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 Keypoints 
        •      The pathophysiologic mechanisms in type 1 diabetes (T1DM) involve 

loss of islet  β  - cell secretory function caused by selective killing of these 
cells primarily by aggressive autoimmune responses involving both 
cellular and humoral immune pathways.  

   •      Infl ammatory cells heavily infi ltrate pancreatic islets leading to insulitis 
where CD8 +  T lymphocytes are thought to be responsible for selective 
and specifi c killing of  β  - cells.  

   •      The complex etiology of T1DM involves a strong genetic predisposition, 
mainly human leukocyte antigen class II genes, and several putative 
environmental factors, which are thought to trigger autoimmunity or 
progression to clinical T1DM.  

 
  •      A preclinical prodrome in T1DM may vary in duration in which one or 

more islet autoantibodies may precede insulitis and predict the disease 
at the early stages of pathologic insult.  

   •      In genetically susceptible individuals with islet autoantibodies, 
metabolic indicators such as insulin release abnormalities and insulin 
resistance may best predict T1DM especially near clinical onset.  

   •      Based on the improving understanding of the etiopathogenesis of 
T1DM, several clinical trials have been launched aiming at halting the 
autoimmunity responses, retarding disease progression or preserving 
remaining  β  - cell function after clinical onset.     
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  Introduction 

 The differentiation between the two main forms of diabetes mel-
litus  –  type 1 (previously known as insulin dependent or juvenile 
onset) and type 2 diabetes (non - insulin dependent or adult onset) 
 –  has been possible for almost 50 years. In 1965, insulitis was 

rediscovered  [1] , supporting the view that autoimmune islet 
infl ammation was associated with the etiopathology in type 1 
diabetes mellitus (T1DM), a phenomenon absent in type 2 dia-
betes mellitus (T2DM)  [2] .The evidence for islet autoimmunity 
was further supported during the last decade by the identifi cation 
of cellular reactivity with islet antigens  [3]  and the association 
between T1DM and other organ - specifi c autoimmune disorders 
 [4] . More importantly, the long sought after antibodies against 
islet cells (ICA) were fi nally detected in sera of patients with 
concomitant T1DM and autoimmune polyendocrine syndrome 
 [5] . At the same time, T1DM was found to be strongly associated 
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with the human leukocyte antigen (HLA)  [6] . It was also noted, 
however, that around 10% of adult patients classifi ed as having 
T2DM were positive for ICA, a group of patients now commonly 
known as having latent autoimmune diabetes of adults (LADA) 
 [7] . Several genetic and autoimmune similarities are found 
between childhood T1DM and LADA; nevertheless, these two 
entities differ in other genetic and autoimmune processes  [8] . 

 T1DM results from an almost complete loss of insulin brought 
about by selective autoimmune destruction of the pancreatic 
islets  β  - cells, which manifests clinically as hyperglycemia - related 
symptoms and signs. Among non - Hispanic Caucasian popula-
tions, more than 90% of T1DM is immune - mediated (also known 
as T1ADM), in which HLA association is documented and one 
or more islet cell autoantibodies are detectable at time of diagno-
sis  [2] . The remaining 10%, often termed  “ idiopathic ”  (also 
known as T1BDM as discussed later in this chapter), is highly 
inheritable but has neither HLA associations nor detectable islet 
cell autoantibodies  [2] . The latter subgroup is found among non -
 Caucasian ethnic groups such as Asians  [9] , African - Americans 
and Hispanic - Americans and is thought to be related to viral 
infections  [2,10] . Clinically, the two forms have similar clinical 
manifestations and diabetic ketoacidosis may develop in both. 

 The pathophysiologic mechanisms in T1DM include two dis-
tinct stages in genetically susceptible individuals: 
  1     Triggering of autoimmunity resulting in one or multiple islet 
cell autoantibodies associated with gradual  β  - cell killing; and  
  2     Loss of  β  - cell secretory function manifested by the loss of 
fi rst - phase insulin release (FPIR), reduced C peptide levels, then 
glucose intolerance and fi nally hyperglycemia (Figure  9.1 ).      

 The autoimmune process with mononuclear infi ltration of 
infl ammatory cells (insulitis) including autoreactive CD8 +  T lym-
phocytes selectively destroys the  β  - cells. Both the humoral and 
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     Figure 9.1     Schematic presentation of the natural 
history of type 1 diabetes (T1DM) showing possible 
etiopathologic factors and disease markers.  
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     Figure 9.2     Diagrammatic presentation showing the effects of multiple islet 
autoantibodies on the risk of type 1 diabetes (T1DM) in the Diabetes Prevention 
Trial Type 1 (DTP - 1). Courtesy of Jay Skyler.  

cellular pathways of immunity are involved in the disease process; 
however, the role of B lymphocytes is evident in laboratory 
animals such as the non - obese diabetic (NOD) mice but not in 
humans  [11] . Islet autoantibodies, however, may be present 
before insulitis  [12]  and therefore may not be a direct conse-
quence of insulitis but rather markers of ensuing islet autoim-
munity. The induction of islet autoimmunity in genetically 
susceptible individuals and the appearance of autoantibodies 
against specifi c islet cells autoantigens may precede the clinical 
syndrome by months to several years (Figure  9.2 )  [13] . During 
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  Etiology 

 The etiology of T1DM is multifaceted and may be divided into 
genetic and environmental etiology and possible gene – environ-
ment interactions. Genetic susceptibility increases predisposition 
for triggering islet autoimmune responses (Figure  9.1 ). Genetic 
factors may also help to accelerate the failure of  β  - cell secretion 
in response to exogenous environmental factors such as obesity. 

  Genetics 
 The concordance rate of T1DM among monozygotic twins ranges 
from 30 – 50% up to 70%  [16] , depending on follow - up duration, 
compared to only 10 – 19% among dizygotic twins  [17] . This vari-
ability highlights the complexity of etiologic components of 
T1DM that involves the interaction of multiple genetic factors 
with a variety of environmental factors. Although more than 85% 
of T1DM occurs in individuals with no previous fi rst - degree 
family history, the risk among fi rst - degree relatives is about 15 
times higher than the general population  [18] . An affected father 
confers a 6 – 9% risk of T1DM to his offspring compared to 2 – 4% 
if the mother is affected and up to 30% risk if both parents are 
affected  [18,19] . 

 The genetics of T1DM has been studied extensively despite the 
fact that the mode of inheritance remains uncertain. Recent 
genome - wide association studies have confi rmed the strong asso-
ciations between T1DM and HLA; however, at least 47 non - HLA 
genetic factors are thought to contribute. The most prominent 
genetic factors are listed in Table  9.1 .   
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     Figure 9.3     The relation between  β  - cell secretory capacity and insulin 
sensitivity.  Courtesy of Carla Greenbaum, after Kahn  et al .  [15] .   

  Table 9.1    The most important genetic factors associated with the risk of type 1 diabetes mellitus ( T 1 DM ). 

