules ’  contents. The second -
 phase insulin release involves synthesis of new insulin molecules 
as well as ATP - dependent mobilization of granules from a storage 
pool into the rapidly releasable pool (see Chapter  6 ). Thus, the 
normal  β  - cell response to an increase in glucose concentration is 
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     Figure 10.4     Biphasic plasma insulin responses during a square wave 
hyperglycemic clamp in normal volunteers with and without a fi rst - degree 
relative with type 2 diabetes.  Reproduced from Pimenta  et al .  [29] , with 
permission from the American Medical Association.   
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pulses are less amplifi ed after meals and less likely to follow 
plasma glucose oscillations  [42,59] .   

 The ratio of proinsulin and its conversion intermediates to 
insulin in the circulation is at least twice as high in patients with 
T2DM than population norms. The increased ratio is noted in 
the basal and stimulated insulin secretion states and indicates less 
successful proinsulin to insulin conversion within  β  - cell secretory 
granules  [39,40,60] .  

  Abnormalities in  p atients with  IGT  and in  g enetically 
 p redisposed  i ndividuals 
 Most of the above abnormalities are also found in individuals 
with IGT, although at a lesser intensity. These include reduced 
fi rst and second - phase responses to intravenous glucose (Figure 
 10.9 )  [61] , reduced early insulin response to oral glucose  [16] , 
decreased responses to non - glucose stimuli  [62] , reduced ability 
of the  β  - cell to compensate for insulin resistance  [7,22] , altera-
tions in rapid and ultradian oscillations of insulin secretion 
 [63,64]  as well as increased proinsulin   :   insulin ratio  [65] .   

 Perhaps the most convincing evidence that impaired  β  - cell 
function is the primary genetic defect comes from studies of fi rst -
 degree relatives of individuals with T2DM who still have normal 
glucose tolerance but have reduced insulin responses in the 
absence of insulin resistance  [2,61] , especially studies of monozy-
gotic twins  [31,66 – 68] . 

 Other than hyperinsulinemia to compensate for the increased 
insulin resistance, obese patients have insulin secretion pattern 
similar to non - obese subjects, and most of the above abnormali-
ties are not present in obesity in the absence of comorbid diabetes 
or IGT conditions  [51,69] .   

  Possible  m echanisms 

  Genetic  c auses 
  β  - Cell dysfunction in T2DM results from a combination of 
genetic and acquired factors. Unlike MODY,  “ garden variety ”  
T2DM is a polygenic disorder; this means that multiple genes (i.e. 
polymorphisms), each insuffi cient in themselves, must be present 
with or without acquired abnormalities in order to cause diabetes 
 [70,71] . Such genes may affect  β  - cell apoptosis, regeneration, 
glucose sensing, glucose metabolism, ion channels, energy trans-
duction, microtubules/microfi laments and other islet proteins 
necessary for the synthesis, packaging, movement and release of 
secretory granules  [72,73] . To date, only a few polymorphisms 
have been identifi ed as risk factors with confi dence (see Chapter 
 12 ): one involves an amino acid polymorphism (Pro12Ala) in the 
peroxisome proliferator - activated receptor -  γ  (PPAR γ ), which is 
expressed in insulin target tissues and  β  - cells  [74] ; this apparently 
conveys susceptibility to adverse effects of FFA on insulin release. 
A second involves the gene encoding calpain - 10, a cysteine pro-
tease that modulates insulin release as well as insulin effects on 
muscle and adipose tissue  [75] . A third is the E23K variant of the 
 KIR6.2  gene (potassium inwardly - rectifying channel J11 gene), 

secretion by somatostatin or insulin - like growth factor 1 (IGF - 1) 
is accomplished by a decrease in the amplitude of these pulses 
 [49,50] . These rapid oscillations are superimposed on slower and 
larger ultradian oscillations (Figure  10.6 ) which occur every 80 –
 150 minutes. The ultradian oscillations are present during basal 
conditions and have clear amplifi cation after meals. They also 
tend to closely follow similar oscillations of plasma glucose 
 [51,52] .    

