
Chapter 1

THE BAYESIAN ALGORITHM

An algorithm is a set of rules for doing a calculation. The Bayesian algorithm is a
set of rules for using evidence (data) to change your beliefs. In this chapter we shall
try to explain this algorithm. If this explanation is successful the reader may then
put down the book and start doing Bayesian econometrics, for the rest of the book
is little more than illustrative examples and technical details. Thus, chapter 1 and,
to a lesser extent, chapter 2 are the most important parts of the book.

We begin by explaining how we view an econometric analysis and by drawing a
distinction between this and statistical analyses.

1.1 ECONOMETRIC ANALYSIS 

An econometric analysis is the confrontation of an economic model with evidence.
An economic model usually asserts a relation between economic variables. For ex-
ample, a model might assert that consumption, C, is linearly related to income, Y,
so that C = α + βY for some pair of numbers α, β. Such a model is typically intended
to provide a causal explanation of how some variables, for example C, are deter-
mined by the values of others, for example Y. Typically, any model contains both
potentially observable quantities, such as consumption and income, called (poten-
tial) data; and it involves quantities, like α and β, that are not directly observable.
Variables of this latter type are called parameters and will be denoted generically by
the symbol θ. They are usually constrained to lie in a set to be denoted by Θ. In
our example θ = (α, β) and the set Θ would normally be taken as two-dimensional
euclidean space. Any value of θ, for example α = 10, β = 0.9, defines a particular
structure, in this case C = 10 + 0.9Y, and the set of structures under consideration
is said to be indexed by a parameter, θ.

Evidence is provided by data on the operation of an economy. In the consumption/
income example relevant data would be provided by pairs of values for C and Y.
There are usually many types of data that are relevant to any particular model. For
example, we might have data on the consumption and income of different house-
holds, or on the same household observed repeatedly, or on the aggregate income
and consumption data of collections of households forming a region or a nation.
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2 The Bayesian Algorithm

The objective of an econometric analysis is to answer two questions. The first 
question is whether the model is consistent with the evidence: this is called model 
criticism. This means asking whether any of the structures defined by the model are
consistent with the evidence. In our example this would mean asking whether there
is any parameter θ = (α, β), lying in Θ, such that, in our data, C = α + βY. The 
second question presumes that the answer to the first is “yes” and it asks what are the
probabilities of the different structures defined by the model. Once this question has
been answered the model can then be used for purposes of economic decision mak-
ing, perhaps by a policy maker, perhaps by an individual economic agent. Such use
will typically involve predicting the value of the variables for households or regions
that are not included in the data. For example, given the structure θ = (10, 0.9) and
told that Y = 100 then the economist would predict that C = 10 + 0.9 × 100 = 100.

The practice of econometrics is, in fact, to ask these questions in reverse order.
We begin by presuming that our model is consistent with the data and ask for the
most likely structure in the light of the evidence. In traditional econometrics this
involves forming a good estimate of θ0 ∈Θ, the particular structure that is presumed
to be, in some sense, true. In a Bayesian analysis this step involves using the data to
form a probability distribution over the structures in Θ. An estimate, if one is required,
might then be provided by reporting, for example, the most probable structure in
the light of the evidence provided by the data.

How then do we go about answering these questions in practice? In this chapter
we shall focus on the second question in which we presume the consistency of the
model with the data and ask how we determine the probabilities of the structures
of which the model is composed. The method of doing this is to apply a theorem
of probability, Bayes’ theorem, and here we shall describe in some detail how Bayes’
theorem is used to construct probabilities over alternative structures.

In chapter 2 we shall describe some methods of answering the first question in which
the investigator tries to decide whether the model is consistent with the evidence
and if it is not, what to do next.

1.2 STATISTICAL ANALYSIS

Statistical analysis deals with the study of numerical data. This is a largely descript-
ive activity in which the primary aim is to find effective and economical repres-
entations or summaries of such data. The point of the activity is to reduce the 
complexity of a set of numbers to a form which can be more easily comprehended.1

1 For instance, “. . . the object of statistical methods is the reduction of data. A quantity of data,
which usually by its mere bulk is incapable of entering the mind, is to be replaced by relatively few 
quantities which shall adequately represent the whole, or which, in other words, shall contain as much
as possible, ideally the whole, of the relevant information contained in the original data.” R. A. Fisher,
On the mathematical foundations of theoretical statistics, Phil. Trans. Royal Soc., A222, 1922, p. 309,
quoted in T. C. Koopmans, Linear Regression Analysis of Economic Time Series, Netherlands Economic
Institute, Haarlem, 1937.
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The Bayesian Algorithm 3

The statistician summarizes data by calculating means, standard deviations, trends
or regression lines; he represents data graphically by scatter diagrams, histograms,
kernel smoothers and many other devices. He typically proposes and applies statis-
tical models as simplified accounts of possible ways in which his data could have
occurred. The application of such models involves estimating the parameters of such
models and testing hypotheses about them.

Statistical analysis is in many ways very close to econometrics, a subject which, to
a statistician, can appear like a branch of applied statistics. Econometric technique
is largely drawn from statistics and much of the content of this book will be famil-
iar to a statistician. Indeed, in writing it I have drawn extensively on statistical books
and articles. But there are profound differences between econometrics and statistics.
The econometrician is primarily concerned with the analysis of the behavior of eco-
nomic agents and their interactions in markets and the analysis of data is secondary
to that concern. But markets can be in, or near, equilibrium; economic agents are
presumed to be maximizing or minimizing some objective function; economic agents
are often presumed to know relevant things that the econometrician does not. All
these considerations tend to be fundamental to an econometric analysis and to dic-
tate the class of models that are worth considering. They make the results of an eco-
nometric analysis interpretable to the economist and give parameters solid meaning.

Of course there is not and should not be a sharp line between econometrics and
statistics; there is nothing at all wrong with an economist parsimoniously describing
data or with a statistician trying to relate the parameters of his model to some under-
lying theory. But the distinction between the disciplines exists, in my view, and should
be kept in mind.

1.3 BAYES’ THEOREM 

Bayesian econometrics is the systematic use of a result from elementary probability,
Bayes’ theorem. Indeed, from one angle, that’s all it is. There are not multiple 
methods of using numerical evidence to revise beliefs – there is only one – so this
theorem is fundamental.

What is Bayes’ theorem?

When A and B are two events defined on a sample space the conditional probabil-
ity that A occurs given that B has occurred is defined as

(1.1)

as long as P(B) ≠ 0. Here P(B � A) is the probability that both A and B occur and
P(A\B) is the probability that A occurs given the knowledge that B has occurred.
Equation (1.1) is true, of course, with A and B interchanged so that we also have
P(B � A) = P(B\A)P(A). Substituting this expression into (1.1) then gives
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4 The Bayesian Algorithm

(1.2)

When written in this form the definition is called Bayes’ theorem. It is a universally
accepted mathematical proposition. But there is disagreement about its applicability
to econometrics.

Two related questions arise about Bayes’ theorem: one is about its interpretation
and the other is about its use.

Interpretations of probability

The function P(.) has no interpretation in the mathematical theory of probability;
all the theory does is define its properties. When probability theory is applied, as it
is in econometrics, we need to decide how to interpret “the probability of an event.”
In this book we shall take P(A) to measure the strength of belief in the proposition
that A is true.2 Thus the larger P(A) the stronger your belief in the proposition that
it represents. This is called a subjective view of probability. This interpretation of math-
ematical probabilities is close to the way we use the idea of probability in everyday
language where we say that propositions are “very probable” or “highly unlikely.”
This closeness to ordinary usage is part of the attraction of Bayesian inference for
many people. It allows us to conclude an econometric analysis by saying things such
as “in the light of the evidence, theory A is very unlikely whereas theory B is quite
probable.” Oddly enough, statements like these are impermissible in traditional econo-
metrics where theories are only true or false, not more or less probable.

Similarly, a probability density function for a random variable, pX(x), will describe
degrees of belief in the occurrence of the various possible values of X. Degrees of
belief, like utility functions to which they are closely related, are personal to each
economic agent, so when you do applied economics using (1.2) you are in fact mani-
pulating your beliefs. On this interpretation Bayes’ theorem shows how one belief
about A, measured by P(A), is changed into another belief about A, measured by
P(A\B).

Range of application of the theorem

The second issue is the range of application of Bayes’ theorem. Some people3 choose
to restrict the application of probability theory, including Bayes’ theorem, to situations
in which there is a series of repetitions in some of which A occurs and in the others
it does not. Consequently P(A) is understood as referring to the relative frequency

P A B
P B A P A

P B
( )  

( ) ( )
( )

.\
\

=

2 Degrees of belief may be more precisely defined in terms of willingness to bet on the occurrence
of A. We shall not pursue this line of thought but rather take “degree of belief ” as a primitive one that
most can understand intuitively. Further references on this subjective view of probability are provided in
the bibliographical notes.

3 Including virtually all authors of econometric textbooks.
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The Bayesian Algorithm 5

with which A occurs during such repetitions. Econometric work that is done solely
using this conception of probability as hypothetical relative frequency is often called
“frequentist.” We shall adopt a much more general range of application in which it
will be meaningful to use the expression P(A) to refer to all events, whether they
are part of a repeatable sequence or not. Thus we can talk about the probability that
the United States was in recession in 1983, that the moon is made of green cheese,
or that the economy is in general equilibrium, all of which are events about which
you may be sure or quite unsure but about which I assume you have beliefs and those
beliefs are capable of being changed by evidence. Unless you have the imagination
of a Jules Verne4 there is no sequence of occasions in some of which the economy
was in recession in 1983, or the moon was made of green cheese, and in others of
which it was not. Narrower, frequency, interpretations of probability rule out such
uses of P(A).

Use of Bayes’ theorem to make inferences

How the theorem expressed by (1.2) may be used as the basis for econometric infer-
ence from evidence may be shown by considering particular types of events A and
B. Suppose that you have a model containing just two structures θ1 and θ2, so Θ
contains just two elements, and you also have some data E.

EXAMPLE 1.1 Take the consumption and income relation as an
example and let structure 1 assert that C = 10 + 0.9Y and let structure 2 assert
that C = Y. Thus

θ1 = (10, 0.9); θ2 = (0, 1).

We now interpret the A of Bayes’ theorem as referring to particular structures –
you can think of these as alternative theories if you like – and we interpret B as describ-
ing the evidence E. So the event A is either “θ1 is true” or it is “θ2 is true.” Suppose
you think each structure equally probable so that P(θ1) = P(θ2) = 0.5. (There may
be many other structures that you can think of but, for the moment, you are con-
tent to consider only these two.) You also, from the content of these two theories,
form beliefs about the probabilities of the evidence given that either one is true.
This means that you can place a number on both P(E\θ1) and P(E\θ2). For ex-
ample, you might think that E, the data, is quite unlikely if θ1 is true but fairly 
probable if θ2 is true, say P(E\θ1) = 0.1 and P(E\θ2) = 0.6. Now note that these
numbers and the rules of probability imply that

P(E) = P(E\θ1)P(θ1) + P(E\θ2)P(θ2) = 0.1 × 0.5 + 0.6 × 0.5 = 0.35,

4 Pioneering French science fiction writer.
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6 The Bayesian Algorithm

so E, the event that we have observed, was not particularly probable. We are now
in a position to make an inference about the two structures θ1 and θ2. It follows
from Bayes’ theorem (1.2) that

We interpret these numbers as saying that although the theories θ1 and θ2 were believed
to be equally probable before seeing the evidence represented by E, after the
evidence has been seen theory θ2 is six times more probable than theory θ1. You
have changed your beliefs. This is not an arbitrary change of opinion. It follows as
an arithmetical consequence of the beliefs represented by P(θ1) = P(θ2) = 1/2 and
P(E\θ1) = 0.1, P(E\θ2) = 0.6. Moreover this change of opinion will occur (almost)
whatever P(θ1) and P(θ2) you had. They need not have been equally probable, 
you might have thought θ2 very unlikely, yet still the arithmetic of Bayes’ theorem
will mean that you change your mind on seeing the evidence and, in the present
example, you will come to think that θ2 is more likely than before.

There are two important exceptions to the proposition that evidence will change
your beliefs. Suppose that you had assigned probability zero to the theory represented
by θ1, so P(θ1) = 0 and hence P(θ2) = 1, then a glance at the arithmetic above shows
that P(θ1\E) = 0 and therefore P(θ2\E) = 1. This means that if you gave no cred-
ence at all to a theory you will never learn that it is right. The other exception is
when P(E\θ1) = P(E\θ2) so that the data are equally probable on both hypotheses.
In this case the data carry no information at all about the merits of the two theories.
Again, a glance at the arithmetic of Bayes’ theorem shows the truth of this remark.

Another way of expressing the change of beliefs uses odds. The odds on an event
A are the probability of A divided by the probability of its complement. Thus,

So the odds on θ2 were 1 before you saw E, it was an “even money bet” in 
gambling jargon, but the odds on θ2 after you have seen E have become 6, or six
to one on. Thus the evidence has swung your beliefs fairly sharply towards theory
θ2 – you have made an inference from the evidence about the plausibility of one of
the two theories.

When used in econometrics the A of Bayes’ theorem typically is a statement about
a parameter of an economic model and the event B is a statement about some data
or evidence that bears on the truth of A. We then think of the movement from the
right hand side of (1.2) to the left as occurring sequentially. P(A) is the probabil-
ity assigned to the truth of A before the data have been seen and P(A\B) is its prob-
ability after the evidence is in. When thought of in this way we call P(A) the prior
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The Bayesian Algorithm 7

probability of A and P(A\B) the posterior probability of A after the Latin phrases
“a priori” and “a posteriori.” Bayes’ theorem can then be interpreted as show-
ing how to revise beliefs in the light of the evidence – how P(A) is changed by the
evidence into P(A\B). Notice in particular that the formula does not dictate what
your beliefs should be, it only tells you how they should change.5

Bayes’ theorem for random variables

The more usual form of the theorem is in terms of random variables. Suppose that
X, Y are a pair of random variables defined on a sample space Ω and assigned, by
you, joint probability density pX,Y(x, y) with marginal densities pX(x), pY (y) and con-
ditional densities pX\Y(x\y) and pY\X(y\x). Then the theorem is

In this notation the subscripts indicate the random variables and the arguments indi-
cate particular values6 of them. Thus, dropping the subscripts, (1.2) becomes

and when used for inference about parameters given data it is conventional to write
the parameters with a Greek symbol so we write

(1.3)

Notice that parameter and data are treated symmetrically before the data have been
observed and are assigned a joint probability distribution. Notice also that we are
now using the symbol y to denote what we previously called E. This is because eco-
nomic data is almost always in the form of numerical data and y is a conventional
symbol in this case.
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5 Actually there is one constraint on your beliefs: they should satisfy the laws of probability. For 
example, if A and B are two mutually exclusive and exhaustive events then your beliefs must satisfy 
P(A) + P(B) = 1. Beliefs that satisfy these laws are coherent. If your beliefs are incoherent and you bet
according to them then a Dutch book can be made against you. This is a set of bets such that, whatever
the outcome, you are sure to lose money. Economists in particular are likely to find such a constraint
compelling. See, for example, J. M. Bernardo and A. F. M. Smith, Bayesian Theory, Wiley, 1994.