   Genetic factor     Location      Description     Odds ratio  

   HLA genes   *   
 HLA class II  

  Chr.6p21    Highest risk  Genotype      DR3 - DQ2/DR4 - DQ8     18.7  
  Highest risk  Haplotypes      DR4 - DQ8 (DRB1 * 04   ‡    - DQA1 * 0301 - B1 * 0302)     2.0 – 11.4  

   DR3 - DQ2 (DRB1 * 03 - DQA1 * 0501 - B1 * 0201)     2.5 – 5.0  
  Most protective    Haplotypes      DR15 - DQ6 (DRB1 * 15 - DQA1 * 0102 - B1 * 0602)     0.03 – 0.2  

   DR14 - DQ5 (DRB1 * 14 - DQA1 * 0101 - B1 * 0503)     0.02  

   Non - HLA genes    †     
  INS - VNTR    Chr.11p15    Insulin II: Regulate central tolerance to insulin    2.25  
  PTPN22    Chr.1p13    PTPN8, LYP. Protein tyrosine phosphatase non - receptor type 22    1.95  
  IL2RA (CD25)    Chr.10p15    Interleukin - 2 receptor, alfa chain    1.70  
  C12orf30    Chr.12q24    Shares similarity with KIAA0614 protein    1.33  
  ERBB3    Chr.12p13    v - erb - b2 erythroblastic leukemia viral oncogene homolog 3    1.25  
  PTPN2    Chr.18p11    Protein tyrosine phosphatase non - receptor type 2    1.22  
  CLEC16A    Chr.16p13    KIAA0350: C - type lectine domain family 16, member A    1.22  
  CTLA - 4    Chr.2q33    Cytotoxic T - lymphocyte - associated protein - 4    1.20  
  IFH1 (MDA5)    Chr.2q24    Interferon induced with helicase C domain 1    1.15  

   HLA, human leukocyte antigen.  
   *    The odds ratio (OR) varies and ranges shown represent high - risk populations. Data from  [24,26] .  
    †     OR, odds ratio at 95% confi dence interval. Data from  [27] .  
   ‡    Not  DRB1 * 0403 .   

this autoimmunity period the number of islet autoantibodies may 
refl ect how  β  - cells are gradually destroyed. It is proposed that 
clinical manifestations became overt after loss of more than 80% 
of viable  β  - cell mass  [14] , although there may be variable degrees 
of both cellular regeneration and insulin sensitivity (Figure  9.3 ) 
 [15] .   

 The continuing progress in the understanding of the natural 
history of T1DM will be dependent on several longitudinal 
studies aiming at detecting factors that predict the disease and to 
implement both prevention and intervention trials.  
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 DQB1 * 0302 ,  DRB1 * 03  and  DRB1 * 0401 , which possesses an inde-
pendent risk, others confer protection and may  “ neutralize ”  
high - risk alleles when they are inherited together  [25] . The most 
common protective haplotypes are DQ6 ( DQA1 * 0102  -  B1 * 0602  
and  DQA1 * 0102 - B1 * 0603 ), also  DQA1 * 0101 - B1 * 0503  and 
 DQA1 * 0202 - B1 * 0303   [21,26] . Furthermore, other HLA class II 
(such as DPB1) and class I alleles have also been associated with 
T1DM risk and the search for new associations is continuing (for 
review see  [24] ). 

 Using a candidate gene approach, several other non - HLA 
genes were found to be associated with increased risk of T1DM, 
but their contribution is less than the HLA haplotype associations 
(for references see  http://www.t1dbase.org/page/Welcome/
display  or the T1D Genome Consortium website:  https://www.
t1dgc.org/home.cfm ). The most important genes are  INS - VNTR  
on chromosome 11,  PTPN22  ( LYP ) on chromosome 1,  IL2RA  
( CD25 ) on chromosome 10 (Table  9.1 )  [27] . 

   Environmental factors 
 The concordance rate of 50 – 70% among identical twins  [16] , the 
seasonality of diabetes incidence and time of birth  [28] , the asso-
ciation of diabetes with viral infections  [29]  and the fact that only 
10% of HLA - susceptible individuals develop T1DM  [28]  are 
among several observations that indicate a possible etiologic role 
of environmental factors (Figure  9.1 ). 

 The major histocompatibility complex (MHC) of the short 
arm of chromosome 6 harbors the main loci involved in the 
genetic susceptibility of T1DM as well as many other autoim-
mune diseases  [20] . The HLA genes represent almost 50% of the 
familial risk of T1DM. Certain alleles of the HLA region, such as 
the HLA class II DR and DQ alleles, are mainly present in specifi c 
association with each other, a phenomenon known as linkage 
disequilibrium. The HLA association of T1DM (Table  9.1 ) is 
therefore often described by haplotype or genotype of the 
individual  [21] . 

 The genotype that confers the highest risk of T1DM is the 
heterozygosity of the two high - risk HLA class II haplotypes: 
DR3 - DQ2 ( DRB1 * 03 - DQA1 * 0501 - B1 * 0201 ) and DR4 - DQ8 
( DRB1 * 04 - DQA1 * 0301 - B1 * 0302 ) (Table  9.1 )  [21,22] . One or 
both of these haplotypes were found in more than 95% of people 
with T1DM younger than 30 years but also in approximately 
40 – 50% of the general population  [23] . The concomitant inherit-
ance of high - risk alleles and haplotypes appears to increase the 
risk of T1DM signifi cantly through synergistic association of 
their single risks. For example, in patients with T1DM, DQ8 
( DQA1 * 0301 - B1 * 0302 ) is mostly inherited with certain variants 
of  DRB1 * 04  especially  DRB1 * 0401 ,  DRB1 * 0404 ,  DRB1 * 0402  
but not  DRB1 * 0403  which has negative association (Table  9.1 ). 
DQ2 ( DQA1 * 0501 - B1 * 0201 ), however, is mostly inherited with 
 DRB1 * 03   [21,24] . While certain alleles confer higher risk, such as 

  Table 9.2    The main putative environmental risk factors associated with type 1 diabetes mellitus ( T 1 DM ). 

   Factor     Proposed effect mechanisms     Examples  

  Maternal factors    Triggering autoimmune response    Gestational infections  
  Unknown    Higher maternal age  
  Unknown    Higher birth order  
  Unknown    ABO blood group incompatibility  

  Virus infections    Direct  β  - cell killing (cytolysis) 
 Mimicry of  β  - cell autoantigens 
 Autoreactive T - cell activation and subsequent 

 β  - cell killing 
 Inhibition of insulin production through inducing 

expression of HLA genes and interferon  

  Mumps virus 
 Rubella virus 
 Enterovirus/Coxsackie B virus 
 Rotavirus 
 Cytomegalovirus 
 Epstein – Barr virus  

  Dietary factors    Triggering autoimmune response    Bovine milk/short breastfeeding  
  Triggering autoimmune response    Cereals  
  Unknown    High protein content  
  Lack of possible protective effect of vitamin D    Vitamin D defi ciency  

  Factors related to 
insulin sensitivity 
and/or resistance  

  Stressing  β  - cells with excess demands 
 “ accelerator hypothesis ”   

  Puberty  
  High energy food  

  Increase insulin resistance    Weight gain  

  Psychologic stress    Affect hypothalamic - pituitary - adrenal axis leading 
to disturbance in autonomic nervous system 
and autoimmune dysregulation  

  Stress during pregnancy 
 Child – parent separation 
 Behavioral deviances 
 Diffi cult adaptation  

  Toxic substances    Direct damage to  β  - cells    Alloxan  
  Streptozocin  
  Vacor  
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 The most prominent environmental factors (Table  9.2 ) include 
maternal factors  [30] , viral infections  [29] , dietary  [31,32] , high 
birth weight and growth rate  [33] , psychologic stress  [34]  and 
toxic substances  [35] . The concurrent association of islet autoim-
munity and factors increasing insulin resistance such as obesity 
and accelerated growth may boost the autoimmune destruction 
of  β  - cells  [36] . The hygiene hypothesis proposes that better sani-
tation created a pathogen - free environment reducing the expo-
sure to pathogens and their products. According to this hypothesis, 
the immune systems of children tend to be underdeveloped and 
therefore prone to autoimmune reactions. Additionally, it was 
also proposed that younger children received low - level antibodies 
from their mothers and, when exposed to infections such as 
enterovirus, it increased their T1DM risk  [29] .     