  Abnormalities in  t ype 2  d iabetes 
 Defects in  β  - cell function are quite obvious by the time T2DM is 
diagnosed. For example, in the UK Prospective Diabetes Study, 
evaluation of  β  - cell function using the homeostasis model assess-
ment (HOMA) indicated that  β  - cell function was at diagnosis 
already reduced by 50% and that there was subsequent further 
deterioration, regardless of therapy (Figure  10.7 )  [37] . Commonly 
found abnormalities include absent fi rst - phase and diminished 
second - phase release in response to hyperglycemia in hyperglyc-
emic clamp experiments  [53 – 55] . Responses to ingestion of 
mixed meals (Figure  10.8 ) and to non - glucose stimuli are delayed 
or blunted with a decrease in maximal secretory capacity  [55 – 58] . 
Abnormal oscillatory pattern is also observed. The pulses, both 
rapid and ultradian, are smaller and less regular. The ultradian 
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     Figure 10.5     Insulin concentration profi le in a canine portal vein illustrating the 
rapid secretory oscillations before and after glucose ingestion. There is a marked 
increase in pulse amplitude after glucose ingestion (arrow).  Reproduced from 
Porksen  et al .  [47] , with permission from the American Diabetes Association.   
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which has been shown in a large association study to increase the 
risk of T2DM presumably through its effect on  β  - cells ’  potassium 
channel and, in turn, on insulin secretion  [76,77] . 

 More recently, variants of the transcription factor 7 - like 2 gene 
( TCF7L2 ) were found to be associated with increased risk of 
T2DM  [78 – 80] . Insulin secretion is decreased in carriers of the 
at - risk alleles  [78] . This is thought to be a result of impaired 
expression of GLP - 1, a peptide encoded by the human glucagon 
gene ( GCG ) whose expression in gut endocrine cells is regulated 
by  TCF7L2   [81] . 

 Use of knockout techniques in mice has identifi ed several 
elements of the insulin signaling cascade that might be potential 
sites where genetic polymorphisms may affect  β  - cell function, 
but to date none of these has been found to occur in people 
with T2DM  [82] .  

  Acquired  f actors 
 Several acquired and/or environment factors have been identifi ed 
that may increase the risk for developing T2DM by impairing 
 β  - cell function. 
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     Figure 10.6     Twenty - four hour insulin secretory 
profi le showing ultradian oscillations in a normal 
weight subject. Meals were consumed at 0900, 
1300 and 1800. Statistically signifi cant pulses of 
secretion are shown by the arrows.  Reproduced from 
Polonsky  et al .  [51] , with permission from the 
American Society for Clinical Investigation.   
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     Figure 10.7      β  - Cell function as measured by the homeostasis model 
assessment (HOMA) method in patients with type 2 diabetes from the UK 
Prospective Diabetes Study (UKPDS).  β  - Cell function is already reduced to 50% 
at diagnosis and declines thereafter, despite therapy.  Adapted from UK 
Prospective Diabetes Study Group  [37] .   
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between those who were born thin and subsequently became 
obese. Recall that one of the hallmarks of individuals destined to 
develop T2DM is their failure to increase their insulin release 
appropriately to compensate for their acquired insulin resistance 
 [85] . Nevertheless, because not all individuals with early life mal-
nutrition subsequently develop T2DM if they become obese, this 
situation must be viewed as one risk factor among many that 
infl uence susceptibility.  

  Glucotoxicity 
 There is abundant evidence that both prolonged  [86]  and acute 
hyperglycemia  [87]  can adversely affect  β  - cell function. Moreover, 
improving glycemic control with the use of secretogogues, insulin 
sensitizers and even insulin will improve  β  - cell function in 
patients with T2DM  [88 – 91] . The mechanisms by which hyper-
glycemia exerts its adverse effects on  β  - cells are complex and 
multifactorial. There is evidence that these mechanisms involve 
increased production of reactive oxygen species (ROS) within 
 β  - cells, oxidative stress - induced alteration of genes transcription 
and proteins expression, and increased  β  - cell apoptosis  [92] . 
Nevertheless, because impaired  β  - cell dysfunction is clearly 
evident in genetically predisposed individuals with normal 
glucose tolerance  [2]  and because optimization of glycemic 
control does not completely reverse impaired  β  - cell function in 
T2DM, this so - called glucotoxicity is clearly a secondary phe-
nomenon but one that could accelerate deterioration over time.  