6 We shall in future drop the subscripts unless they are needed for clarity so that random variables
will be interpreted by the arguments of their probability function. We also try to follow the convention
of using capital letters to denote random variables and lower case letters to denote their realizations but
it is not always sensible to do this.
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8 The Bayesian Algorithm

The econometric model

The numerator on the right hand side of (1.3) is the joint probability distribution
of the data that are to be observed and the parameter, p(y, θ). We shall refer to this
joint distribution as (your) econometric model. It has two components. The first, p(y\θ),
is called the likelihood and it describes what you expect to see for every particular
value of the parameter θ ∈ Θ. It gives your predictions as to what the data should
look like if the parameter takes the particular value given by θ. For our little con-
sumption example if θ = (α, β) = (10, 0.9) then you expect to see that C and Y
satisfy the relation C = 10 + 0.9Y. Formally this is a distribution that assigns prob-
ability one to pairs satisfying this relationship and zero to all other possible C, Y
pairs. This, incidentally, is an example of a deterministic likelihood in that once the
parameter is set there is no uncertainty about what the data should look like. Economic
(as opposed to econometric) models often lead to deterministic likelihoods.

The second component p(θ) is a probability distribution over the parameter space
Θ. It is called the prior distribution and it gives your beliefs about the possible 
values of θ. From the point of view taken in this book an econometric model is
complete only when it specifies both the likelihood and the prior. Both are required
in order to reach probabilistic conclusions either about θ or about the consistency
of the model with the evidence.

Digression Objectivity Bayesian inference is not “objective.” Some 
people, believing that science must be objective and its methods objectively justifi-
able, find this a devastating criticism. Whatever the merit of this position it does
not seem to be the way applied econometrics is practiced. The typical seminar in
our subject appears to be an exercise in persuasion in which the speaker announces
her beliefs in the form of a model containing and accompanied by a set of assump-
tions, these being additional (tentative) beliefs. She attempts to persuade her audi-
ence of the reasonableness of these beliefs by showing that some, at least, embody
“rational” behavior by the agents she is discussing and promising that other beliefs
will, in fact, be shown by the evidence to be not inconsistent with the data. She
then presents her results and shows how some of her beliefs seem to be true and 
others false and in need of change. The entire process appears to be subjective and
personal. All that a Bayesian can contribute to this is to ensure that the way in
which she revises her beliefs conforms to the laws of probability and, in particular,
uses Bayes’ theorem.

1.3.1 Parameters and data

The material in this section is essential to understanding the point of view taken in 
this book.
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The Bayesian Algorithm 9

The most useful way to think about the difference between parameters θ and data
y is that a parameter is a quantity that is unknown (to you) both before and after
the data have been gathered although, of course, your beliefs about it will generally
(but not necessarily) have been changed by the evidence; data are unknown before
they have been gathered but known afterwards. The word parameter covers several
meanings. It may refer to a property of the external world such as the distance from
one point on the earth to another or the number of rotten apples in a barrel. Or it
may refer to an object appearing in a theory such as “the elasticity of substitution”
or “the coefficient of risk aversion.” In the latter cases the parameter may well be
defined only as a component of a theory and have no existence independent of that
theory. And “parameter” does not only mean a constant appearing in a particular
economic theory, it may be an index indicating different sub-theories of some 
larger scheme, as in the introduction to this section where θj indicated theory j. And
parameters may refer to functions as well as constants as in a setting where it is 
proposed that y = g(x) where y and x are two economic variables. If g(.) is not given
and known (to you), and thus data, this function is a parameter.

Digression Randomness In the traditional literature we often find
phrases such as “x is random” or “we shall treat x as random” or even “we shall
treat x as fixed, i.e. as not random” where “random” means that the object in
question will be assigned a probability distribution. In the Bayesian approach all
objects appearing in a model are assigned probability distributions and are 
random in this sense. The only distinction between objects is whether they will 
become known for sure when the data are in, in which case they are data(!); or
whether they will not become known for sure, in which case they are parameters.
Generally, the words “random” and “fixed” do not figure in a Bayesian analysis
and should be avoided.7

1.3.2 The Bayesian algorithm 

We can formulate the Bayesian method as an algorithm.

ALGORITHM 1.1 BAYES
1. Formulate your economic model as a collection of probability distributions 

conditional on different values for a model parameter θ ∈ Θ.
2. Organize your beliefs about θ into a (prior) probability distribution over Θ.
3. Collect the data and insert them into the family of distributions given in step 1.
4. Use Bayes’ theorem to calculate your new beliefs about θ.
5. Criticize your model.

7 Though in chapter 7 we defer to conventional usage and talk, through gritted teeth, about random
and fixed effects models.
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10 The Bayesian Algorithm

This book could end at this point, though the publisher might object. All that
remains is to offer further explanation and illustration of these steps, not all of 
which are easy.

1.4 THE COMPONENTS OF BAYES’ THEOREM

Let us examine the components of Bayes’ theorem as expressed by (1.3), reproduced
here for convenience as

(1.4)

using several simple examples. We shall choose examples that are potentially of eco-
nometric interest or lie at the heart of models of economic interest. But we shall
initially restrict ourselves to cases in which the parameter θ is scalar and not vector
valued and we shall consider only situations where each observation is also scalar.
This will be rather artificial since in almost all econometric applications the para-
meter has several, possibly many, dimensions – even in our consumption income 
example the parameter θ = (α, β) had two dimensions and, as we remarked before,
most economic models involve relations between several variables. Moreover the 
examples use rather simple functional forms and these do not do justice to the 
full flexibility of modern Bayesian methods. But these restrictions have the great 
expositional advantage that they avoid computational complexity and enable us to
show the workings of Bayes’ theorem graphically.

The components of Bayes’ theorem are the objects appearing in (1.4). The object
on the left, p(θ\y), is the posterior distribution; the numerator on the right contains
the likelihood, p(y\θ), and the prior p(θ). The denominator on the right, p(y), is
called the marginal distribution of the data or, depending on the context, the predict-
ive distribution of the data. It can be seen that it does not involve θ and so for pur-
poses of inference about θ it can be neglected and Bayes’ theorem is often written as

p(θ\y) ∝ p(y\θ)p(θ) (1.5)

where the symbol ∝ means “is proportional to.” This last relation can be translated
into words as “the posterior distribution is proportional to the likelihood times the
prior.” We shall focus here on the elements of (1.5).

1.4.1 The likelihood p(y\θ )

The expression for the distribution of the data to be observed given the parameter,
p(y\θ),8 has two names. When thought of as the probability density or mass func-
tion of Y evaluated at the point y, conditional on the parameter taking the value θ,

p y
p y p

p y
( )  

( ) ( )
( )

,θ θ θ
\

\
=

8 This is P(B\A) in (1.2).
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The Bayesian Algorithm 11

it is called just that, the pdf of Y given θ. But when y is thought of as the actual
data that you have gathered, often denoted by the symbol y obs for clarity, it is called
the likelihood function (of θ). In this case it is often denoted by a different 
symbol as �(θ; y) and sometimes even more explicitly as �(θ; y obs). The likelihood
function is not, in general, a probability distribution for θ given data y, nor even
proportional to one, though it often is. This is why we separate y and θ by a semi-
colon and not a conditioning symbol, \, when we think of this object as a likelihood
function. The likelihood is a function of θ with the data values serving as para-
meters of that function, hence the semicolon. Many statisticians and some econome-
tricians base their inferences on likelihood functions following the work of the English
statistician R. A. Fisher in 1925 and after. People who follow this approach will 
typically choose as their estimate of θ the value that provides the maximum (strictly
the supremum) of the likelihood over Θ. This is called the maximum likelihood (ml)
estimator. This tradition is why p(y\θ) has a special name and symbol when we think
of it as a function of θ.

Choice of a likelihood function amounts to choice of a family of probability distri-
butions, one for each θ ∈Θ. The theory of probability offers many such distributions.
These range from simple distributions, appropriate to data that can be regarded as
conditionally independent realizations from elementary probability distributions with
a small number of parameters, to probability models for high dimensional random
variables involving many parameters and complex patterns of dependence. Choice
among these distributions is an art but this choice must be constrained by a num-
ber of considerations. Most importantly, the choice must express the economic model
that lies at the center of an econometric investigation. It must allow you to deter-
mine from the evidence a probability distribution over the parameter space from which
you can calculate which parameter values are probable and which are not. And it
must, looking ahead to chapter 2, allow you to conclude that the model itself is
wrong or, more precisely, inconsistent with the evidence. But, given this fundamental
requirement, many choices remain.

We now give three examples of econometric models and the likelihoods to which
they lead. All three involve the dependence of one economic variable upon another.
Though simplified here for expository reasons, in more complex and richer forms
they lie at the heart of many standard econometric analyses. We preface the examples
with a definition.

DEFINITION 1.1 REGRESSION A regression function is a property of
the joint distribution of a pair of random variables. Specifically, it is the expected value
in the conditional distribution of one given the other. If the variates are X and Y it is
EX\Y = y as a function of y or EY\X = x as a function of x. The term originates with
Francis Galton, a nineteenth century English scientist and cousin of Charles Darwin.
Galton collected data on heights of parents and their children and calculated the aver-
age height of children, E(Y\X = x), of parents of specified height, X = x. Plotting these
points on a graph he found that the mean height of children increased linearly with
their parents’ height. He also found that although tall parents tended to have tall children,
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12 The Bayesian Algorithm

on average they were not as tall as their parents. Children of short parents were also
short but tended to be taller than their parents. He called this phenomenon regression
(to mediocrity). The term now applies to any conditional mean function, linear or not,
and regardless of the numerical character of the relationship. It also applies to any 
collection of random variables, not just two.

EXAMPLE 1.2 LINEAR REGRESSION Suppose a
theorist reasons that one variable, for example consumption, c, should be propor-
tional to another, for example income, y, so that c = βy, where the theory does 
not specify the numerical value of β. This deterministic model will be inconsistent
with any collection of real economic data on c and y. So let us embed this idea 
in a less rigid econometric model that states that for any collection of c, y data 
we shall find that each value of c behaves like a realization of a normal 9 random
variable with mean – conditional on y and β – equal to βy. This is called a regres-
sion model because the model specifies the regression function of one random 
variable given another. It is also a linear regression model because βy is linear in
y. If the precision10 of these conditional distributions is denoted by the symbol τ
and assumed to be the same regardless of the value taken by y, and if distinct c,
y pairs are taken to be independent then the joint probability distribution of, say,
n realizations of c given their corresponding y’s is

p(c\y, β) = ∏n
i=1(τ/2π)1/2 exp{−(τ/2)(ci − βyi)2}

∝ exp{−(τ/2)∑n
i=1(ci − βyi)2}. (1.6)

Each component of the product in the first line is a normal density function of a
random variable whose realization is c, whose mean is βy, and whose variance is
equal to 1/τ. The product arises from the assumption that different realizations
are independent, and so their probabilities multiply. In the second line we have
collected terms together and then dropped all multiplicative terms that do not involve
the (scalar) parameter β. To indicate this we have replaced the = sign by the
symbol ∝ which, as we have noted, means “is proportional to.” The expression 
that remains when we write a probability density without irrelevant multiplicat-
ive terms is called the kernel of the distribution.

In all Bayesian work and throughout this book we shall systematically retain only
the kernels of the distributions we work with. Once you get used to it this makes
for much easier reading, manipulation, and typing.

9 The appendix to this chapter gives a brief review of univariate normal distributions.
10 The precision of a normal distribution is the reciprocal of the variance. It is more convenient in

Bayesian work to define a normal distribution by its mean and precision rather than the more customary
mean and variance.
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The Bayesian Algorithm 13

When we enter into the expression (1.4) the observed values of our c, y pairs and
think of it as a function of β this object becomes the likelihood. (Recall that we are
working only with scalar parameters so that we are taking τ as a known number.) If
we rewrite the expression ∑(ci − βyi)2 and again drop multiplicative terms not involv-
ing β we find11 that the likelihood emerges as

�(β; c, y) ∝ exp{−(τ∑y 2
i/2)(β − b)2} (1.7)

for b = ∑n
i=1ciyi/∑n

i=1y 2
i .

The expression b is the least squares estimate of the slope of the regression line, β.
Inspection of the likelihood function shows that it has the form of a normal dis-
tribution with a mean equal to b and a precision equal to τ∑n

i=1y 2
i.

A valuable thing to do when learning the theory of econometrics is to study the
formulae numerically and graphically. Some people prefer to do this using real eco-
nomic data but in this book we shall often use simulated data in which you, the
reader, specify the numerical values of the parameters and then use a computer to
generate data. This artificial data can then be inspected numerically and, in particular,
you can see what the likelihood looks like. To see this in action with example 1.2
you can proceed as follows (possible S code is provided in brackets).

ALGORITHM 1.2 SIMULATING DATA FOR A REGRESSION
MODEL

1. Choose values for n, β and τ. (n <- 50; beta <- 0.9; tau <- 1)
2. Select n values for y = (y1, y2, ..., yn). (y <- runif(n, 10, 20))
3. On your computer generate n independent realizations of normal variates 12

with means βyi and variances equal to 1/τ. (consump <- rnorm(n, beta*y,
1/sqrt(tau)))

ALGORITHM 1.3 PLOTTING THE LIKELIHOOD FUNCTION
To plot (1.7) you must calculate b; then choose a range of β values over which the plot
will be built; then issue the plot command. Possible S code is

1. b <- sum(consump*y)/sum(y*y) # least squares estimate
2. betavalues <- seq(0.86, 0.94, length=100) # trial and error

needed to choose the plot interval
3. plot(betavalues, dnorm(betavalues, b, 1/sqrt(tau *

sum(y*y))), type="l") # dnorm(x, m, s) is the normal density function of mean
m, standard deviation s, evaluated at x.

CALCULATION 1.1 For the following we chose n = 50, β = 0.9, 
τ = 1 and drew the values of y from a uniform distribution over the interval ten to
twenty. Panel 1 of figure 1.1 shows a plot of the data with y on the horizontal axis

11 The algebraic manipulation involved here will be explained in more detail in chapter 3.
12 Variate is a shorter version of the phrase “random variable.”
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14 The Bayesian Algorithm

and c on the vertical. The straight line is c = by where b is the least squares estimate
which turns out to be 0.899. The second panel shows a plot of the likelihood 
function. As we saw from its mathematical form, it has the shape of a normal curve
centered at b and with a standard deviation equal to 1/√(τ∑y i

2) = 0.0096. Note that
the likelihood is centered close to the value of β, 0.9, that was used to generate the
data, and that the curve is effectively zero along the entire real line except for the
rather short interval shown in panel 2.

y

10 15 20

10
12

14
16

18

beta

0.86 0.88 0.90 0.92 0.94

0
10

20
30

40

n

lik
el

ih
oo

d

Figure 1.1 Plot of the data and the likelihood for calculation 1.1

For a second example of likelihood we take data that are to be observed in a 
temporal sequence, i.e. a time series.