  Pathogenesis 

 Autoimmune T1DM results from loss of immunologic tolerance 
to  β  - cells and environmental factors are thought to be involved 
in initiation or promotion of autoimmunity or both  [28] . The 
selective destruction of  β  - cells implies specifi c mechanisms tar-
geting  β  - cells by autoimmune reactions, which involve infi ltra-
tion of pancreatic islets by CD4 +  and CD8 +  T lymphocytes and 
macrophages leading to insulitis  [1] . During the period preceding 
the clinical onset, autoantibodies targeting specifi c islet autoan-
tigens such as insulin, glutamic acid decarboxylase (GAD65), islet 
antigen - 2 (IA - 2) and zinc transporter (ZnT8) may be detectable 
for months up to years before hyperglycemia becomes overt  [11] . 
It has been assumed that the occurrence and number of islet 
autoantibodies such as GAD65Ab and IA - 2Ab were associated 
with insulitis  [37] . A recent study, however,  detected islet autoan-
tibodies among 62 (4%) individuals out of 1507 pancreatic 
donors aged 25 – 60 years  [12] . Although those 62 individuals also 
had HLA susceptibility, only two of them showed insulitis, indi-
cating that the presence of islet autoantibodies is not necessarily 
a marker of insulitis. The exact role of these autoantibodies is 
therefore not understood and it needs to be established to what 
extent they are markers of  β  - cell destruction by cellular autoim-
munity  [38] . 

 The intensity and duration of  β  - cell destruction varies and 
seems to be related to the presence of high - risk HLA haplotypes 
especially DR3 - DQ2, DR4 - DQ8, or both  [39] . The HLA class II 
family molecules are expressed on the surface of antigen - present-
ing cells (APC) such as dendritic cells and macrophages but also 
on activated B and T lymphocytes or even activated endothelial 
cells. High - risk HLA molecules on APC are likely to facilitate 
activation of CD8 +  T lymphocytes by CD4 +  T lymphocytes. This 
activation is indirectly exemplifi ed in T1DM siblings who devel-
oped the disease by the age of 12 years because T1DM occurred 
in 55% of siblings sharing the high - risk HLA DR3 - DQ2/DR4 -
 DQ8 genotype compared with only 5% of those who shared zero 
or one haplotype  [40] . 

 It has been widely claimed, based on autopsy studies, that 
around 80 – 90% of  β  - cells are already lost at clinical onset  [14,41] . 

Recent reanalysis of patients who died soon after diagnosis, 
however, revealed that the level of  β  - cell loss required for hyper-
glycemia was age - dependent, being about 40% in subjects aged 
20 years  [42] . Additionally, there are suggestions that  β  - cell 
regeneration may have taken place, contributing to the approxi-
mately 50% of viable  β  - cells present at diagnosis  [43] . The pro-
gressive destruction of  β  - cells is likely to vary in intensity and 
duration depending on the age at diagnosis  [44] . It is a major 
drawback, however, that direct and precise assessments of  β  - cell 
loss before and after diagnosis are not available in humans. Much 
of the current knowledge of  β  - cell function prior to the clinical 
onset has been derived from laboratory animals such as NOD 
mice and bio - breeding rats  [45] . The  β  - cell destruction in humans 
may be estimated indirectly by assessing insulin secretion during 
intravenous glucose tolerance tests (IVGTT). In particular, FPIR 
measured by insulin or C peptide is thought to refl ect loss of  β  -
 cells and to predict T1DM  [46] . Data from the Diabetes Prevention 
Trial Type 1 showed that post - challenge C peptide levels were 
remarkably reduced 6 months before clinical onset  [47] .  

  Cellular  a utoimmunity 

 The genetic susceptibility of T1DM predisposing to loss of immu-
nologic tolerance and eventual autoimmune killing of  β  - cells may 
be explained by a disordered antigen presenting mechanism  [43] . 
The HLA class II molecules are heterodimers that regulate the 
immune response and are expressed on the surface of APC such 
as macrophages. The heterodimer binds peptides generated intra-
cellularly either from self - proteins or from exogenous antigens 
taken up by phagocytosis. The resulting trimolecular complex 
represents the ligand for the T - cell receptor (TCR). The interac-
tion between the trimolecular complex and the TCR activates the 
T lymphocyte. The HLA class II molecules on APC are responsi-
ble for antigen presentation to T - helper lymphocytes (CD4 + ). 
Upon non - antigenic stimulation, macrophages from people with 
T1DM and the high - risk HLA DQB1 * 0201/ * 0302 genotype 
showed excessive secretion of proinfl ammatory cytokines and 
prostaglandin E 2   [48] . Cytokines may damage  β  - cells directly or 
indirectly by activating other cells such as T and B lymphocytes 
 [49] . The APC presenting  β  - cell autoantigens may thus be actively 
involved in the anti - self autoimmune response that may result 
from failure to sustain self - recognition or from promoting an 
anti - self response. APC, CD4 +  and CD8 +  T lymphocytes were all 
detected in pancreatic autopsies of subjects who died shortly after 
onset  [50] , indicating their role in insulitis. Autoreactive CD8 +  T 
lymphocytes may have the most signifi cant role in autoimmune 
destruction of  β  - cells  [51] . Natural killer cells (NK) may also be 
found with abnormal activity and count  [52] . The detection of 
autoreactive T lymphocytes in insulitis and in the circulation at 
the time of diagnosis, in addition to the notion that immunosup-
pressive drugs such as cyclosporine or anti - CD3 monoclonal 
antibodies can temporarily abort disease progression, are all 
considered to support the role of cellular immunity in  β  - cell 
destruction  [53] . 
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they may accumulate in islets and are therefore hard to detect 
 [58] .  

  Humoral  a utoimmunity 

  Islet  c ell  a utoantibodies 
 The identifi cation in 1974 of ICA was achieved using frozen pan-
creatic sections and indirect immunofl uorescence  [5] . Four years 
later, islet surface antibodies (ICSA) were identifi ed  [59]  and 
complement - dependent antibody - mediated islet cell cytotoxicity 
was described in 1980  [60] . Because ICA assays showed wide 
variations among ICA - positive sera  [61] , assays specifi c to indi-
vidual autoantigens were later developed to detect autoantibodies 
against GAD65, IA - 2  [62] , insulin  [63]  and recently ZnT8 (Table 
 9.3 )  [64] . Islet autoimmunity (single or multiple autoantibodies 
persistent for 3 – 6 months) proved to be useful in differentiating 
T1DM from other forms of diabetes  [11] . Multiple islet autoan-
tibodies ( ≥ 2) usually appear within 6 – 12 months following 
the appearance of the fi rst autoantibody (Figure  9.2 )  [65] . 
Nevertheless, some individuals develop transient islet autoanti-
bodies but they are usually solitary and associated with lower 
risk  [66] , possibly because of the presence of protective genes 
such as HLA DR15 – DQ6  [25] . One or more of these autoanti-
bodies can be detected months up to years before clinical onset 
in more than 95% of newly diagnosed patients with T1DM, even 
as early as in the perinatal period  [67] . Moreover, the detection 