  Lipotoxicity 
 In addition to elevated levels of plasma glucose, individuals with 
T2DM have increased circulating levels of FFA as do people who 
are obese  [93] . Obese individuals have greater plasma FFA levels 
primarily because of their greater fat mass  [94] . Obese people 
with T2DM have somewhat greater circulating FFA levels than 
obese people without T2DM, not because of greater release of 
FFA into the circulation, but because of decreased FFA clearance 

  Malnutrition  in  u tero  and  e arly  c hildhood 
 Animal experiments and retrospective studies in humans have 
provided evidence that malnutrition  in utero  and early childhood, 
as well as  in utero  exposure to hyperglycemia, is associated with 
an increased risk to develop T2DM later in life. Hales  et al.   [83,84]  
demonstrated an inverse relationship between weight at birth and 
at 1 year and the development of T2DM in adult life. It was pro-
posed that malnutrition  in utero  and during the fi rst few months 
of life may damage  β  - cell development; it is also possible that 
nutritional defi ciency at this stage may program the  β  - cell so as 
to limit its subsequent ability to adapt to overnutrition. The latter 
possibility is supported by the fact that the strongest link was 
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     Figure 10.8     Plasma concentrations of glucose and insulin in subjects with type 
2 diabetes and non - diabetic control subjects in response to mixed meals. 
 Adapted from Polonsky  et al .  [165] .   
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impaired glucose tolerance (IGT), with or without a family history of diabetes. 
 Data from Van Haeften  et al .  [61] .   



Abnormalities of Insulin Secretion and β-Cell Defects Chapter 10

167

less, is impaired in T2DM  [121,122] . Insulin responses to both 
GLP - 1  [123]  and GIP  [124]  are reduced. It is not clear whether 
the defective incretin effect is merely a manifestation of a general-
ized reduction in  β  - cell function as is the reduced insulin response 
to arginine  [56,57,121,125] . Antidiabetic drugs, however, that 
enhance incretins activity or level (GLP - 1 analogues and dipep-
tidyl peptidase - IV inhibitors) have proven to be effective in 
lowering glucose in T2DM  [126] .  

  Islet  a myloid 
 A characteristic feature present in over 90% of patients with 
T2DM is the deposition of islet amyloid (see below). Amyloid is 
composed of insoluble fi brils formed from a protein called amylin 
or islet amyloid polypeptide (IAPP)  [127,128] . Normally, IAPP 
is co - secreted with insulin from  β  - cells at the molar ratio of 
1   :   10 – 50  [129] . Although the mature form of human IAPP has 
been reported to impair insulin release and to be  β  - cell cytotoxic 
 [130] , it is unlikely to have a primary role in the pathogenesis of 
T2DM because it is not present in all patients with T2DM and is 
actually found in up to 20% of islets in elderly individuals with 
normal glucose tolerance  [131] . Moreover, most obese individu-
als who hypersecrete insulin do not develop T2DM even though 
IAPP is co - secreted with insulin. 

 Recent evidence from  in vitro  and animal studies suggests that 
small membrane permeant oligomers, but not the mature IAPP 
fi brils, are the cytotoxic form of IAPP. These oligomers form and 
act inside the  β  - cell, possibly causing endoplasmic reticulum 
stress - induced apoptosis  [132,133] . In human, there is still no 
evidence that patients with T2DM have these toxic oligomers 
present in their pancreatic islets. However, the S20G mutation of 
the IAPP gene that increases the susceptibility of IAPP to form 
oligomers is linked to a rare familial form of T2DM  [134 – 136] .  

  Cytokines 
  β  - Cell function and life cycle are known to be infl uenced by 
cytokines especially the proinfl ammatory cytokine interleukin - 1 β  
(IL - 1 β ). IL - 1 β  is known for its cytokine - meditated  β  - cell destruc-
tion in type 1 diabetes  [137,138]  but, more recently, it has received 
attention for its role in the pathogenesis of T2DM.  In vitro  studies 
have shown that  β  - cells are capable of producing IL - 1 β  in 
response to high glucose and leptin levels  [139,140] . IL - 1 β  
expressing  β  - cells were found in pancreatic sections of patients 
with T2DM but not in healthy subjects  [140] . At low concentra-
tions, IL - 1 β  enhances human  β  - cell proliferation and decreases 
its apoptosis, whereas at higher concentration it impairs  β  - cell 
insulin release and increases its apoptosis  [140 – 142] . Apoptosis 
here is thought to be mediated by Fas, a member of the tumor 
necrosis factor receptor family that triggers apoptotic cell death 
independent of TNF -  α . IL - 1 β  upregulates Fas expression within 
 β  - cells, ultimately enabling Fas - induced apoptosis  [142,143] . An 
IL - 1 receptor antagonist (IL - 1Ra), which protected human  β  - cell 
from IL - 1 β  adverse effects  in vitro   [140] , improved glycemic 
control in patients with T2DM through enhanced  β  - cell secretory 
function in a preliminary study  [144] . 