EXAMPLE 1.3 AN AUTOREGRESSION Suppose
that your theory describes the way in which a sequence of values of some economic 
variable depends on earlier values in the sequence. Let the variable be denoted by
y and suppose that you are to observe the sequence at successive time points labeled
1 to T. Thus the data are to be the vector y = (y1, y2, ..., yT). A simple theory might
be that successive values of yt follow the law yt = yt−1. As an empirical matter eco-
nomic data do not follow a (deterministic) law like this just as in the last 
example data do not follow the deterministic law c = βy. A simple relaxation 
of this law to allow for some departure from strict equality would be to write 
yt = yt−1 + ut where the sequence {ut}, t = 2, 3, ..., T is independently normally
distributed random variables with mean zero and precision (reciprocal of the 
variance) τ. This is called a random walk. One way of setting up a likelihood that
enables you to test this theory and, if necessary, to reject it is to embed the model 
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The Bayesian Algorithm 15

in the following framework. First note that the theory asserts nothing about the
initial observation, y1, so it seems appropriate to write our likelihood as a prob-
ability distribution for y2, y3, ..., yT conditional on the value taken by y1. Next
note that if we enlarge the model, by introducing an additional parameter, to be
yt = ρyt−1 + ut then the random walk model emerges as the special case in which 
ρ = 1 so we can declare the model inconsistent with the evidence if, after having
seen the data, ρ = 1 seems to be improbable.

To complete the argument let us take the parameter of the model as the scalar
ρ, taking τ as known for simplicity, and form the likelihood as the joint prob-
ability density of y = (y2, y3, ..., yT) conditional on y1 and, of course, the para-
meter ρ. This may be derived by first considering the joint density function of 
u = (u2, u3, ..., uT) given y1 and ρ. Since the u’s form a sequence of independent
random variables we may take this distribution as

p(u\y1, ρ) = ∏T
t=2(τ/2π)1/2e−(τ/2)u2

t

∝ exp{−(τ/2)∑T
t=2u2

t}. (1.8)

Now note that y = (y2, y3, ..., yT) is a linear function of u = (u2, u3, ..., uT) because
yt = ρyt−1 + ut for t = 2, 3, ..., T. This function is one to one and its jacobian is
readily verified to be unity. Thus the joint density of the data to be observed given
the parameter is found by replacing u by y in (1.8) which gives

p(y\y1, ρ) ∝ exp{−(τ/2)∑T
t =2(yt − ρyt−1)2}.

Rearranging the sum of squares in exactly the same way as in example 1.2 and then
regarding the whole expression as a function of ρ gives the likelihood kernel as

�(ρ; y, y1, τ) ∝ exp{−(τ∑T
t =2y 2

t−1/2)(ρ − r)2}
for r = ∑T

t=2ytyt−1/∑T
t =2y 2

t−1. (1.9)

This likelihood is again of normal shape centered at r, the least squares estimate
of ρ and with precision τ∑T

t =2y 2
t−1. The reason for this similarity to example 1.2 is

that we are again dealing with a regression model though this time the model is not
that of one variable against another but of one variable against its own previous value.
To see how this works we can simulate some data using an algorithm like:

ALGORITHM 1.4 SIMULATING AUTOREGRESSIVE DATA
1. Choose values for T (which we shall here call n), ρ and τ. (n <- 51; rho <-

0.9; tau <- 1)
2. Set up an empty vector to hold the values of y. (y <- rep(0, n))
3. Select the first value for the time series, y1. (y[1] <- 0)
4. Generate, in sequence, the values of y2, ..., yT . (for(i in 2:n){y[i] <-

rho*y[i-1]+rnorm(1,0,1/sqrt(tau))})
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Notice that we have simulated data in which ρ = 0.9, not 1, so these data will
not provide a realization of a random walk.

CALCULATION 1.2 The panels in figure 1.2 show some simulated
data and the likelihood to which they lead. The length of the time series was 51,
including the initial observation which was zero, and τ was chosen to be one. The
first panel13 shows a plot of the data against time. The second panel shows the like-
lihood (1.9) where the least squares estimate is r = 0.747 and the quantity
√(τ∑T

t =1y 2
t−1) was 9.222. The time series graph showing the actual data seems hard

to interpret but the likelihood is much clearer.14 In particular, the second picture
shows that the likelihood is essentially zero over the entire real line except for a very
narrow band running from about 0.4 to a little over 1. We shall show later that this
likelihood graph can be interpreted as giving the relative probabilities of the differ-
ent values of ρ in the light of the evidence.

16 The Bayesian Algorithm

13 Plotting the likelihood follows the same pattern as algorithm 1.3.
14 Some people like to speak of the likelihood graph as providing a window through which some

features of the confusing picture on the left can be more clearly seen. But note that many possible windows
can be devised.
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Figure 1.2 Time series data and its likelihood
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The Bayesian Algorithm 17

Both these examples involve a model which began by positing that one random
variable was normally distributed given another, and both lead to likelihoods that
have the shape of a normal density function – symmetric and bell shaped. But 
models do not necessarily involve normal distributions nor are likelihood functions
invariably shaped like normal distributions. Here is an example of a model whose
structure is not normal and whose likelihood function may, or may not, be bell shaped.

EXAMPLE 1.4 BINARY CHOICE Many important eco-
nomic variables are binary. You either do or do not find work; the economy either
grows or declines; the couple do or do not marry. A theorist reasons that such 
a binary outcome, which we shall denote by y, depends on the value of another
variate x. We shall take the sample space for y as zero and one, and maybe the
theorist thinks, for example, that y = 1, finding work, growing, marrying, is more
likely to occur when x is large than when it is small. A variable like y whose 
sample space has only two points cannot possibly be normally distributed so this
model is quite inappropriate here. Instead a binary variate has a distribution that
is specified simply by stating the probability that y = 1. So a way of specifying an
econometric model to capture the idea that y is more likely to be one when x is
large is to write a probability model as P(Y = 1\x) = p(x) and so the probability
distribution of Y given x is

pY\X(y\x) = p(x)y(1 − p(x))1−y, y ∈ {0, 1}. (1.10)

All that remains is to specify the form of the function p(x). Note that the expected
value of Y given x is just the probability, given x, that Y = 1, hence this is again, like
examples 1.2 and 1.3, a regression model. If p(x) is linear in x we have a linear regres-
sion model, but if p(x) is non-linear in x we have a non-linear regression model.

A common choice in econometrics is to set p(x) = Φ(βx) where Φ(.) is the stand-
ard normal distribution function so Y has a non-linear regression on x. This choice
has the advantage that its value always lies between zero and one as a probability
must do; if β is positive it captures the theorists’ idea that when x is large then y is
more likely to be one; and it enables the discrediting of that idea when the para-
meter β appears in the light of the evidence to be negative or zero. Since Φ(βx) is
a non-linear function of x this is a non-linear regression model.

Given this model – a probit model – the likelihood, when n observations on y
and x can be presumed to be independent, with probabilities that multiply, is

�(β; y, x) = ∏n
i=1Φ(βxi)yi(1 − Φ(βxi))1−yi. (1.11)

No manipulations can simplify this expression further, nonetheless the likelihood 
can readily be drawn. Here is an example. First we show how to simulate binary
data.
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18 The Bayesian Algorithm

ALGORITHM 1.5 SIMULATING BINARY DATA
1. Choose n and β. (n <- 50; beta <- 0)
2. Simulate x values. (x <- runif(n, 10, 20))
3. Simulate y values. (y <- rbinom(n,1,pnorm(beta*x)))15

CALCULATION 1.3 We choose n = 50 and let the x values lie appro-
ximately uniformly between 10 and 20. For the first example we choose β = 0. The
resulting simulated data has 28 ones and 22 zeros. The likelihood is plotted16 in the
first panel of figure 1.3. In the second example we choose β = 0.1 and the result-
ing simulated data has 48 ones and 2 zeros. The likeli-hood is plotted in the sec-
ond panel. The first likelihood points to values around 0 and the second to values
around 0.1. In the second graph the value β = 0 has effectively zero likelihood. For
both likelihoods the function is essentially zero everywhere else on the real line!

Notice that both likelihoods are still approximately bell shaped although the 
second, with strongly unequal numbers of ones and zeros in the data, is slightly 
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Figure 1.3 Two probit likelihoods

15 The function pnorm(x) provides the value of the standard normal distribution function, Φ(x),
at x.

16 Plotting is as in algorithm 1.3 except that you would use the S command pnorm( . . . ).
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The Bayesian Algorithm 19

asymmetric. This example suggests that even though a model does not involve an
assumption of normality likelihoods can nonetheless appear to have the shape of a
normal density function. There is a theorem that explains why this is so and we shall
describe it later in this chapter.

Before concluding our discussion of likelihood it will be useful to give one final
example, one which is mathematically simpler than the first three but which is both
fundamental and a convenient vehicle with which to illustrate Bayesian ideas. It 
does not involve relations between variables and for that reason is of less intrinsic
econometric interest, but it is important nonetheless.

EXAMPLE 1.5 BERNOULLI TRIALS There is a very 
simple model for binary data that is valuable for illustrating some theoretical points
in a very simple way and this is to consider a sequence of Bernoulli trials. Suppose
the variable of interest is binary and takes the values zero or one. We dealt earl-
ier with such a model in which the probability that y is one depended on the value
of a covariate x. Now let us look at a simpler setup in which this probability, say
θ, is the same for all agents. A model in which the data are represented as inde-
pendent with the same probability of a “success” is called (a sequence of) Bernoulli
trials. The random variables Y1, Y2, ..., Yn are now taken to be independent and
identically distributed (iid) conditional on θ and n.

The probability mass function of any element in this collection of random vari-
ables is p(y\θ) = θ y(1 − θ)1−y, for 0 ≤ θ ≤ 1 and y ∈ {0, 1}. Because probabilities
multiply when random variables are independent the mass function for n such
variates is

p(y\θ, n) = θ s(1 − θ)n−s. (1.12)

Here, y is now the vector (y1, y2, ..., yn) and s = ∑n
i=1y i which is the total number

of successes (ones) in the n trials. When the number s is replaced by a particular
realization the likelihood is

�(θ; y) = θ s(1 − θ)n−s, 0 ≤ θ ≤ 1. (1.13)

This Bernoulli likelihood has the mathematical form of the kernel of the beta 
family17 of probability density functions (for θ). This will turn out to be a 
useful fact when it comes to drawing and simulating such likelihoods and their 
generalizations.

17 See the appendix to this chapter.
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20 The Bayesian Algorithm

CALCULATION 1.4 BERNOULLI TRIAL LIKELI-
HOODS To study (1.13) numerically you can generate some data by choosing
n and θ and then using the command y <- rbinom(n,1,θ) which will put a
sequence of ones and zeros into y. The value of s can then be found as s <- sum(y).
The likelihood can be plotted using the fact that θ s(1 − θ)n−s is the kernel of a 
beta density with parameters s + 1 and n − s + 1. Thus, choose a sequence of 
theta values as, say, thetaval <- seq(0,1,length=100), and plot with
plot(thetaval, dbeta(thetaval,s+1,n-s+1,type=”l”). Some plots
are shown in figure 1.4.

The first row shows the two possible likelihood functions that can arise when only
one trial is made. In this case either s = 1 or s = 0. The likelihood is linear in both
cases and not at all bell shaped. The second row examines the case in which n = 50
so that s has 51 possible values. We draw the likelihood for two of these. When only
one success is recorded the likelihood is concentrated near zero with an (interior)
maximum located at θ = 0.02 as can be quickly verified by differentiating θ(1 − θ)49.
On the other hand when there are equal numbers of successes and failures the like-
lihood looks like a normal curve symmetrical about θ = 1/2.
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Figure 1.4 Some Bernoulli likelihoods
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The Bayesian Algorithm 21

Parameters of interest

The Bernoulli trials example can be used to make the point that there can be many
different parameters of interest, for any of which a likelihood can be constructed.
We have taken θ as the parameter of interest but it could have been otherwise. Sup-
pose someone told you that he had carried out n Bernoulli trials with a parameter
θ that you and he agree is equal to 0.5 and that he had recorded s = 7, say, 
successes. But he declined to tell you the value of n, so now n is the parameter 
of interest and θ is data. The probability of s successes in n Bernoulli trials is the
binomial expression

P(S = s\n, θ) s = 0, 1, 2, ..., n, 0 ≤ θ ≤ 1, (1.14)

and on inserting the known data s = 7, θ = 1/2 we get the likelihood for the para-
meter n

n ≥ 7.

This is drawn in figure 1.5 for n = 7, 8, ..., 30.
The parameter here, n, is discrete and the evidence constrains the support of the

likelihood – the set of points on which it is positive – to be the integers greater than
or equal to 7. After all, if you observed 7 successes you could not possibly have 
had fewer than 7 trials! The picture clearly shows that only a small set of possible

�( ; , )  
!

(   )!
n s

n
n

n

θ �
−





7

1
2

= 





− − (   )n
s

s n sθ θ1

n
10 15 20 25 30

0.
0

0.
05

0.
10

0.
15

0.
20

lik
el

ih
oo

d

Figure 1.5 Likelihood for n
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22 The Bayesian Algorithm

values of n has much likelihood, and it points to values of n that are close to 14, a
number which is equal to s/θ = 7/0.5 which would be most people’s guess at the
number of trials done to get 7 heads when throwing a fair coin.

The likelihood principle

We remarked earlier that in deducing the posterior we need only consider the 
kernel of the likelihood (and the same will be true of the prior which we consider
in the next section) in order to deduce the posterior distribution of θ. After you 
have the kernel of the posterior it only takes an integration – ∫p(y\θ)p(θ)dθ – to 
find the multiplicative constant that ensures that your posterior density integrates 
to one.

The fact that you need only the kernel of the posterior to complete your infer-
ence has an interesting, and deep, consequence, namely that different likelihoods can
lead to the same posterior density and hence to the same inferences. To see this we
can again use the Bernoulli trials model with parameter θ to make the point. Consider
two investigators with the same prior beliefs about θ but who carry out quite dif-
ferent experiments. The first decides to make n = 20 trials and he happens to observe
s = 7 successes. The second decides to observe Bernoulli trials until seven successes
have occurred, and then stop. When he does this he finds that the seventh success
occurs on the twentieth trial. The likelihood for the first investigator is the distri-
bution of the number of successes in 20 Bernoulli trials (1.14), as we have seen, and
at the observed data this is

�1(θ; n = 20, s = 7) = (1.15)

For the second investigator, the probability distribution governing the observations
he is about to make is that of the total number of trials, n, necessary to achieve
seven successes. This is the negative binomial distribution

y = s, s + 1, s + 2, . . . . (1.16)

and at the observed data this becomes the likelihood

�2(θ; n = 20, s = 7) = (1.17)

Notice that both (1.15) and (1.17) have the same kernel and so, with the same prior,
they lead to exactly the same inferences about θ. The likelihoods (1.17) and (1.15)
are, as functions of θ, proportional to each other. This is an illustration of the fact
that Bayesian inference satisfies the likelihood principle.
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DEFINITION 1.2 THE LIKELIHOOD PRINCIPLE This states that
likelihoods that are proportional should lead to the same inferences ( given the same prior).
Notice that the data that might have been observed by the two investigators are quite
different. What matters for Bayesian inference are the data that were observed; the data
that might have been seen but were not are irrelevant.18

The application of the likelihood principle just described is often referred to as
“irrelevance of the stopping rule.” That is, it doesn’t matter whether you chose in
advance to do 20 trials or you chose in advance to do trials until you observed 7
successes. It doesn’t, in fact, matter whether you had anything in your head at all
before you began doing trials. Maybe you just got bored, or felt ill, after 20 trials.
Maybe you can’t remember what you planned to do. Most people meeting this impli-
cation of the likelihood principle feel shocked, even outraged, and some continue
to do so. A common complaint is that stopping trials when you have enough suc-
cesses sounds like cheating, and that if you find this out your inferences about θ
would be different than if you were sure that 20 trials had been decided on in advance.
The likelihood principle is a radical idea. Think about it carefully. Given that she
was conducting Bernoulli trials, would your inference about θ depend on what you
knew of the trialer’s intentions? Would you throw away as worthless the, possibly
unique, even priceless, data if you couldn’t find out what she planned to do when
she started the trials?