 The mechanism involved in  β  - cell destruction is not yet fully 
clear. One possible scenario is that  β  - cells are fi rst destroyed by 
an environmental factor such as virus. The dying or dead  β  - cell 
is next phagocytozed by local dendritic cells (APC), which are 
then activated and migrate through the lymphatics to a pancreatic 
draining lymph node. The antigen presentation to and activation 
of CD4 +  T lymphocytes takes place in the lymph node to include 
activation of CD8 +  T lymphocytes specifi c for islet autoantigens. 
These islet autoantigen - specifi c CD8 +  T lymphocytes return to 
the blood circulation, eventually ending up in islets to destroy 
 β  - cells. The  β  - cell killing will generate a new cycle of islet auto-
antigen presentation known as epitope spreading  [49,54] . 
CD4 + CD25 +  regulatory T lymphocytes are also thought to have 
an important role in pathogenesis of T1DM as they may inhibit 
islet autoantigen specifi c CD4 +  T lymphocytes  [54,55] . These cells 
express FOXp3 from the X chromosome and are important in 
development of peripheral tolerance. 

 The identifi cation of islet autoantigen - specifi c T lymphocytes 
has been challenging and the development of standardized assays 
of T lymphocytes specifi c to islet autoantigens (insulin, GAD65 
and IA - 2) is still diffi cult to achieve  [53,55] . Soluble HLA class II 
tetramer assays to assess autoantigen - specifi c T lymphocytes  [56]  
and ELISPOT (enzyme - linked immunospot)  [57]  assays to 
measure cytokines of each T lymphocytes are tests to assess anti -
 islet autoantigen T - lymphocyte reactivity. During islet autoim-
munity prior to the clinical onset these autoantigen - specifi c T 
lymphocytes may not be found in peripheral circulation, rather 

  Table 9.3    Characteristics of islet autoantigenes and autoantibodies. 

        GAD65     IA - 2     Insulin     ZnT8  

  Chromosome    10p11    IA - 2: 2q35 - 36 
 IA - 2 β : 7q36  

  11p15    8q24  

  Molecular weight (kD)    64    IA - 2: 40 
 IA - 2 β : 37  

  5.8    67  

  Tissue specifi city    Pancreas, neuron, ovary, testis, kidney    Neuroendocrine cells 
(pancreas, brain, pituitary)  

   β  - cell specifi c     β  - cell specifi c  

  Function    GABA production (an inhibitory 
neurotransmitter)  

  Not clear (lack enzymatic 
activity)  

  Regulates glucose metabolism    Zn 2+  transport and accumulation 
in  β  - cell vesicles  

  Genetic association    DR3 - DQ2 
 DR4 - DQ8  

  DRB1 * 0401    INS - VNTR, DR4    SLC30A8  

  Antibody abbreviation    GAD65Ab    IA - 2Ab    IAA    ZnT8Ab  
  Standardized assay    RBA, ELISA    RBA    RBA    RBA  
  Sensitivity (%)    RBA: 80 

 ELISA: 89  
  RBA: 70 
 ELISA: 65  

  RBA:  > 60    RBA: 50 
 (C terminal)  

  Specifi city (%)    RBA: 96 
 ELISA: 98  

  RBA: 99 
 ELISA: 99  

  RBA: 95    RBA: 98 
 (C terminal)  

  Variation with age    Higher detection with increase age    Less with increasing age    Higher predictivity in children    Increasing predictivity with age  
  Variation with gender    Female preference if onset  < 10 years    Male preference    None    None  

   ELISA, enzyme linked immunosorbent assay; RBA, radiobinding assay.  
  Workshop sensitivity and specifi city for GAD65Ab and IA - 2Ab were from the Diabetes Antibody Standardization Program  [62] .  
  Diagnostic sensitivity at 95% diagnostic specifi city for insulin autoantibodies (IAA) were from  [63] .   
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IA - 2Ab are often preceded by IAA, GAD65Ab and ICA, respec-
tively  [65] , and the frequency decreases with increased age of 
onset  [80] . This indicates that the predictive and screening abili-
ties of IA - 2Ab are more useful for younger children especially 
when combined with GAD65Ab and other markers. 

 Using radiobinding assays to determine epitope - specifi c 
IA - 2Ab/IA - 2 β Ab among healthy siblings of children with T1DM 
 [81] , it was found that progression to T1DM was more common 
with autoantibodies to the juxtamembrane region of IA - 2 (IA - 2 -
 JM - Ab) while IgE - IA - 2Ab conferred protection even when IA - 2 -
 JM - Ab were positive. Higher frequencies of IA - 2Ab were found 
in association with  DRB1 * 0401  rather than with DQ8  [72] . 
Furthermore, patients with DQ2  [82]  had less association with 
IA - 2Ab indicating a role for additional mechanisms related to the 
HLA genetic component. 

 Assays to identify IA - 2Ab were developed and standardized 
using radiobinding tests that can precipitate IA - 2Ab, IA - 2 β Ab 
along with GAD65Ab. These assays have high levels of sensitivity 
and specifi city and were improved in subsequent DASP work-
shops  [62] . Similarly, ELISA assays combining IA - 2Ab and 
GAD65Ab using biotin - labeled preparations were also standard-
ized and the latest evaluation showed progress in performance of 
these assays (Table  9.3 )  [62] .  

  Insulin  a utoantibodies 
 The most highly specifi c autoantigens of  β  - cells are insulin and 
its precursor proinsulin because they are expressed only in  β  -
 cells. In 1983, using radioligand - binding assays, insulin autoan-
tibodies (IAA) were fi rst identifi ed in 50% of patients with newly 
diagnosed diabetes before initiating treatment with exogenous 
insulin  [83] . IAA, which are able to react with both insulin and 
proinsulin, tend to be the earliest marker of islet autoimmunity 
 [65]  but their levels are often fl uctuating and present in low titers. 
The predictive value for T1DM using IAA alone appears to be 
related to age; it is higher among younger children, possibly 
related to a higher rate of  β  - cell destruction. IAA were detectable 
in 90% of children who progress to T1DM before the age of 5 
years compared with only 40 – 50% of adolescents older than 15 
years (Table  9.3 )  [84] . 

 DR4 is associated with a higher frequency of IAA, which may 
be related to the linkage disequilibrium with the high - risk DQ8 
haplotype  [85] . IAA were also associated with the insulin gene on 
chromosome 11p15  [86]  where the number of tandem repeats 
(VNTR) were found to be associated with T1DM whether IAA 
were present or not. 

 Antibodies against exogenous insulin showed no correlation 
with IAA levels detected at clinical onset of T1DM and appear to 
be independent of autoimmunity  [87] ; however, they do share 
some similar binding features  [88] . Unlike IAA, antibodies 
against exogenous insulin shows higher specifi city, therefore they 
may be detected using the ELISA test, which does not predict 
T1DM  [89] . The IAA fl uid - phase radioimmunoassay shows 
high sensitivity and specifi city to detect T1DM and has been 
modifi ed to use less serum volume (25    μ L instead of 600    μ L) in 

of the four main autoantibodies may predict the disease by as 
much as 98% (Figure  9.2 )  [68] .    