 [95] . A number of  in vitro  and animal studies have demonstrated 
that prolonged elevation of plasma FFA impairs  β  - cell function 
 [96,97] . Evidence suggests that fatty acids inhibit glucose stimu-
lated insulin secretion, impair insulin gene expression and, more 
importantly, promote  β  - cell apoptosis  [92] . One proposed mech-
anism involves the uncoupling protein - 2 (UCP - 2), a mitochon-
drial carrier protein that uncouples substrate oxidation from ATP 
synthesis  [98] . FFA increase UCP - 2 activity in  β  - cells. This 
impairs ATP generation from glucose metabolism and conse-
quently decreases glucose stimulated insulin secretion  [99,100] . 
FFA impair insulin gene expression by increasing ceramide gen-
eration which reduces the binding activity of pancreas - duode-
num homeobox - 1 (Pdx - 1) and MafA, two transcription factors 
essential for regulation of multiple islet - associated genes includ-
ing insulin gene  [101] . In healthy human volunteers, however, it 
has not been possible to demonstrate consistently a deleterious 
effect of acute elevation of plasma FFA on  β  - cell function. 
Moreover, the effect of chronic elevation of plasma FFA on  β  - cell 
function has not been studied in humans  [102,103] . Some animal 
and  in vitro  studies suggest that FFA exert their adverse effects on 
 β  - cell function only in the presence of hyperglycemia, hence the 
suggestion to use the term glucolipotoxicity instead of lipotoxic-
ity  [92] . It is clear that increased plasma FFA is not a primary 
cause of T2DM, but it is possible that a certain genetic back-
ground may prevent some individuals from responding to the 
adverse effects of FFA on  β  - cell function and thus increase their 
risk for developing T2DM.  

  Obesity 
 Obesity is associated with insulin resistance and is the most pre-
dictive acquired risk factor for development of T2DM (see 
Chapter  14 )  [104] . This may be mediated by a variety of factors 
released from adipose tissue that can adversely affect  β  - cell func-
tion, including elevated levels of FFA, TNF -  α   [105] , resistin 
 [106] , leptin  [107] , adipsin  [108]  and amylin  [109] , as well as 
tissue accumulation of lipid  [110,111] . Most obese individuals, 
however, compensate for their insulin resistance with an appro-
priate increase in insulin release and do not develop diabetes.  

  Inadequate  s timulation by  i ncretins 
 Incretins are hormones released by the gut in response to food 
ingestion, which augment insulin release in what is known as the 
incretin effect (i.e. more insulin responses after oral than intra-
venous glucose despite comparable glycemia). Two major incre-
tins are GLP - 1 and GIP (see Chapters  6  and  30 ). In addition 
to promoting the biosynthesis and secretion of insulin  [112] , 
they increase  β  - cell replication and inhibit its apoptosis  in vitro  
and were found, in rodent model, to increase  β  - cell mass 
 [113 – 116] . 

 Patients with T2DM have higher plasma GIP levels after meal 
ingestion when compared with healthy subjects  [114,117] . Results 
are confl icting in regard to GLP - 1 and, if found, the differences 
in levels between patients with T2DM and healthy subjects have 
been generally modest  [118 – 120] . The incretin effect, neverthe-
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 Other infl ammatory changes and immunologic abnormalities 
have been reported in patients with IGT and T2DM. In addition 
to increased systemic cytokines, these abnormalities involve 
acute - phase proteins and mediators associated with endothelial 
cell activation  [145] . Most of these changes are small and their 
contribution to  β  - cell failure is unclear.    

  Islet and  i slet  c ell  c hanges in  t ype 2  d iabetes 

 Pancreatic islets represent 3 – 5% of the adult normal pancreas and 
 β  - cells comprise 60 – 80% of the islet cell population (see Chapter 
 6 ). 

  Histology of  i slets in  t ype 2  d iabetes 
 A pathologic feature present in 90% of patients with T2DM is the 
abnormal extracellular deposits of islet amyloid (Figures  10.10  
and  10.11 ). These deposits are localized in the pancreas and are 
not part of a systemic amyloidosis disorder. The islet amyloid is 
formed from IAPP or amylin, a 37 amino acid peptide  [127,128] . 
IAPP is normally produced by the  β  - cell, stored along with 
insulin in its secretory granules, and then co - secreted with insulin 
following  β  - cell stimulation  [129,146] . IAPP has no known phys-
iologic function in human. In patients with T2DM, the soluble 
IAPP peptides assume a  β  - sheet structure and oligomerize to 
form insoluble amyloid deposits  [147,148] . It is still not clear 
what triggers this process and whether this simply refl ects islet 
cell deterioration and destruction. Similar deposits, nevertheless, 
can be found in a minority of people without diabetes, especially 
with aging  [131] . The IAPP and its amyloid deposits have not 
been clearly found to be cytotoxic to  β  - cells and recent evidence 
suggests that the formation of intracellular smaller IAPP oligom-