The point of this section has been to define the likelihood principle and to point
out that Bayesian inference adheres to it. It has not been to argue for or against the
likelihood principle as a fundamental principle of statistical inference. Such arguments
can be made and there is a rich literature to consult – pointers to this are given at
the end of this chapter. Professional opinion is divided on whether inference should
adhere to the likelihood principle.

After these examples we now return to the general issue of the art of likelihood
construction to embody and test economic theories.

Populations and samples

There is an important branch of statistics called survey sampling. In this field there
exists a well defined collection of agents – people or households, for example – and

18 This is in sharp contrast to standard econometric inference in which the data that might have 
been observed but were not play a key role through the idea of distributions of estimators in repeated
samples. Distributions of statistics over hypothetical repeated samples play no role in Bayesian inference.
(See appendix 1.)

Frequentist inferences about θ in this model vary according to whether the data are binomial or neg-
ative binomial. That is, they will differ according to the content of the trialer’s head when he stopped
making his trials. If the frequentist doesn’t know this mental state he can make no inferences about θ
from the fact that 20 Bernoulli trials produced 7 successes.
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24 The Bayesian Algorithm

each member of this population has a unique vector of characteristics, for example
his wage, job, employment status, intention to vote and so on. Call this vector y. The
object of the calculation is to learn about this collection of vectors, for example the
average wage in the population or the fraction of the population without a job. This
feature of the population distribution of y is defined to be the parameter of interest
and we learn about it by taking a sample from the population. Often samples are
assumed to be random, though there are many other ways of sampling a popula-
tion. A random sample is one in which every time a member of the population is to
be selected each member has exactly the same chance as every other of being picked.
The data or evidence is provided by the sample and, in frequentist statistics, the 
parameter is estimated from the sample by choosing a formula, or estimator, and
applying it to the sample. For example, if the parameter is the average wage in the 
population an estimator might be “calculate the average wage in the sample.” Obey-
ing this instruction with a particular (sample) set of data obtained by selecting 
individuals from the population then yields an estimate of the parameter of interest.

Many applied economists use this story as an aid to thinking about how to embed
their economic theory within a probability model, that is, to construct a likelihood.
That is, they think of what they are doing as analogous to survey sampling. This
point of view holds particular attractions for people whose specialism is micro-
economics, since this field typically deals with individual agents and it is often 
plausible for them to think of their data sets as if they had arisen by some act 
of randomly sampling a population. Sometimes this story has elements of truth 
when data really are gathered by sampling a particular collection of individuals, for 
example the poorly paid or the retired or old. And to think of the object of inter-
est as a characteristic of a real population sounds more practical and concrete than
to think of it as a parameter defined within an economic model. In addition it holds
particular conviction for those who base their inferences not on Bayes’ theorem, as
we do in this book, but on imagined sequences of repetitions. The economist can
imagine repeatedly drawing a sample from “the population” and then think about
the properties of his estimator in such a sequence of repetitions.19

In fact economists are rarely, if ever, concerned solely with the properties of some
particular, historical population. They wish to generalize and the basis for this gen-
eralization is economic theory which points to relationships between variables that
are intended to be relatively deep and stable features of the workings of the eco-
nomy. It is the unspecified constants that appear in this theory that are the ultimate
objects of interest.20

Nonetheless, thinking about one’s data as if they were a sample of some type drawn
from a population can be a vivid metaphor and helpful to the applied worker in set-
ting up an econometric model. Moreover, a story about a population and a sample

19 We shall not, in the body of this book, undertake a criticism of the frequentist approach, but some
comments are given in appendix 1 to the book entitled A Conversion Manual.

20 Economists whose applied work is claimed to rest on “estimating some feature of a population”
seem very rarely to define that population precisely.
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from it can help the particular model chosen by an investigator seem plausible to his
audience and readers, and this is an important consideration in scientific commun-
ication which is, in part, an exercise in persuasion. There is no reason why a Bayesian
econometrician should not think of his data as a sample from some, possibly hypo-
thetical, population if it assists him in drawing up what appears to be a defensible
econometric model. This is as long as he remembers that this is, usually, only a metaphor.

Identification

It is perfectly possible for a likelihood function to point not to one particular value
of θ, as in the illustration that we gave earlier, but to be such that all elements of a
set of points in Θ give equal values for the likelihood. We saw an example of this at
the start of section 1.3 where we remarked that if P(E\θ1) = P(E\θ2) then no change
of opinion about θ would take place. There is nothing problematic about this, though
it may be disappointing. You will have to depend on the prior distribution to dis-
tinguish among such θ values. And if the prior distribution assigns equal probability
to such values they will be equally probable a posteriori.

A deeper phenomenon occurs if such flat spots in the likelihood occur for any pos-
sible data set that could be observed. Specifically, we can imagine a likelihood derived
from the conditional distribution p(y\θ), y ∈ Ω, θ ∈ Θ such that for a set of values
of θ ∈ Θ we have p(y\θ) = constant for all y ∈ Ω. This means that whatever Y real-
izations occur there is a set of values of θ that all give the same value for the like-
lihood. In this case we say that θ is not (likelihood) identified. Note that this definition
makes no reference to the size of the set of θ values that have equal likelihood. This
may be just two points or it may be, for example, the entire real line.

EXAMPLE 1.6 NON-IDENTIFIABILITY Consider
the likelihood for n independent observations of a normal random variable with
mean µ and precision = 1. Multiplying n such normal densities together and 
dropping irrelevant multiplicative constants gives

� ∝ exp{−(1/2)∑n
i=1(yi − µ)2}

∝ exp{−(n/2)(µ − Q)2}

after rearranging the sum in the first line and dropping still more terms not involv-
ing µ. Now suppose that your theory leads you to assert that µ is the sum of two
theoretically quite distinct effects, one represented by a number α and the other
represented by a number β. Thus µ = α + β and we can write the likelihood for
α, β as

�(α, β; y) ∝ exp{−(n/2)(α + β − Q)2}.
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For any particular data set providing a value for Q , say 1.415, we can see from
the above expression that all values of α and β whose sum is 1.415 yield exactly
the same value for the likelihood. But, more importantly, this will be true for any
and every data set that you obtain. It will always be true that there is a collec-
tion of points in the α, β parameter space that yield equal values for the likeli-
hood. The parameters α and β are not identified.

Technically, we define21 identification as

DEFINITION 1.3 IDENTIFICATION A value θa of a parameter is iden-
tified if there is no other value θb such that p(y\θa) = p(y\θb) ∀ y ∈ Ω. The model is
identified if all the parameter values are identified, in which case the parameter θ is
said to be identified.

If p(y\θa) = p(y\θb) for all y then θa and θb are said to be observationally equivalent.
Historically, identification has been a major issue in econometrics and the 

early discovery of potential non-identifiability in even a simple market demand and
supply model was a major event in the evolution of our subject. To find that the
economic model you have devised and the likelihood to which it leads does not 
permit the discovery of a single numerical value for a parameter, whatever the data,
can be an important insight. The discovery of non-identifiability has prompted the
search for credible prior information that can help to distinguish among non-
identified values of θ. Traditionally these have either taken the form of exact restric-
tions on the parameter space – dogmatic priors – or the discovery of further data.

Flat spots at the top of the likelihood pose a problem for maximum likelihood
inference since there will never be unique maxima and second derivative matrices
will typically be singular at non-identified points. It is of no special significance from
the Bayesian point of view because Bayesians do not maximize likelihoods – they
combine them with priors and integrate them. A qualification to this is that if all
values of a parameter on, say, the real line are unidentified then an (improper) flat
prior distribution on that line would lead to a flat posterior and this is not allowed.
We shall illustrate non-identifiability in specific contexts later in the book.

Exchangeability

It is almost impossible to construct an econometric model without, at some stage,
invoking a proposition of the form “(Y1, Y2, ..., Yn) are independently and 

21 Following Bauwens, Lubrano and Richard (1999). This definition refers to parametric identifiability.
For a more general definition see Manski (1988).
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identically distributed random variables.” But this seems to imply that somewhere, 
out there, is a machine that is similar to the random number generator on your 
computer and capable of producing a stream of numbers that appear as if they 
were independent draws from the marginal distributions of any of the {Yi}. From
the subjective point of view, in which probabilities are private and personal the phrase
just cited doesn’t look meaningful – it appears to give probability an objective 
existence.

Because of this some writers prefer, following de Finetti, to derive their likelihoods
or probability models via the deeper idea of exchangeability.

DEFINITION 1.4 EXCHANGEABILITY A sequence of random variables
Y1, Y2, ..., Yn is called exchangeable if its joint probability distribution is unchanged by
permutation of the subscripts. For example when n = 3, p(Y1, Y2, Y3) = p(Y2, Y3, Y1) etc.

Exchangeability implies that the random variables {Yi} all have the same means
and variances, if they exist, and that the correlations between every pair Yi, Yj must
be the same as for every other pair. Note that exchangeable sequences are not 
necessarily sequences of independently and identically distributed (iid) random vari-
ables, though sequences of iid random variables are exchangeable. Whether you think
a sequence is exchangeable is a matter of judgement. Consider, for example, a sequence
of, say, 3 tosses of a coin with Yi denoting the occurrence of heads on the ith throw.
You form a judgement about p(Y1, Y2, Y3) and then you are asked to form a judge-
ment about p(Y2, Y3, Y1): would you give a different answer? If you would not and
the same was true for all the six possible permutations of the subscripts then your
beliefs about Y1, Y2, Y3 are exchangeable.

The relevance of this idea to the question of the choice of prior is a famous result
of de Finetti. We give it for binary random variables though more general versions are
available. This states that if a sequence of n binary random variables is exchangeable
for every n then the joint probability distribution of Y1, Y2, ..., Yn must take the form

p(y1, y2, ..., yn) = �θ s(1 − θ)n−s dF(θ).

This has the form of a Bayesian marginal data distribution derived from a likelihood
equal to θ s(1 − θ)n−s and a prior distribution function equal to F(θ). So exchange-
ability implies the existence of a likelihood and a prior. It is an amazingly powerful
idea. It means that you have no need to start your modelling with the assertion that
a collection of random variables are independent and identically distributed. You 
can instead merely state that your beliefs about them are exchangeable and this will
automatically imply that the model takes the form of a likelihood and a prior.

Having said this, it is the case in almost all practice by Bayesian econometricians
that they begin modeling in the conventional way without any deeper justification.
We shall mostly follow that path in this book.
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Concluding remarks about likelihood

The likelihood (together with the prior which we shall describe next) is a framework
within which to confront an economic model with evidence about the economy.
Both are probability distributions and in particular the likelihood is, before the data
are seen, the joint probability distribution, conditional on a parameter, of all the ran-
dom variables that will be observed. To construct a likelihood you choose a family
of distributions by drawing on the vast collection of such models available within
the theory of probability. The likelihood that you choose must be appropriate to
the type of data that are to be observed; it must make it possible for you to repres-
ent the economic model within it; and it should make it possible for you to dis-
credit that model when it is clearly inconsistent with the evidence.

Your likelihood is not sacrosanct. After all it carries with it restrictions, for ex-
ample normality, that are not themselves part of the economic model and such 
restrictions may be inconsistent with the evidence and, if falsely imposed, distort your
conclusions about the economic model. In example 1.2 the theorist who proposed
that c is proportional to y did not add “and to the extent that it is not, variations
about a line through the origin will have a normal distribution.” His theory does
not refer to data at all; it exists on a different plane of discourse. This does not imply
that you must make no restrictions in constructing your likelihood other than those
implied by the theorist. But it does imply that you should explore variations in your
inferences over a set of likelihoods each of which embodies the theory. And it also
suggests that it is better if your likelihood is relatively unrestricted. Thus, for ex-
ample, you might want either to assume normality, if this makes sense, and then test
whether normality was in fact a restriction consistent with the evidence. Or you might
want to begin by assuming not normal variation but some more general distribu-
tional family that includes normality as a special case. Both strategies are sensible.
The models described in this introductory chapter (of an introductory book) are
necessarily very simple and do not represent the full range of probability structures
that are available and computionally feasible. In later chapters we shall describe some
richer models that are available to the econometrician.

From the subjectivist perspective adopted in this book, a likelihood represents 
your beliefs about the values of the data conditional on θ. It is your likelihood, in
the same way that the marginal distribution for θ, the prior p(θ), will represent 
your beliefs about that parameter. But if your aim is to persuade others of the 
interest of your results you will be well advised to choose a likelihood that is not
clearly inconsistent with the beliefs of your audience and your readers. Assuming
that your audience is fellow economists your likelihood should embody both a 
defensible and coherent economic model and a probability structure that is not 
obviously inappropriate.
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1.4.2 The prior p(θθ )

The prior is the other component of Bayes’ theorem and together with the likeli-
hood it provides the basis for inference from the evidence. On the subjective view
the prior represents your beliefs about θ in the form of a probability distribution.22

You may choose whatever distribution you like in the same way that you can choose
whatever likelihood function you like. But a number of points might usefully be made.
Some of these points are relatively technical and some are present largely for histor-
ical reasons. It may be that a reader willing to accept the simple idea of a prior as a
personal probability distribution over the parameter space and anxious to get on with
doing Bayesian econometrics would wish to skip over the rest of this section at first
and move directly to section 1.4.3 on posterior distributions, or even to chapters 3
and 4 on regression models and markov chain monte carlo methods respectively.

Tentative priors

The first point is that although p(θ) represents your beliefs you don’t need to believe
it! You may and indeed should examine the impact of alternative beliefs – alternative
priors – on your subsequent, posterior, conclusions. This is done in the spirit of “what
if ?” You ask “if I had believed this . . . before seeing the data, what would I now
believe?” This is called sensitivity analysis and it applies to the likelihood function
just as much as to the prior. You may, for example, consider changing the prior
from p(θ) to q(θ) and you would then recalculate the posterior to study how beliefs
about θ have changed. Similarly, you may consider changing the likelihood from
p(y\θ) to q(y\θ) and seeing how the posterior distribution of θ has changed. The
idea here is to explore how sensitive your main conclusions are to alterations in the
model, i.e. in the prior and likelihood. We shall illustrate this idea in chapter 2 once
we have completed our survey of the main components of Bayesian inference.

In the same spirit, although we usually interpret Bayes’ theorem as operating in
temporal order, prior beliefs → data → posterior beliefs, this is not a necessary inter-
pretation and it is formally quite legitimate to allow your “prior” beliefs to be influenced
by inspection of the data. This is in fact the practice of most applied workers who
act in the spirit of Sherlock Holmes’ dictum “It is a capital mistake to theorize before
one has data.”23 The legitimacy of such data-dependent priors follows from the 

22 It’s also possible to take an objective view of a prior distribution over θ values. On this view there
exists a population of agents with different values of θ so there is an objectively existing collection of θ
values and you can think of p(θ)dθ as referring to the proportion of such agents with θ values in the
short interval dθ. This gives a relative frequency interpretation to the prior. Some people feel more com-
fortable with this interpretation of the prior and there is nothing in what follows to preclude this point
of view. It is entirely consistent with the mathematics of Bayesian inference and the reader who prefers
such an objective Bayesian perspective can use all the techniques described in this book to carry out his
econometric analysis.