  Glutamic  a cid  d ecarboxylase auto a ntibodies 
 The enzyme glutamic acid decarboxylase (GAD) is found in 
neurons and islet  β  - cells and produces  γ  - aminobutyric acid 
(GABA), which is a major inhibitory neurotransmitter. The 64K 
protein identifi ed as GAD after immunoprecipitation of human 
islet  [69]  was found to represent GAD65, not the previously 
known GAD67 isoform, which shares 65% of the GAD65 amino 
acid sequence  [70] . Unlike GAD67, GAD65, which is encoded by 
a gene on chromosome 10p11, is expressed mainly in pancreatic 
islets (Table  9.3 )  [70] . 

 Autoantibodies against GAD are most commonly to the 
GAD65 isoform (GAD65Ab), which were found in 70 – 80% of 
children with new onset T1DM, 8% of T1DM fi rst - degree rela-
tives but also in about 1% of general population  [71] . Unlike ICA, 
GAD65Ab remain detectable for many years even after consider-
able loss of  β  - cell function  [72] . Additionally, GAD65Ab detec-
tion rate rises with age in new onset T1DM. If the onset was 
before 10 years of age, some gender differences with female pref-
erence is observed. Because GAD65Ab levels are persistent, 
more prevalent and correlated well with plasma levels of C 
peptide  [38] , they are currently considered as good markers for 
both prediction and follow - up of  β  - cell dysfunction among 
individuals at risk. 

 GAD65Ab were found to be associated with the high - risk HLA 
haplotypes DR4 - DQ8 ( DRB1 * 04 - DQA1 * 0301 - B1 * 0302 ) and 
DR3 - DQ2 ( DRB1 * 03 - DQA1 * 0501 - B1 * 0201 )  [73]  but more often 
with the latter  [72] . Recently, anti - idiotypic GAD65Ab were found 
to be markers that have lower frequency in T1DM and their 
absence was more predictive than the presence of GAD65Ab  [74] . 
GAD65Ab can be detected with both radiobinding assays and 
enzyme - linked immunosorbent assay (ELISA) and these assays 
have been assessed and standardized in the latest Diabetes Antibody 
Standardization Program (DASP)  [62] . The high and improved 
performance of these assays emphasizes the value of these autoan-
tibodies in prediction and classifi cation of T1DM and also their 
value as screening tools in individuals at risk (Table  9.3 ).  

  Islet  a ntigen - 2 auto a ntibodies IA - 2Ab and IA - 2 β Ab 
 This autoantigen is a member of the plasma membrane protein 
tyrosine phosphatase family  [75] . Its composed of two isoforms: 
IA - 2 (formerly known as ICA512) which is a 40K protein encoded 
on chromosome 2, and IA - 2 β  (phogrin) which is a 37K protein 
encoded on chromosome 7 (Table  9.3 )  [76] . The two isoforms 
share many common epitopes and are present in several neuroen-
docrine tissues in addition to pancreatic islets with no clear func-
tion because they lack enzymatic activity. 

 The autoantibody reactivity of IA - 2Ab is directed to the cyto-
plasmic portion of the autoantigen and the immuno - reactivity in 
T1DM is directed against the C - terminal region of IA - 2  [77] . 
IA - 2Ab is detected in about 60 – 70% of patients with new - onset 
T1DM  [78]  and in less than 1% of the general population  [79] . 
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 The polymorphic  SLC30A8  gene located on chromosome 8 
encodes the ZnT8  [91] . This locus and other chromosome 8 loci 
have not been associated with T1DM risk as such but were associ-
ated with the risk of ZnT8Ab  [92] . ZnT8Ab were found to react 
with the C - terminal of the autoantigen and variation at amino 
acid position 325 determines two important susceptibility 
markers of ZnT8Ab, which can either be arginine (ZnT8 - R) or 
tryptophan (ZnT8 - W)  [92] . Immunoprecipitation assays for 
ZnT8Ab were developed and fl uid phase radioassays for the 
C - terminal of ZnT8Ab were standardized and validated in the 
DASP workshop (Table  9.3 ).  

  Candidate ( m inor)  a utoantigens 
 Several studies have reported associations of a group of molecules 
and substances with T1DM. This group included a wide variety 
of minor or candidate autoantigens that are thought to be associ-
ated with T1DM, autoimmunity or both; examples are, ICA12/
SOX13  [93] , glima - 38  [94] , vesicle - associated membrane protein -
 2 (VAMP2)  [95] , neuropeptide Y  [95] , carboxypeptidase H  [96] , 
GLUT - 2  [97] , heat shock protein 60  [98] , imogen 38  [99] , ICA69 
 [100]  and others (Table  9.4 ).     

  Conclusions 

 Considerable progress has been made in the understanding of 
T1DM pathogenesis as it relates to the appearance of islet autoim-
munity prior to the clinical onset of the disease. The development 

a new assay known as  “ micro - IAA ”  (Table  9.3 )  [90] . Nevertheless, 
poor inter - laboratory concordance remains a problem that has 
delayed standardization of IAA  [63] .  

   Z n T 8 Transporter ( SLC 30 A 8) autoantibodies ZnT8Ab 
 The zinc transporter (ZnT8 isoform - 8 transporter) has recently 
been described as a second novel  β  - cell - specifi c autoantigen, in 
addition to insulin  [64] . A polymorphism in the gene encoding 
this autoantigen, SLC30A8, is also associated with the risk of 
T2DM  [91] . ZnT8 is important for zinc - insulin crystallization 
and insulin secretion. It facilitates transport and accumulation of 
cytoplasmic zinc into the secretory vesicles of  β  - cells. Inside these 
vesicles, insulin molecules are co - crystallized with two Zn 2+  ions 
to form solid hexamers. 

 Nearly 60 – 80% of patients with new onset T1DM react posi-
tively to ZnT8Ab  [91] , which were detected in around 26% of 
patients who were negative for the conventional islet autoanti-
bodies (GAD65Ab, IA - 2Ab and IAA)  [68] . By contrast, ZnT8Ab 
were detected in only 2% of controls and less than 3% of T2DM 
 [68,91] . Additionally, ZnT8Ab were also detected in 30% of 
patients with other autoimmune diseases associated with T1DM 
 [64] . Being a target of humoral immunity in T1DM, the high 
 β  - cell specifi city of ZnT8 is seen as an advantage over other non -
 specifi c  β  - cell autoantigens such as GAD65 and IA - 2. This high 
specifi city and independence from other islet autoimmune 
markers, in addition to the fact that ZnT8Ab titers increase with 
age, all emphasize the value of ZnT8Ab in predicting T1DM, 
especially among older children. 

  Table 9.4    The main candidate (minor) islet autoantigens. 