     Figure 10.10     Amyloid deposition in islets of a patient with type 2 diabetes. 
Amyloid formed from islet amyloid polypeptide (IAPP; stained pink with Congo 
red) occupies more than 50% of the islet mass and is largely in the centre of the 
islet. Insulin - containing  β  - cells (labeled brown with immunoperoxidase) are 
clustered towards the periphery of the islet and are very reduced in number. 
Original magnifi cation  × 400.  

     Figure 10.11     Electron - micrographic appearances of islet amyloid deposits in 
type 2 diabetes. In a patient with type 2 diabetes, amyloid (Am) fi brils closely 
surround the  β  - cells (B) and deeply invaginate the distorted cell membrane. 
Scale bar, 1    μ m.  

ers is possibly the cytotoxic form associated with increased  β  - cell 
apoptosis in animal studies  [132,133] .   

 Other histologic changes include a decreased islet mass, an 
alteration in the relative proportion of the islet cell population 
(see below), and variable degrees of fi brosis of islets and endo-
crine tissue  [131,149 – 151] .  

   β  - Cell  c hanges 
 It is generally agreed that  β  - cell mass in T2DM is reduced by 
about 30 – 50% compared with that of weight - matched individu-
als with normal glucose tolerance  [131,150 – 159] .  β  - Cell mass has 
also been reported to be decreased in people with impaired 
fasting glucose  [154] . Reduction in  β  - cell secretory granules 
amount has also been reported  [160] . The decline in  β  - cell mass 
is caused by a decrease in the number of cells rather than the 
volume of individual cells. A several - fold increase in  β  - cell apop-
tosis without an adequate compensatory increase in replication 
or neogenesis rate is responsible for the reduction in cell numbers 
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 [154,160] . The reduced  β  - cell mass is usually insuffi cient by itself 
to explain the decrease in insulin secretory capacity in patients 
with T2DM  [55,58] , suggesting additional functional, therefore 
potentially reversible, defects.  

   α  - Cell and  g lucagon  c hanges 
 The  α  - cell mass is either unchanged or slightly increased 
 [131,151] ; this would result in a relative increase in  α  - cells 
because  β  - cell mass decreases. Abnormal  α  - cell function in 
people with IGT and T2DM include: impaired suppression by 
hyperglycemia, excessive responses to amino acid or mixed meals 
and diminished responses to hypoglycemia  [161] . This has been 
correlated with reduced  β  - cell function and could therefore be a 
secondary phenomenon involving glucose toxicity, lipotoxicity 
and resistance to insulin. 

 Absolute or relative hyperglucagonemia is a hallmark of both 
T1DM and T2DM. Although this exacerbates the consequences 
of impaired insulin release on hepatic glucose production  [16] , it 
is likely to be a secondary phenomenon, because it is readily cor-
rectable by physiologic insulin replacement  [161] .  

   δ  - Cell and  s omatostatin  c hanges 
  δ  - Cells of the islets release somatostatin, an inhibitor of insulin 
and glucagon secretion. Relatively little is known of alterations in 
 δ  - cell population and function in people with T2DM. Studies 
have reported  δ  - cell mass to be either increased  [162]  or with no 
signifi cant change  [151,152] . Somatostatin secretion is found to 
be increased in animal models  [163,164] . Given the above fi nd-
ings, it is unlikely that alterations in  δ  - cell mass and release of 
somatostatin to be a primary cause for the reduced insulin secre-
tion and the relatively excessive glucagon release found in T2DM.   

  Conclusions 

 Type 2 diabetes is a disorder involving both inheritable and 
acquired abnormalities that adversely affect  β  - cell function and 
mass and tissue responses to insulin. Current evidence favors the 
concept that the predominant genetic impact involves impaired 
insulin secretion whereas additional acquired elements, and thus 
potentially preventable factors, also adversely affect  β  - cell func-
tion and tissue responses to insulin. Much of the research focus 
in recent years is directed toward understanding the molecular 
and genetic basis of the disease. Being a polygenic disorder, mul-
tiple different polymorphisms that diminish  β  - cell function are 
likely to be identifi ed. New therapies that preserve  β  - cell function 
and eventually reverse the defects may be developed in the future.  
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