23 A Scandal in Bohemia by Arthur Conan Doyle.
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fact that Bayes’ theorem does not restrict the choice of prior, it only prescribes how
beliefs change.

Encompassing priors

The second point is that it is necessary to take account of the beliefs of your audi-
ence and your readers, if any. Prior beliefs24 that conflict sharply with those of your
readers will make your work of little interest to them. You will be saying “If you
believed A before seeing the data you should now believe B.” But this will be met
with the response “So what, I don’t believe A.” It is therefore a good idea, for pub-
lic scientific work, to use priors that are not sharply or dogmatically inconsistent with
any reasonable belief. In low dimensions this requirement can sometimes be met by
using a uniform or flat distribution on some reasonable function of the parameter.
In the Bernoulli trials example a uniform distribution for θ on the interval zero to
one will not be inconsistent with any belief. It will not represent any belief, for 
example it would not represent the belief of someone who is quite convinced that
θ lies between 0.4 and 0.6, but it wouldn’t be inconsistent with such a belief. In a
sense such a prior encompasses all reasonable beliefs. Such priors are often called
vague.25

As a particular case of this it would be wise to avoid using priors that assign zero
probability to parts of the parameter space. Because the posterior density is formed
by multiplication of the prior and likelihood – see (1.3) – a prior that assigns prob-
ability zero to a set will necessarily assign zero posterior probability to that set. Such
a prior is very dogmatic and this is to be avoided wherever possible in scientific enquiry.
On the other hand, any model involves some dogmatic assertions since without them
the theory would be vacuous. So the recommendation to avoid dogmatic priors can
never be strictly fulfilled.

Natural conjugate priors

The posterior density function p(θ\y) is formed, apart from the multiplicative con-
stant 1/p(y), by multiplying the likelihood and the prior. There is some merit in
choosing a prior from a family of density functions that, after multiplication by 
the likelihood, produce a posterior distribution in the same family. Such a prior is
called natural conjugate. In this case only the parameters of the prior change with
the accumulation of data, not its mathematical form. Such priors also have the 
advantage that they can be interpreted as posterior distributions arising from some 
earlier, possibly fictional, evidence. Thus we might try to form our prior for θ in the

24 And likelihoods, for that matter.
25 There is a history of efforts to find priors that are “uninformative” in some sense, compared to

the likelihood. These efforts do not seem to have been very fruitful particularly in the case of models
with parameters of several dimensions.
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Bernoulli trials example by trying to imagine what our beliefs would currently be
had we seen the evidence of some earlier trials prior to which our beliefs were vague.

Before illustrating natural conjugacy it will be helpful to reintroduce the idea of
a kernel.

DEFINITION 1.5 A KERNEL A probability density or mass function of a
random variable X typically has the form kg(x) where k is a numerical constant 
whose role is to ensure that kg(x) integrates to one. The remaining portion, g(x), which
does involve x, is called the kernel of the function.

For the beta family of probability density functions the kernel is x a−1(1 − x)b−1 while
k is the ratio of gamma functions given in the appendix to this chapter. What con-
stitutes the kernel of a density or mass function depends on what you think the argu-
ment is. For example if x is of interest the kernel of an n(µ, τ) density function is 
exp{−τ(x − µ)2/2} while the constant is τ1/2/√(2π). On the other hand if one is think-
ing about the normal density for given x as a function of µ and τ then the kernel would
be τ1/2exp{−τ(x − µ)2/2}. In neither case is the numerical factor 1/√(2π) of any 
relevance.

The purpose of k is to make the density or mass function integrate to one. Once 
you know the kernel the constant can be found by integration but it is usually of little
interest in itself. Since a family of distributions can be recognized from its kernel it is
usually convenient to omit constants when we manipulate probability distributions and
we shall follow this convention in this book. It makes for algebra that is much easier to
follow.

Indeed, as we remarked earlier, Bayes’ theorem itself is often stated up to a missing
constant as

p(θ\y) ∝ p(y\θ)p(θ) (1.18)

or, in words, the posterior is proportional to the product of the likelihood and the prior.

EXAMPLE 1.7 NATURAL CONJUGACY FOR
THE BERNOULLI TRIALS PARAMETER To illu-
strate natural conjugacy consider the likelihood of θ in the Bernoulli trials 
example which has, up to a multiplicative constant, the general form θ s(1 − θ)n−s.
Since the posterior density of θ is formed by multiplying the prior and the likeli-
hood it is clear, by contemplating the multiplication of such functions, that any
prior that is proportional to θ a−1(1 − θ)b −1 will lead to a posterior density of the
same mathematical form. It follows that the natural conjugate family of prior
distributions for this problem is the beta family.
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Notice that this argument never needed to mention the constants multiplying these
kernels. The property of natural conjugacy was of more importance in the days when
posterior distributions were computed analytically and not, as now, numerically.

Improper priors

A “probability distribution” for θ is called improper if its integral over the sample
space Θ does not converge. A simple example is the expression

p(θ) ∝ 1, −∞ < θ < ∞ (1.19)

which is called a uniform distribution on the real line and can be thought of as a
rectangle on an infinitely long base. Its integral, the area under the line, does not
converge, it is infinite and so (1.19) is not, in fact, a probability distribution.
Nevertheless such improper distributions are frequently used in applied Bayesian
inference and there are several reasons for this.

One reason is that often it does not matter, at least mathematically, if the prior
is improper. Because the object of ultimate interest is the posterior distribution of
θ and this is formed by multiplying the likelihood and the prior it is perfectly pos-
sible for the posterior distribution to be proper even though the prior is not. To see
this consider the following.

EXAMPLE 1.8 PROPER POSTERIOR FROM
IMPROPER PRIOR Let the likelihood be formed as the distribution
of n independent normal variates with mean θ and precision one. Thus

�(θ; y) ∝ ∏n
i=1exp{−(1/2)(yi − θ)2}

= exp{−(1/2)∑n
i=1(yi − θ)2}, (1.20)

and using the fact that

∑n
i=1(yi − θ)2 = ∑n

i=1(yi − Q + Q − θ)2

= ∑n
i=1(yi − Q)2 + ∑n

i=1(θ − Q)2,

we find that

�(θ; y) ∝ exp{−(n/2)(θ − Q)2}. (1.21)

This is (the kernel of ) a normal distribution with mean Q and precision n. It is
a perfectly proper probability density function whatever the values of n > 0 and
Q. So if you multiply the likelihood (1.21) by the improper prior (1.19) the result-
ing posterior distribution is proper.
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Thus, at least mathematically and for at least some models,26 it is unnecessary for
a prior to be proper. Improper priors can lead to proper posteriors.

Another reason is that an improper prior can often be thought of as an approx-
imation to a proper prior that is intended to represent very imprecise or vague beliefs.
To see this consider the last example again.

EXAMPLE 1.9 Suppose we multiply the likelihood (1.21) by a prior den-
sity for θ that is normal with precision equal to τ and mean zero. This gives a
posterior density

p(θ\y) ∝ exp{−(n/2)(θ − Q )2}exp{−(τ/2)θ2}
∝ exp{−(n + τ)(θ − B)2/2} (1.22)

after a little rearrangement of the exponent and the dropping of irrelevant 
multiplicative constants. This expression, (1.22), is the kernel of a normal distri-
bution with mean B = nQ/(n + τ) and precision n + τ. Now let the positive num-
ber τ approach zero. The prior density e −τθ 2/2 approaches a constant, the posterior
mean nQ/(n + τ) approaches Q and the posterior precision approaches n and these
are the values that correspond to the improper uniform prior underlying (1.21).
A proper prior with τ sufficiently small will produce much the same posterior as
an improper, uniform, prior.

It follows from this example that when your prior beliefs are very vague you can
(sometimes) act as if your prior was uniform and find a numerically very accurate
approximation to what your real posterior beliefs would be. The uniform prior is a
labor saving device in that it saves you the trouble of specifying your exact beliefs.
It’s often used in this way in practice, during preliminary analyses. Many of the 
standard calculations in econometrics, for example the use of least squares regres-
sion and all maximum likelihood methods, can be thought of as flat prior Bayes, as
we shall see.

A third reason goes by the name of the principle of precise measurement.

Precise measurement

Recall from Bayes’ theorem (1.3) that the posterior distribution, which provides our
inferences about θ, is formed as the product of the likelihood and the prior. This
simple fact is of enormous consequence. We have already remarked that because 
of it you should never assign zero prior probability to a set in Θ since, because 
zero times any number always gives zero, this action necessarily assigns zero posterior

26 In other models improper priors can lead to improper posteriors, as we shall see.
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probability to that set so you can never learn that in fact, in the light of the evid-
ence, that set is quite probable. We now use this fact again by remarking that almost
always – the first two panels in figure 1.4 are an exception – the likelihood is effec-
tively zero over most of the parameter space. To see this look at examples 1.2, 1.3,
and 1.4 where the likelihood is negligible everywhere on the real line except in the
region we have plotted. Thus the prior is multiplied by (almost) zero almost every-
where in the parameter space and it does not matter what your prior beliefs were in
that region. Whatever they were they will not change the posterior density in regions
where the likelihood is negligible. This implies that a prior that is intended to be
roughly neutral as between different values of θ need only be so in the region where
the likelihood is non-negligible – how the prior behaves outside that region is of no
consequence. A conclusion that could be drawn from these remarks is that a prior
that is, formally, uniform on the real line is practically equivalent to one which is
uniform where the likelihood is non-negligible but behaves in any other (bounded)
way outside that region.

We now turn to look at the possibilities of finding objective and default priors.

Objective and default priors

Much ink has been spilt in the search for a rule that would produce a prior distribu-
tion for any model and one that would, in some sense, be minimally informative.
The search could be said to begin with the Marquis de Laplace in the eighteenth
century but in its modern form it could be said to begin with Harold Jeffreys in
1938 and it still continues. In his book Jeffreys proposed a rule that possesses an
apparently persuasive property, that of invariance.

jeffreys’ invariant priors

We can parametrize a model in an infinite number of ways and the parametrization
we choose is important in Bayesian inference. For example we can parametrize a zero
mean normal distribution in terms of its standard deviation σ, its variance σ 2, its
precision τ = 1/σ 2 and generally we can use any one-to-one function of σ. Suppose
that we choose any particular parametrization, for example σ, and apply a rule for
constructing a prior distribution for that parameter and then, using the prior that
results from following that rule we construct the posterior distribution of σ. Now
suppose that you re-analyze the data but work in terms of a different parametriza-
tion, say σ 2, but you apply the same rule to form your prior for σ 2. Jeffreys then
argued that the beliefs about the first parameter σ that can be deduced from the
posterior distribution for σ 2 should be identical to those reached in the first ana-
lysis; in Jeffreys’ words “equivalent propositions should have the same probability.”
Posterior beliefs about the same quantity should be invariant to the parametriza-
tion used. Jeffreys showed that there exists a rule, now named after him, that does
satisfy this invariance condition.
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His rule is to choose the prior proportional to the square root of the information,

(1.23)

where the expectation is taken with respect to p(y\θ). This is (the negative) second
derivative of the logarithm of the likelihood function averaged over repeated real-
izations of y. It, and its matrix version, plays a major role in both likelihood and
Bayesian inference. Here is the argument that shows that Jeffreys’ rule is invariant
to reparametrization. Suppose a second parametrization is in terms of h(θ), for 
example θ might be σ and γ = h(θ) might be 1/σ 2. Now note that

(1.24)

where the last line follows because E(∂ log �/∂θ) = 0.27 Here, Iγ is the information
about γ and Iθ is the information about θ. Note that (1.24) implies that I γ

1/2 = I θ
1/2

\∂θ/∂γ\. Now the posterior distribution of θ for someone who works in terms of
θ and follows Jeffreys’ rule will be �(θ)I θ

1/2. For someone who works in terms of γ,
his posterior distribution for γ will be �(h(θ))I γ

1/2. From this we can deduce what
the second person’s beliefs about θ will be by following the standard rule for deduc-
ing the distribution of a function of a random variable. This gives the second per-
son’s beliefs about θ as �(θ)I γ

1/2\∂γ/∂θ\ = �(θ)I θ
1/2\∂θ/∂γ\\∂γ/∂θ\ = �(θ)I θ

1/2 which
are precisely the same as the first person’s beliefs about θ. To illustrate this poten-
tially confusing little argument consider the following.

EXAMPLE 1.10 JEFFREYS’ PRIOR FOR A
NORMAL PRECISION If p(y\σ) is the density of n independ-
ent normal variates of mean zero and standard deviation σ then log �(σ) =
−n log σ − ∑y 2

i /2σ 2. So the hessian is ∂2 log �(σ)/∂σ 2 = (n/σ 2) − 3∑y 2
i /σ 4.

Since the expected value of y 2 is σ 2 the information about σ, Iσ , is 2n/σ 2 and
Jeffreys’ prior for σ will be ∝ 1/σ. An alternative parametrization is τ = 1/σ 2

and the log likelihood in terms of τ is log �(τ) = (n/2) log τ − τ∑y 2
i/2. Different-

iating twice, taking expectations and changing sign then gives the information 

so      I Iγ θ
∂θ
∂γ
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27 Take the identity ∫p(y\θ)dy = 1; differentiate with respect to θ; then rearrange using ∂ log p/
∂θ = (1/p)∂p/∂θ.
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for τ as  Iτ = n/2τ 2 implying the Jeffreys’ prior for τ is ∝ 1/τ. The posterior beliefs
about σ for the person working in terms of σ will be

p(σ\y) ∝ σ −(n+1) exp{−∑y 2
i/2σ 2}. (1.25)

The beliefs about τ for the person working in terms of τ will be

p(τ\y) ∝ τ n/2−1 exp{−τ∑y 2
i/2}.

Finally, the beliefs about σ held by the latter person are found by the change of
variable from τ to σ and are

p(σ\y) ∝ σ −n+2 exp{−∑y 2
i/2σ 2}\−2/σ 3\ ∝ σ −(n+1) exp{−∑y 2

i/2σ 2}.

This is identical to (1.25) which confirms invariance in this case.

Prior beliefs formed using Jeffreys’ rule are often improper as the preceding ex-
ample illustrates – 1/τ is an improper prior over 0 < τ < ∞ since ∫0

∞τ −1dτ diverges.
The invariance argument generalizes straightforwardly to the case in which θ is a
vector parameter. Informations are replaced by information matrices and Jeffreys’ takes
the form \Iθ\1/2 – the square root of the determinant of the information matrix.

EXAMPLE 1.11 JEFFREYS’ PRIOR FOR BER-
NOULLI TRIALS With n Bernoulli trials the likelihood for θ is 
�(θ; y) ∝ θ s(1 − θ)n−s. To calculate Jeffreys’ prior we need to differentiate the log
likelihood twice and take expectations. The calculation, with L denoting log �, 
is as follows.

L(θ) = s log θ + (n − s) log(1 − θ)

since E(s\θ, n) = nθ,

It follows that Jeffreys’ prior is

This is a beta(1/2, 1/2) density which is proper, but U shaped. According to this
prior the least likely value of θ is 1/2. Notice that Jeffreys’ prior is not uniform,
as one might, perhaps, have anticipated.
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There remains much debate about the value of Jeffreys’ rule. It often doesn’t seem
to give very appealing results particularly when θ is vector valued but even in a 
simple model such as an autoregression a Jeffreys’ prior on the autoregressive
coefficient may seem strange to many. Objective rules in general are not very appeal-
ing to those who prefer beliefs to represent subjective opinion based on an informed
appreciation of the economic meaning of θ. Jeffreys’ prior involves taking expect-
ations with respect to y which is a repeated sampling calculation, and many writers
take the view that such calculations are, in general, not well defined and they cer-
tainly violate the likelihood principle.