   Autoantigen     Molecular weight (kD)     Description     Autoantibody frequency  

  ICA12 
 (SOX13)  

   –     SOX family protein present in pancreas, kidney and 
placenta. Anti - SOX - 13 - Ab found more in children  

  T1DM: 10 – 30% 
 T2DM: 6 – 9% 
 Healthy controls: 2 – 4%  

  Glima - 38    38    Amphiphilic glycated  β  - cell membrane protein. Specifi c 
expression on islet and neuron cells  

  New onset T1DM: 19% 
 Prediabetes phase: 14% 
 Healthy controls: missing  

  VAMP2    12.6     β  - cell secretory vesicles - related protein    T1DM: 21% 
 Healthy controls: 4%  

  NPY    10.9     β  - cell secretory vesicles - related protein    T1DM: 9% 
 Healthy controls: 2%  

  CPH    43.4    Carboxypeptidase B - like glycoprotein present in islets and 
brain. Related to cleavage of insulin from proinsulin  

  ICA +  relatives: 20% 
Healthy controls: missing  

  GLUT - 2    55    Glucose transporter type 2 of  β  - cells    New onset T1DM: 32 – 80% 
 Healthy controls: 6.6%  

  HSP 60    60    A  “ stress ”  protein which is thought to be produced and 
upregulated in response to cellular stress  

  T1DM: 15% 
 Rheumatoid arthritis: 20% 
 Healthy controls: 1.2%  

  Imogen 38    38    A protein found in  β  - cell mitochondria and to a lesser 
extent in  α  - cells  

  No antibodies found  

  ICA 69    69    A peptide mainly present in islets and neuroendocrine, 
but also brain, kidney and lung  

  New onset T1DM: 5 – 30% 
Healthy controls: 6% 
 Rheumatoid arthritis 20%  
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  Other Disorders with Type 1 Phenotype   
        

 Keypoints 
        •      Patients with type 1 diabetes classically present early, require 

continuous insulin treatment and carry autoimmune markers such as 
antibodies to glutamic acid decarboxylase (GAD).  

   •      There are other types of diabetes with type 1 phenotype secondary to 
heterogeneous etiologies including: maturity - onset diabetes of the 
young (MODY) and other forms of monogenic diabetes caused by 
mutations of mitochondria, amylin or pathways implicated in pancreatic 

 β  - cell function; latent autoimmune diabetes of adults (LADA); fulminant 
type 1 diabetes presenting with diabetic ketoacidosis after viral 
infections and another form which reverts to a clinical course 
resembling type 2 diabetes after the initial ketotic presentation.  

   •      The correct diagnosis of these disorders with type 1 phenotype is 
clinically important because of their different clinical course, prognosis 
and management.     

Alice P.S. Kong & Juliana C.N. Chan

  Introduction 

 Classic type 1 diabetes mellitus (T1DM) is considered an autoim-
mune disease with pancreatic  β  - cell destruction. Affected subjects 
typically have onset of their disease at a young age with an acute 
presentation including diabetic ketoacidosis requiring continu-
ous insulin treatment  [1] . With a better understanding of the 
epidemiology and molecular mechanism of diabetes, however, 
clinical features such as the younger age of onset (e.g. less than 35 
years old) or dependence on insulin treatment cannot adequately 
defi ne the etiology of patients presenting with hyperglycemia. 

 Furthermore, there are major ethnic differences in disease 
pattern in terms of presentation and natural progression. In 
Caucasians, over 90% of patients with diabetes diagnosed before 
the age of 35 years have type 1 disease  [1] . By contrast, autoim-
mune T1DM is uncommon in non - Caucasian populations  [2 – 5] . 
Using Hong Kong as an example, which has a relatively homog-
enous southern Chinese population leading an affl uent lifestyle, 
less than 10% of adults presenting with diabetic ketoacidosis have 
autoimmune markers. Similarly, only 10% of Hong Kong Chinese 
patients with young onset of disease had a type 1 presentation or 
antibodies to glutamic acid decarboxylase (GAD)  [6] . Similar 
epidemiologic fi ndings have also been reported in other Asian 
populations from India, Malaysia, Singapore and Mainland 

China  [7] . In most case series, 60 – 80% of Caucasian people with 
T1DM have autoimmune markers such as autoantibodies to 
GAD and/or islet cell antigens (e.g. ICA - 512). Conversely, 5 – 20% 
of young Asian patients with a non - ketotic presentation have 
autoimmune markers with a wide range of insulin reserve. These 
fi ndings suggest that latent autoimmune diabetes in adults 
(LADA) is not uncommon in young patients with diabetes, espe-
cially those of Asian ethnicity, and there is considerable overlap 
between type 1 and 2 diabetes phenotypes (Figure  9.4 )  [6,8] .   

 Our current understanding of the molecular pathways involved 
in the neogenesis, differentiation and maturation of pancreatic 
 β  - cells as well as the intracellular signaling mechanisms leading 
to insulin secretion are summarized in Figure  9.5 . This large body 
of knowledge has provided the basis for the discovery and descrip-
tion of subtypes of diabetes with predominant  β  - cell failure from 
causes other than autoimmunity, such as monogenic diabetes. 
Patients with monogenic diabetes often have young onset of 
disease and lean body mass (see Chapter  15 ). They may also have 
delayed presentation with complications brought about by the 
insidious nature of their symptoms  [9,10] . With the rising preva-
lence of young onset diabetes especially in low and middle income 
countries  [11] , there is a need for health care providers to be 
aware of these non - classic presentations of T1DM, because they 
have important implications on clinical management and family 
screening.    
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Chapter  15 ). Despite a non - ketotic mode of presentation, these 
patients often have features of abnormal pancreatic  β  - cell 
function. Some patients with MODY have a rapid deterioration 
in glycemic control after initial presentation while others experi-
ence mild hyperglycemia and do not require insulin despite 
having a long duration of disease. 

 To date, several subtypes of MODY have been reported. These 
include mutations of transcription factors:  MODY 1 : hepatic 
nuclear factor 4 α  (HNF - 4 α );  MODY 3 : HNF - 1 α  or transcription 
factor 1 (TCF1);  MODY 4 : insulin promotion factor 1 (IPF - 1); 
 MODY 5 : HNF - 1 β  or transcription factor 2 (TCF - 2);  MODY 6 : 
neurogenic differentiation 1 (NeuroD1) and  MODY 7 : carboxyl 
ester lipase (CEL) and glucokinase which is the glucose - sensor of 
the pancreatic  β  - cells ( MODY 2 ). Transcription factors have key 
roles in pancreatic development including differentiation and 
proliferation of  β  - cells (Figure  9.4 b). While genetic mutations in 
transcription factors typically cause signifi cant insulin insuffi -
ciency and hyperglycemia, common polymorphisms of some of 
these transcription factors (e.g. HNF - 1 α   [21] , HNF - 4 α   [22]  and 
HNF - 1 β   [23] ) have also been shown to be associated with 
increased risk of diabetes or metabolic traits which may interact 
with other genetic or environmental and/or lifestyle factors to 
give rise to overt diabetes. 

 Over 80% of Caucasian patients with classic MODY (i.e. age 
of onset less than 25 years with autosomal pattern of inheritance) 
have been reported to have mutations in HNF - 1 α  or glucokinase, 
while other MODY subtypes (HNF - 4 α , HNF - 1 β  and IPF - 1 
mutations) were less common  [24] . The frequencies of HNF - 1 α  
mutations ranged 25 – 50% in French  [25] , 36% in German  [26] , 
13 – 18% in British  [27] , 8% in Japanese  [28]  and 5% in Chinese 
patients  [9] . In unrelated young Chinese patients with diabetes, 
5 – 10% were found to have glucokinase or HNF - 1 α  mutations 
 [13,29,30] . 

 Although patients with some forms of MODY (e.g.  MODY 2 ) 
have mild clinical course and rarely develop complications, other 
forms of MODY may be associated with severe insulin insuffi -
ciency and complications often brought about by the late pres-

  Atypical  d iabetes:  h eterogeneous  e tiologies of 
 y oung -  o nset  d iabetes 

 In 1980, Winter  et al.   [12]  fi rst described a cohort of 129 African -
 American youths with acute ketotic presentation, of whom 12 
patients subsequently did not require insulin and followed a clini-
cal course resembling type 2 diabetes (T2DM). Since then, a 
number of reports have shown that there is a poor correlation 
between the mode of presentation of hyperglycemia, clinical 
course, need for insulin treatment and autoimmune status in 
different ethnic groups including Asians  [13 – 15] . Many of these 
patients did not have HLA genotypes or autoantibodies typical of 
autoimmune T1DM. Some patients were obese, with insulin 
resistance and glucotoxicity contributing to the initial ketotic 
presentation  [16] . 

 Monogenic diabetes caused by genetic mutations encoding 
pathways implicated in insulin synthesis and secretion may lead 
to young - onset diabetes with atypical presentation. In young 
Chinese patients with diabetes, there is a higher prevalence of 
parental history of diabetes (32 – 47%), particularly maternal 
history, compared with those having a late onset of disease (12 –
 19%)  [10,17,18] . A progressively earlier age of onset of disease in 
successive generations has also been reported in some of these 
affected families  [19] . These patients may exhibit a mixed phe-
notype, including young age of diagnosis, insulinopenia and 
normal body weight (as in type 1), with a non - ketotic state typical 
of T2DM, despite lack of insulin resistance and metabolic syn-
drome  [20] .  

  Monogenic  d iabetes 

  Maturity -  o nset  d iabetes of the  y oung 
 Patients with maturity - onset diabetes of the young (MODY) typi-
cally present before the age of 25 years with a strong family 
history suggestive of autosomal dominant inheritance (see 

MODY
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Amylin
genes

mutations

? Others

Mitochondrial
genes

mutations
Type 1

diabetes
Type 2

diabetes     Figure 9.4     There are considerable overlaps 
between the phenotypes of type 1 and type 2 
diabetes because of the heterogeneous genetic and 
autoimmune etiologies. These include maturity - onset 
diabetes of the young (MODY), latent autoimmune 
diabetes in adult (LADA) and genetic variants 
affecting the insulin, amylin and mitochondrial 
pathways. Other rare causes include fi brocalculous 
pancreatic diabetes and fulminant type 1 diabetes.  
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     Figure 9.5     (a) The cascade of transcription factors involved in pancreatic development as well as neogenesis, differentiation and maturation of pancreatic  β  - cells. 
Maturity - onset diabetes of the young (MODY) includes subtypes with mutations in transcription factors, namely MODY 1 with mutations of hepatic nuclear factor 
(HNF - 4 α ); MODY 3: HNF - 1 α ; MODY 4: insulin promotion factor (IPF - 1); MODY 5: HNF - 1 β ; MODY 6: NeuroD1: neurogenic differentiation 1 and MODY 7: carboxyl ester 
lipase (CEL) as well as glucokinase (GK) which is the glucose - sensor of the pancreatic  β  - cells (MODY 2). There are also interactions of glucose transporter 2 (GLUT 2) and 
endodermal factor, including GATA and various important genes and transcription factors governing the differentiation and maturation of pancreatic islet and beta cells. 
These include Pax genes family and genes encoding the homeodomain transcription factor Nkx 2.2 and Nkx 6.1. In South Asian Indian population, interaction of the 
NeuroD1, neurogenin - 3 (NEUROG3) and HNF - 1 α  genes has been observed to have combined effect in controlling islet cell development and insulin secretion, thus 
contributing to the overall glucose tolerance  [93] . (b) The multiple steps involved in regulation of insulin secretion commencing with sensing of ambient blood glucose 
level by GLUT - 2, glycolysis by GK, and ATP production by mitochondria. The generated ATP particles then close the potassium channel leading to membrane depolariza-
tion and opening of calcium channels. The intracellular calcium infl ux is associated with translocation of insulin and amylin containing vesicles to the cellular surface for 
extracytosis. During these processes, transcription factors are also activated resulting in insulin gene transcription and production to replenish the insulin containing 
vesicles and maintain continuous insulin secretion. GLUT, glucose transporter; MIDD, maternal inherited diabetes and deafness; MODY, maturity - onset diabetes of the 
young.  

 In 1992, an A3243G mutation in the mitochondrial DNA 
coding for tRNA Leu(UUR)  (mt3243) was fi rst reported. This form of 
diabetes was found in patients with both type 1 and type 2 dia-
betes and was characterized by maternal inheritance and deafness 
 [38] . In a random cohort of Chinese patients with diabetes, 1 – 3% 
had this mutation with either type 1 or type 2 clinical course 
 [39 – 41] . Other point mutations associated with increased risk of 
diabetes include sites at 3316, 3394 and 14577 as well as deletion 
and rearrangement in mitochondrial DNA  [36] . 

 In keeping with its candidacy as a  “ thrifty gene, ”  the frequency 
of a common polymorphism of the mitochondrial DNA 
(T16189C) is higher in Chinese subjects with metabolic syn-
drome than those without (44% vs 33%), after adjustment for 
age and body mass index (BMI)  [42] . In a meta - analysis, Asian 
subjects without diabetes had a higher frequency of the 16189C 
variant than their European counterparts (31.0% vs 9.2%)  [43] . 
Despite negative reports in European populations  [43] , there are 
consistent data showing the risk association of the 16189C variant 
with T2DM in Asians  [44,45] .  

  Amylin  g ene  m utations 
 Amylin, a 37 amino acid polypeptide, is co - secreted with insulin 
by pancreatic  β  - cells. It is the principal constituent of the amyloid 
deposits in the islets of Langerhans in T2DM  [46,47] . In autopsy 
series, pancreatic amyloidosis was associated with  β  - cell loss in 
both Caucasian and Chinese subjects  [48 – 50] . It is now evident 
that formation of intracellular islet amyloid polypeptide (IAPP) 
oligomers may contribute to pancreatic  β  - cell loss and progres-
sive hyperglycemia  [47] . Changes in metabolic milieu or genetic 
variants encoding proteins involved in amylin metabolism may 
lead to structural changes of amylin and increased oligomeriza-
tion with  β  - cell death  [51] . 

 A S20G variant of the amylin gene has been shown to enhance 
cytotoxicity in transfected COS - 1 cells and amyloidogenicity  in 
vitro   [52,53] . This genetic variant is found in 2 – 3% of Japanese, 
Chinese and Pacifi c Islanders with diabetes  [9,52,54 – 57] . In 
Taiwanese Chinese, normoglycemic carriers of the S20G variant 
had reduced early phase insulin secretion  [58] . Co - segregation 
fi ndings in family studies of S20G variant, however, are incon-

entation and/or delayed use of insulin  [10] . In light of the 
potential long duration of disease, young patients with diabetes 
are more prone to develop microvascular complications than 
those with late onset of disease  [31] , thus emphasizing the impor-
tance of family screening. 