It’s also not very clear in what sense Jeffreys’ rule produces prior distributions that
are minimally informative. There is another strand in the literature, due to Bernardo
and Berger,28 which starts with a precise measure of the amount of information in
a probability distribution based on information theory, and asks for the prior dis-
tribution whose contribution to the total information in the posterior distribution
is minimal. This leads to the class of reference priors. Unfortunately these do not
always exist, even for econometrically simple models, but where they do exist they
typically take Jeffreys’ form. So in this sense Jeffreys’ priors can be justified as min-
imally informative.

But even if one doesn’t like general rules for forming prior distributions there exists
a need for default priors to use in standard situations when an investigator, at least
initially, doesn’t wish to spend much time thinking about the details of his prior
beliefs about θ. So just as there are default likelihoods for automatic use in standard
models there are default priors in general use. These are typically uniform (and there-
fore improper) distributions of functions of the parameter concerned. For example
linear regression coefficients are usually taken to be uniform on the real line and
normal precisions to be such that the log precision is uniform on the real line, so
that the precision itself has “density” 1/τ on the positive axis.29 We shall use such
default priors quite often in this book. Application of such default uniform distribu-
tions to high dimensional parameters must however be done with great caution30

and we shall see several illustrations of this caution in the chapters on panel data
and on time series.

Hierarchical priors

When dealing with vector valued parameters it is often persuasive to think about
your prior distribution hierarchically. Suppose you are dealing with a parameter with,
say, n elements and these elements are similar in the sense that they have the same
dimension (units of measurement) and play similar roles in the model. An example
might be the coefficient of the same variable in a regression model where each agent
is allowed to have his own response. Another example might be the set of precisions

28 See the bibliographic notes at the end of this chapter.
29 Using a change of variable with jacobian ∂ log τ/∂τ = 1/τ.
30 BUGS, the software package recommended for this book, requires the user to employ proper priors.

AITC01  22/3/04  14:45  Page 37



38 The Bayesian Algorithm

in a model where each agent is allowed to have his own precision. If the parameter
is θ = (θ1, θ2, ..., θn) one might construct a prior that expresses the similarity among
the elements of θ, by taking these elements to be an independent set of realizations
of some appropriate parent distribution, say h(θ\λ), where the parameter of the par-
ent, λ, is of much smaller dimension than θ. This parent or second stage parameter
is then assigned a prior distribution, typically one of the default choices. Formally,
we want p(θ) and we get this by stating firstly p(θ\λ) and then forming p(λ). This
forms p(θ) implicitly as p(θ) = ∫p(θ\λ)p(λ)dλ. The parameters θ represent the first
stage in the hierarchical structure; the parameters λ represent the second stage, and
so on. There is no limit to the number of stages in a hierarchical model though in
practice two or three is usual. Here is an example.

EXAMPLE 1.12 A HIERARCHICAL PRIOR Let
τ = (τ1, τ2, ..., τn) be a set of precisions that are thought to be similar, but not
identical, and have the same dimension. Since they are non-negative an obvious
choice for a hierarchy is to let them be realizations of a gamma variate with para-
meter λ = (α, β). Thus (see the appendix to this chapter)

p(τ\λ) ∝ ∏n
i=1τ i

α−1e −βτ i. (1.26)

As an application, consider a collection of independent normal variates of mean
zero and precisions τi. Then the likelihood is

�(y; τ, λ) ∝ ∏n
i=1τ i

1/2 exp{−y 2
i τi/2}, (1.27)

and the whole model is

p(τ, λ\y) = �(y; τ, λ)p(τ\λ)p(λ)
= ∏n

i=1τ i
1/2 exp{−y 2

i τi/2}∏n
i=1τ i

α−1e −βτ ip(λ),
= ∏n

i=1τ i
α+1/2−1 exp{−τi(β + y 2

i/2)}p(λ). (1.28)

This prior structure is often used as the basis for robust Bayesian analysis in the
sense that it relaxes the somewhat dogmatic restriction that all y’s have the same
precision. We shall return to this model in later chapters.

An interesting feature of hierarchical priors is that they reveal the somewhat arbi-
trary nature of the distinction between the likelihood and the prior. Take a model
written with parameter θ; let θ have a prior that depends upon a hyperparameter ψ ;
and let ψ have a prior p(ψ) involving no unknown parameters. Then one way of
presenting the model is as

�(θ; y)p(θ\ψ)p(ψ)
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where the prior is p(θ\ψ)p(ψ) = p(θ, ψ). Another way is to integrate out θ and write
the model as

�(ψ; y)p(ψ), where �(ψ ; y) = ��(θ; y)p(θ\ψ)dθ.

Which is the likelihood, �(ψ ; y) or �(θ; y)? The answer is that it doesn’t really 
matter; all that does matter is the product of prior and likelihood which can be taken
as p(y, θ, ψ) or as the y, ψ marginal, p(y, ψ) = ∫p(y, θ, ψ)dθ.

Priors for multidimensional parameters

While it doesn’t matter in principle to the Bayesian method whether θ is scalar or
multidimensional it matters quite a lot in practice. Default choice of prior for scalar
parameters has been rather thoroughly studied. For example, many reference priors
(mentioned above) for scalar parameters have been produced, but the situation for
vector parameters is notably less clear or, indeed, simple. Jeffreys’ priors for scalars
are known to provide acceptable results in most cases but, as Jeffreys himself
observed, the position is less satisfactory when Iθ is matrix valued.

One promising line of work has been to try to reduce the situation to one involv-
ing many scalar parameters. This can be done if you can separate the likelihood into
a product form, each term of which involves only a single element of θ. Then if you
can reasonably assume independence of the elements of θ in the prior, the posterior
distribution will also factor and you have, at least in a numerical sense, k separate
analyses. Separating the likelihood in this way typically will involve finding a differ-
ent parametrization of the model from the one in which you originally wrote it. That
is, working in terms of some one-to-one function g(θ) instead of θ.

EXAMPLE 1.13 PARAMETER SEPARATION
IN REGRESSION As a fairly simple example of parameter separation
consider a version of example 1.2 in which there are two parameters, α and β, so
that θ = (α, β). Let the relation between consumption and income be

ci = α + βyi + εi, εi ~ n(0, 1), (1.29)

for i = 1, 2, ..., n with observations independent given the parameters and the
y’s. By the argument leading to (1.6) the likelihood is

�(α, β) ∝ exp{−(1/2)∑n
i=1(ci − α − βyi)2}

and this, after a little tedious algebra, can be written as a generalization of (1.7)

�(α, β) ∝ exp{−(1/2)(θ − A)′X ′X(θ − A)} (1.30)

AITC01  22/3/04  14:45  Page 39



40 The Bayesian Algorithm

where (1.31)

and

Inspection of (1.30) shows that it will not break apart into a product of a term
involving only α and a term involving only β unless X ′X is a diagonal matrix
and this requires that ∑n

i=1yi is zero, which will not usually be true. But we can
make it true.

To see this let us rewrite the model as

ci = (α + βQ) + β(yi − Q) + εi

= α* + βy i* + εi

with the same distributional assumptions. This is exactly the same model as (1.29)
but with a different parametrization: instead of θ = (α, β) it is now para-
metrized in terms of g(θ) = (α*, β), a one-to-one function of θ. Now the new
X ′X matrix has the form

(1.32)

where the zeros appear because the sum of observations measured from their mean
is identically zero. It follows from this diagonality that the likelihood in terms of
g(θ) takes the form

�(g(θ); y) ∝ e −(n/2)(α*−{)2e −(∑y i*2/2)(β −β )2

where { = N , and D = ∑(ci − N)(yi − Q)/∑(yi − Q)2.

So the first component of the reparametrized likelihood has the shape of a normal
curve centered at mean consumption, and the second component has the shape of
a normal curve centered at D, the least squares estimate.

One feature of this example that is particularly important is the effect of the para-
meter transformation on the information matrix. It’s obvious that if a likelihood 
is multiplicatively separable then the log likelihood is additively separable, and it 
follows from this that the cross partial second derivatives of the log likelihood will
be identically zero. For this model the information matrix for θ is given by (1.31)
but the information matrix for g(θ) is given by (1.32), which is diagonal.

This remark suggests that we can search for separable reparametrization by look-
ing for functions g(θ) that diagonalize the information matrix. In later chapters we
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shall show that such new parametrizations, called information orthogonal, can often
be found and that they tend to simplify the search for default priors in models with
multidimensional parameters.

1.4.3 The posterior p(θ\y)

The posterior density represents your beliefs about θ given your prior beliefs and
the beliefs embodied in the likelihood. In many applications the posterior is the 
culmination of an empirical analysis.31 To report your results you will display the
posterior distributions to which your model and data have led. Let us look at 
examples of posterior distributions before making some general comments.

EXAMPLE 1.14 BERNOULLI TRIALS Suppose that
your prior beliefs are described by a member of the (natural conjugate) beta 
family. Formally, p(θ) ∝ θ a−1(1 − θ)b −1, 0 ≤ θ ≤ 1. With a model in which n
Bernoulli trials are undertaken, with outcomes which are conditionally independ-
ent, with common expectation θ, the likelihood was given by (1.13). Hence, by Bayes’
theorem the posterior density of θ has the form

p(θ\y) ∝ θ s+a−1(1 − θ)n−s+b−1 (1.33)

which we recognize as the kernel of a beta density with mean and variance

(1.34)

(Note that if both s and n are large and in the ratio r then these moments are
approximately

E(θ\y) = r,

When n is large and r = s/n is fixed, the posterior variance becomes small and
almost all its probability mass is confined near s/n, the fraction of successes. It is
easy to see that this is true whatever member of the beta family was used as the
prior and we conclude that for this model, as evidence accumulates, the posterior
becomes dominated by the likelihood, virtually independent of the shape of the prior,
and ultimately converges to a point.)
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31 Its counterpart in frequentist econometrics is a table of estimated values of θ with their estimated
standard errors.
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CALCULATION 1.5 As a numerical example of a posterior distribution
take the case of the likelihood plotted in the first panel of figure 1.4 which arose
when one success was observed in one trial. If our prior was uniform – a beta(1, 1)
density – then the posterior distribution is just the likelihood and is

p(θ\y) ∝ θ

which is the 45 degree line plotted in that graph. This is a proper posterior density,
its normalizing constant is 2, and, for example, the posterior expectation of θ after
one success in one trial is

E(θ\s = 1, n = 1) = �
1

0
2θ2 dθ = 2/3.

This contrasts rather sharply with the maximum likelihood estimate, which either
doesn’t exist or is 1, depending on how you define the parameter space, Θ.

In this example, with a uniform prior, p(θ) ∝ 1, the posterior distribution, with-
out its normalizing constant, is identical to the likelihood. This is clearly generally
true. So if you now look back to likelihoods plotted earlier in this chapter, for ex-
ample in figures 1.1, 1.2, and 1.3, you are, in effect, looking at posterior distributions
under uniform priors. So you can read these figures as if they told you your beliefs
about θ from that model and that data. For example, figure 1.1 tells you that the
most probable value of β is about 0.9; that values in excess of 0.93 or less than 
0.86 seem very unlikely; that θ = 0.89 is about five times as probable as, say, θ = 0.88
and so on. Similarly, under a prior for n which is uniform on the positive integers 
figure 1.5 shows the posterior distribution which points to values of n of about 14
and indicates that values of n greater than 25 are very improbable.

Reporting the posterior distribution

How might you report your posterior distribution?

draw it

In the case in which θ is scalar the best way of conveying to readers the content of
the posterior distribution is by drawing it. This is also true when θ is vector valued
but the parameter of interest is a one-dimensional function of θ, as it often is in
econometrics. For example economists are often interested in ∂y/∂x, the marginal
effect of x on y. Outside the linear model this may well be a function of many or
all parameters of the model as in the probit model of example 1.4. With x and β
vectors of k elements the general version of that model is

P(Y = 1\x, β) = Φ(xβ)
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and ∂P(Y = 1\x, β)/∂xj where xj is the j ’th element of x is given by βjΦ(xβ) which
involves every element of the k dimensional parameter β. To report this object at
some chosen value of x you would compute its posterior distribution from that of
β and draw it.

report its moments

Traditional econometric practice is to report an estimate of θ together with an 
estimate of the standard deviation of its repeated sampling distribution. If you wish
to conform to this practice you might want to report the mean (or median) of the
posterior distribution together with the standard deviation of that distribution.

report a highest posterior density region

Similarly, traditional practice often reports a confidence interval for (scalar) θ. This
is a numerical interval with the somewhat arcane interpretation that if you calculated
your interval in the same way over many hypothetical repeated samples of the same
size and using the same model then, say, 95% of such intervals would contain within
them the “true” value of θ. The Bayesian analogue is to find, from the posterior
distribution of θ, an interval32 in Θ such that with probability 0.95 θ lies within it.
It’s as simple as that. Of course there are many ways of capturing 95% of the prob-
ability in a distribution and standard Bayesian practice is to construct the interval 
in such a way that no point in Θ has smaller probability density than any point 
outside it. This is called a (95%) highest posterior density – hpd – interval. Here is a
numerical example. We take the autoregressive model of example 1.3 and artificially
generate 51 observations, starting at y1 = 0, with ρ = 1 which is called the random
walk model, and with unit precision. The likelihood was shown to be of the 
normal form with mean r = ∑51

t =2 ytyt−1/∑51
t =2 y 2

t−1 and standard deviation equal to 
s = 1/√(∑51

t =2 y 2
t−1). From the data we generated we find that r = 1.011 and s = 0.037.

Now if we take the prior for ρ to be uniform on the real line, p(ρ) ∝ 1, −∞ < ρ
< ∞, the posterior density of ρ is equal to the likelihood and so is itself normal 
(r, s). Then from well known properties of the normal curve we know that 95% of
the distribution will lie within 1.96 standard deviations of the mean and 99% will
lie within 2.58 standard deviations of the mean. Further, the intervals r ± 1.96s
and r ± 2.58s are such that all points within them have higher probability density
than any point outside them. Thus they are an hpd interval. For our data we find 
a 95% hpd interval to be 0.939 < ρ < 1.084 and a 99% interval is 0.916 < ρ
< 1.107. The interpretation of such intervals is very simple: for example, “the prob-
ability that ρ lies within the interval 0.939 to 1.084, given the model and data, is
0.95.”

32 More generally, a set.
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calculate the marginals

The calculation involved in forming the posterior distribution of the object of 
interest may well be mathematically challenging, to say the least. To work out the
distribution of βjφ(xβ) in a probit model is very hard. Similarly, if the object of inter-
est is, say, the third element θ3 in a model parameter of k elements, to find its marginal
density will involve doing the sum

p(θ3\y) = �
θ1

�
θ2

�
θ4

... �
θk

p(θ\y)dθ1dθ2dθ4 ... dθk, (1.35)

a k − 1 dimensional integration. This is, in general, a hard problem.33 Fortunately
there are two solutions, one fairly old and of wide though not universal applicabil-
ity, the second new, rather easy and of what is apparently universal application. The
first is the use of approximations to posterior distributions and the second is the
method of (computer) assisted sampling, which we shall treat in chapter 4.

Approximate properties of posterior distributions

If your posterior distribution is mathematically complicated or the dimension of
θ is such that the integration (1.35) is hard to do it seems natural to look for a 
useful approximation. Clues to such an approximation are the likelihood graphs that
we have drawn earlier in this chapter. These seem to suggest that likelihoods tend
to look roughly normal, at least when the number of observations is not very small.
Now if we could prove a theorem that states that when the number of observations
in large posterior distributions are approximately normal, then integrals such as 
(1.35) are easily done. This is because if p(θ\y) is multivariate normal then all its
marginal distributions are themselves normal so we would know immediately that,
say, p(θ3\y) is just a normal distribution. All that would then remain is to deduce
its mean and precision.

The relevant theorem states the following proposition.

THEOREM 1.1 LARGE SAMPLE APPROXIMATE POSTERIOR
Let θ be the parameter, possibly vector valued, and let p(θ\y) be the posterior distribu-
tion, then for sufficiently large n, θ is approximately normally distributed with mean
equal to A and precision (matrix) equal to −H(A) where A is the posterior mode and
H, the hessian, is the matrix of second derivatives of the logarithm of the posterior den-
sity function. Under a uniform prior for θ the posterior distribution is equal to the like-
lihood and so −H(A) is equal to the negative second derivative of the log likelihood evaluated
at A. The expected value of the negative hessian of the log likelihood with respect to the

33 It’s the sort of problem that, as I described in the preface, defeated my efforts many years ago.
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distribution of y given θ is the information (matrix), Iθ, mentioned earlier. In prac-
tice, Iθ(A) – called the observed information – and −H(A) will be close except when
the number of observations is relatively small or the prior is far from flat near A.

Proof For further discussion and references to proofs see Bernardo and Smith
(1994).

It should be noted that this multivariate normal approximation to the posterior
distribution applies to any parametrization of the model. Since for θ the result states
that approximately θ ~ n(A, −H(A)),34 it also implies that g(θ) ~ n(g(A), −J(A)), approx-
imately, where

and g(θ) is any differentiable one-to-one function of θ. A potentially important warn-
ing should be made here, that for any given data set and model, the normal approx-
imation for θ can be very accurate, but the corresponding normal approximation for
g(θ) can be very inaccurate, especially if g(.) is a markedly non-linear function. This
works in reverse in that g(θ) can be nearly normal but θ far from normal. Also, since
a multivariate normal distribution has a single mode this theorem can’t provide a
useful approximation when the posterior density has several modes.

Another important warning is that although the theorem is stated as a “large n”
result, it is almost always not the sample size that determines when the sample is
large but some other function of the data. For example, in a non-linear regression
model, which we shall study in chapter 5, it is objects such as ∑n

i=1(xi − P)2 that deter-
mine whether approximate normality of the posterior distribution is, or is not, a good
approximation. This sum of squares generally increases with the sample size, n, yet
it may be very small, even zero, even though n is very large, and it can be very large
even though n is very small. Just looking at the number of observations generally
gives a misleading answer to the question of whether approximate normality of the
posterior is reasonable.35

EXAMPLE 1.15 PROBIT COEFFICIENT POST-
ERIOR For an example of a normal approximation take the probit model
of example 1.4 where, under a uniform prior for β, the posterior density is equal
to (1.11) with logarithm equal to

J
p y p y

H( )  
( )

  
( )

  ( )A
\ \

A= −






= −






=






∂ θ
∂

∂ θ
∂θ

∂θ
∂

∂θ
∂

θ θ θ

2

2

2

2

2 2

g g g

34 The symbol ~ means “is distributed as.”
35 We shall see a striking example of this in chapter 8 where we find that 36,000 observations in a

model with seven parameters is a very “small” sample indeed.
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log p(β\y) = ∑n
i=1yi log Φ(βxi) + ∑n

i=1(1 − yi) log (1 − Φ(βxi)).

The derivative of this expression with respect to β is

and the posterior mode D equates this derivative to zero. The solution exists and
is unique as long as the y’s and x’s vary but it must be found numerically.
Differentiating this expression to find the hessian results in a rather complicated
expression though one which is readily evaluated on the computer. The negative
hessian is, however, when the number of observations is not too small, often well
approximated by the information. The information matrix is usually a simpler
expression than the hessian itself and it is in this case where it is

A normal approximation to the joint posterior density of β would then be

p(β\y) ≈ n(D, I(D)). (1.36)

CALCULATION 1.6 For a numerical comparison we generate some
data with n = 50 and β = 0 and plot the posterior density under a uniform prior for
β – this is the dotted line in figure 1.6. On this we superimpose as the solid line the
normal approximation (1.36). This is the normal density with mean D and precision
I(D) where D is the maximum likelihood estimate of β – the posterior mode under
a uniform prior. The two curves are indistinguishable.

Likelihood dominance

Another important feature of posterior distributions in general is that they typically
depend very little on the prior when the number of observations is large relative 
to the number of parameters and the prior does not assign probability zero to the 
relevant parts of Θ. To see generally why this is likely, consider the logarithm of 
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36 Apart from an irrelevant additive constant.

the posterior density of θ using a sample of size n. It has two components,36 the 
log likelihood and the log prior,

log p(θ\y1, ..., yn) = log �(θ; y1, ..., yn) + log p(θ).

Now as data accumulate and n increases the likelihood changes and tends to increase
in modulus, but the prior stays the same. To see an example of this increase, consider
the likelihood for n independent normal (µ) variates which is exp{−(1/2)∑(yi − µ)2}
with logarithm −(1/2)∑n

i=1(yi − µ)2. The increment in the likelihood when you add
an extra observation is therefore −(1/2)(yn − µ)2 which is either negative or zero
(which happens with probability zero) and so, for almost all µ, the log likelihood
becomes a larger and larger negative number as observations accrue. Hence, in large
samples the likelihood will be the numerically dominant term as long, of course, as
p(θ) > 0. This is true rather generally and it also works in the case of dependent or
non-identically distributed data. This argument will fail if p(θ) is zero over the region
in Θ where �(θ\y) tends to concentrate since log p(θ) = −∞ over that region. But if
p(θ) is not dogmatic and assigns some probability to all relevant parts of Θ then 
it will indeed be eventually dominated. Here is an example of dominance of the 
posterior by the likelihood.
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Figure 1.6 Probit posterior and its asymptotic normal approximation
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EXAMPLE 1.16 WEAK DEPENDENCE OF THE
POSTERIOR ON THE PRIOR Consider the Bernoulli trials
example with likelihood ∝ θ s(1 − θ)n−s and consider the effect of varying the prior
within the natural conjugate beta family, p(θ) ∝ θ a−1(1 − θ)b−1. Suppose that 
n = 20 with s = 7. Figure 1.7 shows three quite different beta prior distributions.
The horizontal line is a uniform prior with a = b = 1; the line composed of circles
is beta density with a = b = 3; and finally the solid line is the Jeffreys’ prior with
a = b = 1/2. These priors show quite different initial beliefs. Figures 1.8 and 1.9
show posteriors using these priors. In figure 1.8 we had n = 5 trials with s = 2 
successes, while in figure 1.9 we had n = 20 trials with s = 8 successes. The solid
line is the posterior with Jeffreys’ prior; the starred line corresponds to the uniform
prior; and the remaining line to the beta (3, 3) prior.

The message of the figures is that divergent prior beliefs can be brought rapidly
into rough agreement in the face of quite limited amounts of evidence, and that the
agreement is more complete the more data are available.

This argument for the large sample dominance of the likelihood over the prior is
sometimes said to mimic a process of rational scientific enquiry in that two individuals
with quite different, but non-dogmatic, prior beliefs will be brought into agreement

48 The Bayesian Algorithm
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Figure 1.7 Three priors for a Bernoulli parameter
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Figure 1.9 Three posteriors: n = 20, s = 8
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Figure 1.8 Three posteriors: n = 5, s = 2
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by the accumulation of evidence. Note that such individuals must agree on the like-
lihood even if they disagree in their prior beliefs.

Convergence of the posterior distribution

We have just shown, with an example, that people with quite diverse prior beliefs
can be brought into agreement if the sample size is large enough. But a different
question also arises. What happens to the posterior distribution when the number
of observations becomes large? Do your beliefs tend to concentrate on some ele-
ment of Θ? And if so, on what? Here’s an argument that shows what happens in a
special but important case.

THEOREM 1.2 CONVERGENCE OF POSTERIOR DISTRIBUTIONS
Suppose the parameter space Θ is discrete with elements θ1, θ2, ... possibly infinite in
number. Let the observations be iid conditional on θ with densities p(xi\θ) and suppose
that there exists in Θ a true parameter labeled θt, which is distinguishable from all the
other elements of Θ by the condition that

for all s ≠ t. (1.37)

The integral in this expression is the Kullback–Leibler measure of the divergence between
the two probability distributions p(x\θt) and p(x\θs) and what the condition says is that
all the possible data distributions (likelihoods) arising from values of θ different from
θt are different from p(x\θt).37 Some such identification condition is clearly necessary
to prove convergence. After all, suppose that there existed a θ, say θs , such that p(x\θt)
= p(x\θs) for all x, then there would be no way of deciding whether an observed 
sample x had been provided by p(x\θt) or by p(x\θs). (1.37) is called an identification
condition.

Then the theorem is

This means that all the mass in the posterior distribution comes eventually to concen-
trate on a single point in the parameter space.

Proof Taking the prior as ps > 0 for each θs ∈ Θ the posterior density is

lim ( )  
n

tp x
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=θ \ 1

�p x
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( ) log
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     \
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


 < 0

37 Cf. definition 1.3 above.
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for p(x\θs) = ∏n
i=1p(xi\θs)

where

But the right hand expression shows that Sj is the sum of n independent and identically
distributed random variables so that, by a strong law of large numbers,

If we then apply this result to find the limiting behavior of p(θs\x) as n → ∞ we see
that terms like exp{log pj + Sj} converge to zero because Sj becomes a larger and larger
negative number, except when j = t, from which the theorem follows.

This type of theorem can be generalized to continuous parameter spaces and to
observations that are neither independent nor identically distributed under suitable
further conditions.

This theorem forms a precise statement of how individuals with quite different
initial beliefs can be brought into ultimate agreement by the accumulation of evidence.

Sampling the posterior

The material in this section is essential to understanding the point of view taken in 
this book.

The difficulty with (asymptotic) approximations like the one sketched in the last 
section is that one can never be sure of their accuracy. Indeed the only way of finding
out the accuracy of an approximation to your posterior distribution is to calculate
the exact distribution which is what you wanted to avoid doing! This is one reason
why approximations, though important, take a second place in modern Bayesian 
calculations to simulation methods developed during the last ten years or so. These
methods depend upon the following remarks.
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Suppose that you take a posterior distribution and draw from it a collection of
realizations of θ. If you program your machine to produce nrep realizations from
p(θ1, θ2\y) your output will be a matrix with nrep rows and as many columns as
there are elements of θ. Thus, when θ has two elements, it will look like

θ11 θ21

θ12 θ22

θ13 θ23

. .
θ1,nrep θ2,nrep

Each row of this matrix contains a realization of a random variable whose dis-
tribution is p(θ1, θ2\y). The whole matrix contains nrep realizations from the joint
distribution of θ1 and θ2 while the j ’th column contains nrep realizations from the
marginal distribution of θ j . To study the distribution of, say, θ1 given the data, p(θ1\y),
just ignore the second column, it’s as simple as that. To study the distribution of
some function of θ, say g(θ), just apply this function to every row of your output
matrix and the result will be a set of realizations of the random variable g(θ). (It is
desirable, but not essential, that the rows of your output matrix be independent real-
izations of θ.) Whether they are independent or not, a law of large numbers will
generally apply and it can be proved that moments of g(θ) from a sample of nrep
realizations of θ will converge in probability to the moments of the distribution of
g(θ) as nrep → ∞. Since you choose nrep you can make arbitrarily accurate estimates of
any aspect of the posterior distribution including, for example, the mean, precision,
distribution and density functions. It follows that if you can sample the distribution
in question you can know it with arbitrary accuracy. Computer assisted sampling to
avoid integration is the key feature of modern Bayesian econometrics38 and the approach
described in this paragraph is critical to understanding this subject. Increasingly, difficult
mathematics is being abandoned in favor of computer power.

Computer assisted sampling requires not only computer power but also effective
algorithms that can be proved to sample the distribution in question. We have already
in this book made extensive use of computer routines to provide artificial data sets
and to sample likelihoods and posterior distributions. These calculations rely on com-
puter languages like S or Matlab that have built in commands, like rnorm or rexp,
to sample most of the standard distributions of elementary probability theory. But
where the distribution to be sampled is not standard, researchers either have to have
put together their own program or, increasingly, use specialized sampling software.
In the rest of this book we shall use one of the most widely used pieces of sampling
software, a program called BUGS. In chapter 4 we shall give an account of the
theory behind this program and in appendix 2 we shall provide some instruction on

38 It was only in about 1990 that computer assisted sampling started to become widespread in many
areas of applied statistics. This is because it was about that time that powerful computers became readily
available to researchers. This development has radically altered applied statistical practice.
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its use. We conclude these introductory remarks on the sampling study of posterior 
distributions with an example of the use of BUGS to solve a complicated problem.

EXAMPLE 1.17 PROBIT REVISITED Consider binary
data y whose mean depends on two variables x1 and x2 according to

E(Y\x, β) = Φ(xβ),

where xβ = β0 + β1x1 + β2x2. Thus θ = (β0, β1, β2) is a three-dimensional para-
meter. If interest centers on a scalar function of θ then a two-dimensional inte-
gration will be needed to find its marginal distribution. For example, you might
want to know the posterior distribution of the derivative of the probability that 
Y = 1 with respect to x1 evaluated at alternative choices of x. This derivative may
be of considerable economic interest and so you need to know its most likely value
or its expected value or the chance that it is negative. In this case the parameter
of interest is

and it is its posterior distribution that you require. The modern way of finding
this distribution is to sample the joint posterior distribution of (β0, β1, β2) then,
for each realization of these three numbers, compute γ for some, perhaps typical, x
vector of interest.

A first look at BUGS

BUGS calculation To illustrate the method we generated some artificial data and
used the BUGS program to generate a sample of 10,000 realizations of (β0, β1, β2).
We then substituted these values into the expression for γ at the x vector, say, x1 =
1, x2 = 1 and this gives 10,000 realizations from the marginal posterior distribution
of γ. These can then be studied in whatever way you find helpful.

Data were generated with n = 50, β0 = 0, β1 = 0.5, β2 = −0.5 The BUGS pro-
gram follows exactly the Bayesian algorithm and so it requires you to tell it your
likelihood and then to tell it your prior. The likelihood is (1.11) and it is written
for the program as

model

{for(i in 1:n){

y[i]~dbin(p[i],1)

mu[i]<-beta0+beta1*x1[i]+beta2*x2[i]

p[i]<-phi(mu[i])}

γ ∂ β
∂

β φ β  
( )

  ( )= =
Φ x

x
x

1
1
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The third line specifies that the i ’th observation is a realization of a binomial (1,
pi) variate, the notation ~dbin meaning “is distributed binomially.” That is, Yi is 1
with probability pi and zero with probability 1 − pi. The next two lines state the pro-
bit model in which pi = Φ(β0 + β1x1i + β2x2i). The statement phi(x) means evalu-
ate the standard normal distribution at x, that is, calculate Φ(x). Lines two through
five together provide the likelihood.