 Furthermore, heterogeneous mutations in these transcription 
factors can be expressed sequentially in renal tubules with pos-
sible roles in various stages of the development of renal tubules 
 [32] . Thus, patients with MODY may have heterogeneous phe-
notypes with metabolic and renal manifestations. Patients with 
 MODY 3  from mutations in HNF - 1 α  were found to have a low 
renal threshold for glucose  [33]  while patients with  MODY 5  
from mutations in HNF - 1 β  may have mild diabetes but increased 
susceptibility to severe renal disease and other urogenital malfor-
mations  [34] . In a consecutive unrelated cohort consisting of 
74 young Chinese patients with T2DM and nephropathy, a novel 
missense genetic variant in exon 3 (E260D, GAG → GAC) of the 
HNF - 1 β  gene was identifi ed. Extended family analysis revealed 
four other siblings carrying this variant with heterogeneity in 
clinical presentation that included one member with uncompli-
cated diabetes, one with impaired glucose tolerance and one with 
microalbuminuria with normal glucose tolerance. A silent poly-
morphism Q378Q was identifi ed in another unrelated subject in 
this study. While these fi ndings will need replication in independ-
ent and larger cohorts, the phenotypic heterogeneity associated 
with these genetic variants is noteworthy  [35] .  

  Mitochondrial  g ene  m utations 
 Mitochondria are important intracellular organelles in the main-
tenance of glucose homeostasis and energy balance. Mitochondria 
have their own genome and unlike nuclear DNA which is pro-
tected by histones, mitochondrial DNA is more vulnerable to 
oxidative stress and environmental toxins. Superoxide radicals 
generated by the mitochondrial respiratory chain are a major 
source of damage to mitochondrial DNA. Aged patients with a 
positive family history of diabetes have a high frequency of mito-
chondrial mutations  [36] . Because of its maternal inheritance, 
mitochondrial DNA is a well - known cause of a subtype of mater-
nally inherited diabetes mellitus  [37] . 
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 The correct diagnosis of LADA is clinically important because 
early use of insulin instead of sulphonylurea may prevent or 
reduce the rate of deterioration of  β  - cell function in these young 
patients with diabetes  [85] . In patients with LADA, impaired  β  -
 cell response is evident at diagnosis and early use of insulin may 
reduce the adverse effects of glucotoxicity on  β  - cells  [70,82] . 
Apart from high clinical suspicion, HLA studies may distinguish 
LADA from classic T1DM. In Caucasian populations, LADA is 
associated with HLA DQA1 - DQB1 * 0102(3) -  * 0602(3)/X which is 
uncommon in patients with typical T1DM  [86] .  

  Other  s ubtypes of  d iabetes with 
 t ype 1  p henotype 

 In Japan and Korea, uncommon cases of fulminant T1DM pre-
senting with diabetic ketoacidosis (often after a viral infection) 
have been reported in both young and old patients. These cases 
were characterized by absence of insulitis, negative autoantibod-
ies, low C peptide levels, elevated pancreatic enzyme concentra-
tions and association with HLA haplotypes  [87,88] . 

 In India, T2DM in youth often overlaps with monogenic forms 
of diabetes, fi brocalculous pancreatic diabetes and diabetes 
associated with malnourishment, all of which are ketosis - resistant 
forms of youth - onset diabetes  [89] . In Indian patients with tropi-
cal calcifi c pancreatitis, the loss of endocrine function accompa-
nying the exocrine damage may be an additional factor 
contributing to the clinical manifestation of diabetes in the pres-
ence of other stressors  [90] . Using pancreatic specimens, Asian 
researchers have reported signifi cant correlations between BMI 
and relatively low volume of  β  - cells  [91]  with amyloidosis, 
infl ammation and fi brosis as common pathologic features  [92] .  

  Conclusions 

 Until recently, autoimmune T1DM was considered to be the 
predominant form of diabetes in children and young adults. With 
a better understanding of the pathogenesis of diabetes, it is now 
recognized that genetic or acquired factors that affect the pancre-
atic  β  - cell structure and function as well as associated mecha-
nisms such as amylin deposition and mitochondrial damage may 
give rise to a broad range of clinical manifestations with consider-
able overlap between type 1 and type 2 phenotypes. Detailed 
medical history - taking (e.g. family history of diabetes, mode of 
presentation and exposure to infection), a complete physical 
examination (e.g. body leanness, microvascular complications, 
metabolic syndrome and associated cardiovascular risk factors) 
and the use of appropriate laboratory testing (e.g. autoantibodies 
against pancreatic antigens and genetic markers) may help clini-
cians refi ne the diagnosis. This will help to guide the treatment 
of these patients who often present at a young and have a long 
duration of diabetes ahead of them, this makes them eopecially 
at risk for the long - term chronic complications of diabetes.  

clusive, suggesting that it is likely to be a risk - modifying factor 
rather than a major diabetes gene  [9,52,58] .  

  Other  g enetic  m utations  a ffecting  p ancreatic  
β  -  c ell  f unction 
 Genetic variants of transcription factors implicated in pancreatic 
 β  - cell development, structure and function such as Pax6, Nkx2 - 2, 
Nkx6 - 1, NEUROG3 have also been reported in patients with type 
1 or type 2 diabetes  [59] . The pancreatic  β  - cell ATP - sensitive K +  
channels (K ATP  channels) comprises of two subunits, the inwardly 
rectifying potassium channel Kir6.2 and the sulfonylurea receptor 
SUR1. This transmembrane channel has an important regulatory 
role in insulin secretion (Figure  9.5 b). Genetic variants encoding 
the K ATP  channels subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) 
are associated with reduced insulin secretion and diabetes in dif-
ferent ethnic populations  [60 – 65]  including Asians  [59] . In the 
recent genome - wide association studies, polymorphisms encoding 
components of these K ATP  channels such as KCNJ11 and KCNQ1 
have also been found to be associated with 20 – 30% increased risk 
of diabetes in Caucasian and Asian populations  [66,67] .   

  Autoimmune  d iabetes in  a dults 

 Autoantibodies to GAD are suggested to be sensitive markers of 
T1DM in Caucasians  [13]  although they can also be detected in 
patients with T2DM such as those with autoimmune diabetes in 
adults (LADA). In the UK Prospective Diabetes Study (UKPDS), 
approximately 10% of patients with T2DM had anti - GAD anti-
bodies, the majority of whom eventually progressed to insulin 
dependency  [68,69] . Reports from different ethnic groups suggest 
an estimated 10% prevalence of LADA in diabetic populations 
 [68 – 70] . In Asians, 10 – 50% of patients with diabetes and acute 
or early onset of disease had anti - GAD antibodies depending on 
selection criteria and assay methodologies  [2,6,13,71] . 

 LADA is a slowly progressive form of autoimmune disease 
causing diabetes and is characterized by the presence of serum 
autoantibodies to pancreatic antigens  [72,73] . Similar to T1DM, 
patients with LADA often carry other autoantibodies associated 
with celiac disease, adrenal and thyroid disorders  [74,75] . Thus, 
it is plausible that LADA represents one end of a continuum of 
autoimmune diabetes with classic T1DM occupying the other 
end of the spectrum  [76] . 

 The nomenclature for this subtype of diabetes have been 
confusing, including T2DM with islet autoantibodies, slowly 
progressive insulin - dependent diabetes mellitus  [77] , type one -
 and - a - half diabetes  [78,79] , latent autoimmune diabetes in chil-
dren (LADC)  [80] , latent autoimmune diabetes in the young 
(LADY)  [81] , autoimmune diabetes  [82]  and autoimmune dia-
betes in adults with slowly progressive  β  - cell failure (ADASP) 
 [70] , although LADA remains the most commonly used term. 
The World Health Organization (WHO) and American Diabetes 
Association (ADA) acknowledged LADA as a slowly progressive 
form of T1DM  [83,84] . 
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