We then give the second component of the model which is the prior for β which
in this case is specified as

beta0~dnorm(0,0.001)

beta1~dnorm(0,0.001)

beta2~dnorm(0,0.001)}

These statements imply that the three elements of β are distributed independ-
ently normally with means zero and very low precisions implying standard devia-
tions of 1/√(0.001) = 31. This means that we are saying that, before seeing the
data, we think that each element of β is very likely to lie within −93 and +93 
which is plus and minus three standard deviations of zero. This is meant to be a
vague prior. If you wish to put in more precise information, including depend-
ence among the elements of β, or even less precise information, you may, of course,
do so. Notice that the whole model, the likelihood and the prior, is enclosed 
by {}.

After supplying the data matrix containing as columns the values of y, x1 and
x2 and some further details including the number of realizations required which in 
the present case was chosen to be nrep = 10,000, the program then produces an
output matrix containing 10,000 realizations of the three elements of β. Each 
element of this matrix contains, to a close approximation, realizations from the 
joint posterior distribution of β corresponding to the likelihood, prior and data that
we supplied.

To illustrate the procedure, figure 1.10 gives the smoothed histogram of the real-
izations of the marginal distribution of β2. The value of β2 that generated the data
used here was β2 = −0.5; the plot, as can be seen, is centered about −0.22. The
mean and median of β2 were both about −0.21. Finally, for comparison, the max-
imum likelihood estimate of β2 was also −0.21. The “true” value of β2 is one of the
less probable values, though it would still lie within a 95% highest posterior density
region.

To conclude this example we calculate the value of γ for x1 = 1, x2 = 1 for each
of our 10,000 realizations and its smoothed histogram is given in figure 1.11. It can
be seen that the effect of x1 on the success probability is certainly positive and most
probably about 0.17.

We shall explain in chapter 4 the methods used by BUGS to produce the real-
izations described here, and we shall make frequent use of this program through-
out the book. Appendices 2 and 3 describe the BUGS language and give BUGS
programs for many standard econometric models.
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Figure 1.10 Marginal posterior density of β2
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Figure 1.11 Posterior density of β1φ(xβ) at x1 = x 2 = 1
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1.4.4 Decisions

Many writers prefer to view the problem of inference from data or evidence as that
of making a decision or taking an action. An agent is viewed as setting up a model,
including both p(y\θ) and p(θ); observing the data, y obs; and then, in the light of
the posterior distribution of θ, taking a decision. The decision might be to invest
some money, to announce a forecast of Y, to report a single numerical value as an
estimate of θ, etc. This is a point of view that is attractive to economists, who want
to consider the agents whose behavior and interaction they model to be rationally
coping with the uncertainties they face. This book does not take a decision theor-
etic perspective, though it is not inconsistent with one. This is because the problem
faced by most economists or intending economists does not seem well described as
one of decision. It seems more like that of sensibly and concisely reporting their
findings, and for this the recommended procedure is to draw the marginal(s) of the
object of interest. This leaves it up to others, for example policy makers, to use your
report as a basis for decision making.

For the sake of completeness we give a very brief review of one version of the
decision problem, that of choosing a point estimate of θ. Suppose that you have a
model for potential data y involving a parameter θ. After having seen the data you
will have a posterior distribution for it, p(θ\y). You are required to reach a single
numerical decision, d, about θ. This decision will depend on the data y so d = d(y).
The decision theory approach assumes the existence of a loss function L(d, θ) that
gives the loss to the decision maker, you perhaps, of making decision d when the
parameter, about which you are uncertain, takes the value θ. A Bayes decision min-
imizes the expected loss

O = arg.min �
Θ
L(d, θ)p(θ\y) dθ for O ∈ Θ.

EXAMPLE 1.18 SQUARED ERROR LOSS Suppose
the loss function takes the symmetric form L(d, θ) = (d − θ)2 – squared error loss
– then O is the posterior mean, E(θ\y). To prove this note that the expected loss is

�
Θ
L(d, θ)p(θ\y) dθ = �

Θ
(d − θ)2p(θ\y) dθ

and a simple differentiation with respect to d provides the result.

A nice application of this is:
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EXAMPLE 1.19 DATA UNIFORM ON 0 TO θθ Let
Y be uniformly distributed between 0 and θ so its density function is

0 ≤ y ≤ θ,

and zero elsewhere. Under the default (improper) prior density p(θ) ∝ 1/θ the
posterior density from n independent realizations is

θ ≥ ymax (1.38)

where ymax is the largest of the n sample realizations. (This comes about because θ
is, by definition, not less than any observation, so it is certainly not less than the
largest observation.) The kernel (1.38) is that of a proper density, for n ≥ 1, and
after supplying the normalizing constant it can be written as

θ ≥ ymax . (1.39)

Under squared error loss the Bayes decision is the posterior mean. Carrying out
the integration we find that the mean exists for n > 1 and is

So your Bayes decision under squared error loss is to take the largest observation in
your data, multiply it by n/(n − 1), i.e. slightly increase it, and report the result-
ing number. (The maximum likelihood estimator of θ for this problem is A = ymax

which will underestimate θ for essentially any data set – it will always be too low.)

Decision making and reporting are not necessarily alternatives. In many situations
an economic model will envisage agents taking decisions under uncertainty. An 
analysis of data using a model that incorporates agents making decisions under 
uncertainty will lead to you – the uncertain investigator – reporting your analysis of
uncertain agents who are presumed to be taking decisions under uncertainty in an
optimal (Bayesian) way. So really both the decision making and reporting per-
spectives on Bayesian inference should receive emphasis in a text on Bayesian eco-
nometrics not because econometricians take decisions but because agents do.
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1.5 CONCLUSION AND SUMMARY

The Bayesian approach to econometrics is conceptually simple and, following recent
developments, computationally straightforward. Following the algorithm given in 
section 1.3.2 you must formulate your theory as a conditional probability statement
for the data that you are about to see and a prior distribution over the parameters
of that statement. This is equivalent to making a simple statement about what you
think the data should look like on your theory since ∫p(y\θ)p(θ)dθ = p(y), a 
probability distribution for the data. You then study the data and determine whether
the model is, at least roughly, consistent with the evidence and, if it is, you proceed
to revise your views about the model parameters. Whether the data are consistent with
the model or not, you will have learned something. In view of this conceptual and
computational simplicity the rest of this book is little more than a series of examples
with some account of recently developed computational algorithms.

1.6 EXERCISES AND COMPLEMENTS

In this section we give some further worked examples on priors, likelihoods and 
posterior distributions and ways to study them and we suggest some exercises.

(1) Simulation

Study of likelihoods and posterior or prior distributions is, as we have seen, often
aided by computer simulation and graphics. In some of the examples in this 
chapter we simulated some data satisfying the model and plotted both the data and
the likelihood they imply. Many computer languages make this easy and you may,
of course, use whatever language you like but my own favorite is the language S.
An appendix to the book describes the elements of this language and suggests 
reading. Here are some examples in which data are simulated and graphics used. If
you have access to a copy of S – there is a shareware version, called R, on the web
at http://www.r-project.org/ – you should try these commands.

To simulate a regression model as in example 1.2 in which y is normal given x
with mean βx and precision τ you can use

beta <- 0.3 . . . specifies the value of β.
tau <- 1 . . . specifies the value of τ.
n <- 50 . . . chooses the sample size.
x <- runif(n,10,20) . . . produces x values uniformly distributed from 10

to 20.
y <- rnorm(n,beta*x,1/sqrt(tau)) . . . produces y values with mean βx

and standard deviations 1/√τ.
plot(x,y) . . . plots the data on a scatter diagram.
b <- sum(x*y)/sum(x^2) . . . calculates the least squares estimate.
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abline(0,b) . . . draws the least squares line y = bx on the scatter diagram, with
intercept zero and slope b.
sdb <- 1/sqrt(tau*sum(x^2)) . . . finds the standard deviation of the 

normal curve that defines the likelihood, (1.7)
bval <- seq(b-4sdb, b+4*sdb, length=200) . . . chooses 200 points

at which to evaluate the likelihood. These points cover the range over which the
likelihood will be non-negligible.
plot(bval,dnorm(bval,b,sdb),type="l") . . . draws the likelihood ex-

ploiting the fact that for this model it has the shape of a normal curve with mean
b and standard deviation sdb. The plot command evaluates the function at the 200
points specified in bval and then the command type = "l" joins the points to
form a continuous curve.

EXERCISE Generate your own data using this normal regression
model and plot the data and the likelihood.

(2) A regression model for counts

Theory suggests that y should depend on x but the data will be counts of how often
some events occurred. Econometric applications might be the numbers of strikes occur-
ring in particular industries in a year or the numbers of patent applications filed by
different firms over a year. Because the y values will be positive integers or zero 
such data cannot be normally distributed. The standard model for count data is the
poisson with probability mass function

y = 0, 1, 2, 3, ..., µ > 0.

A (non-linear) regression model then takes Y as poisson with mean µ = exp{βx} 
given x. The exponential function is chosen because it guarantees that the mean is
always positive. This implies that for n independent observations on y and x the
likelihood is

�(β; y) ∝ ∏n
i=1 exp{βxiyi} exp{−e βxi}

= exp{β∑n
i=1xiyi} exp{−∑n

i=1e βxi}. (1.40)

This does not have the shape of a normal curve but, nonetheless, if you simulate
some data and draw the function you will find, for almost all data sets, that the curve
is approximately bell shaped.

To simulate some data choose n, β and x as in exercise 1 and then use the com-
mand y <- rpois(n,exp(beta*x)). To draw the likelihood define a set of 

p y
e
y

y

Y( )  
!

,=
−µ µ
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β values at which to evaluate it and store these in a vector bval as before, then
define the logarithm of the likelihood function (1.40) by, say,

poissonlogl <- function(b){b*sum(x*y)-sum(exp(b*x))}

Finally use a “do loop” to evaluate the function at the points in bval, store these
values in, say, val and plot the elements of exp(val) against bval. This could be
done, if bval has nval elements, by

for(i in 1:nval){val[i] <- poissonlogl(bval[i])}

plot(bval,exp(val),type=”l”).

Figure 1.12 shows the results of such a simulation with n = 200, β = 0.5 and 
the x’s uniform from zero to one. The first panel shows a scatter plot of the data
and the second shows the likelihood. The scatter plot, as often with a discrete de-
pendent variable, is quite hard to interpret. The likelihood is much easier and points
clearly to a beta value in the neighbourhood of the value, 0.5, that produced the
data.

There are two slight difficulties in doing this calculation. One is that, unlike the
normal case of exercise 1, it is not evident where the likelihood will take its largest
values. One solution is to make a preliminary calculation using a maximum likeli-
hood routine to find the β value that gives maximum likelihood. Another solution
is to calculate the likelihood for a wide range of β values to find out where the 
function is large. Another slight difficulty is that likelihood values can be very large
numbers which may be hard to plot. The solution here is to calculate the mean value
of the log likelihood and subtract it from val before issuing the plot command.
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Figure 1.12 Data and likelihood for exercise 2
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EXERCISE Generate your own count data satisfying a regression
model and calculate the likelihood. Try increasing the value of n to observe
the convergence of the posterior towards a point.

(3) Exponential likelihoods

The fundamental probability model for the duration of an event – how long it lasts
– is the exponential. If a theorist reasons that agents with large values of x tend to
have longer events than those with smaller x’s a natural econometric model within
which to embed this idea is to let the duration y be exponentially distributed with
mean µ depending on x as for example e βx. This would be a non-linear regression
model with regression function E(Y\x) = e βx. The exponential density of mean µ is

pY (y) = (1/µ)e y/µ, µ, y > 0,

so the likelihood for n independent realizations corresponding to different x ’s is

�(β; y, x) = exp{−β∑n
i=1xi} exp{−∑n

i=1yie −βxi}.

EXERCISE Generate some durations using the command
rexp(n,exp(b*x)), if you are using S, and plot the data and posterior 
density of β assuming a uniform prior.

(4) A double exponential model

A probability model that is in some ways a useful alternative to the normal distribu-
tion is the double exponential or Laplace distribution. In its simplest form this has
density function

p(y\θ) = exp{−\y − θ\}, −∞ < y, θ < ∞.

This function is symmetrical about y = θ and on each side of θ it declines expon-
entially, hence the name. The mean, median and mode of Y are θ and the standard
deviation is √2. This distribution is less dogmatic than the normal in that its tails
decline like e −\y\ which is slower than the normal rate e − y 2 so it allows for greater
uncertainty about where y is located. Figure 1.13 plots the double exponential 
density function for the case θ = 1.

Then n independent realizations of Y will have the joint probability density p(y\θ)
∝ exp{−∑n

i=1\yi − θ\} and this is also the posterior density under a uniform prior for
θ. Figure 1.14 is a Laplace likelihood with n = 3.
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Figure 1.13 A double exponential density
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Figure 1.14 The likelihood for 3 observations of a Laplace variate
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As can be seen from figure 1.14, the likelihood is kinked at each of the observa-
tions, which were y = (−0.5, 1, 3). There are always as many kinks – points of non-
differentiability – in the Laplace likelihood as there are distinct observations.
(Nonetheless, the likelihood still approaches normality!)

EXERCISE Choose a value for θ and n and generate some data from
the double exponential model. This can be done by generating n observations
from an exponential distribution with mean = 1, changing the sign of these
numbers with probability 0.5, and then adding θ. The first two steps here 
generate data from a double exponential centered at zero, and the final step
centers the distribution at θ. The S command

y<-rexp(n)*(-1+2*(runif(n)>0.5))+theta

will do this. The statement runif(n)>0.5 produces n numbers equal to 1
if a uniform variate on 0 to 1 exceeds 0.5, which has probability 0.5, and 0
otherwise; multiplying these numbers by 2 and subtracting 1 turns them into
a sequence of plus and minus ones; and these in turn randomly change the
sign of the elements of rexp(n).

(1) Choose a small, odd value of n and generate some data.
(2) Sketch the posterior density – by hand – and show that it is continuous

but not everywhere differentiable.
(3) Show that the most probable value of θ is the median observation.

EXERCISE Generalize the previous model by setting θ = βxi for 
i = 1, 2, ..., n, so that each yi is Laplace distributed about its mean. This is an
alternative to the normal regression model. Write down the likelihood for β;
generate some data and plot the posterior density of β under a uniform prior
for this parameter. Note that the most probable value of β minimizes the expres-
sion ∑n

i=1\yi − βxi\. This is sometimes called a median regression model.

Further exercises

EXERCISE For an example of normal approximation take n independ-
ent normal variates with means zero and common precision τ. The likelihood is
�(τ) ∝ τ n/2 exp{−τ∑y 2

i /2} and the Jeffreys’ prior is ∝ 1/τ. Find the log posterior
density, calculate the posterior mode of τ and find −H(τ) and Iτ(E) at this mode.
Hence find the normal approximation to p(τ\y). Now take σ = τ −1/2 as the
parameter and find the normal approximation to the posterior density of σ.

AITC01  22/3/04  14:45  Page 63



64 The Bayesian Algorithm

EXERCISE The poisson distribution has mass function

y = 0, 1, 2 ..., θ > 0.

The mean and variance of Y given θ are both equal to θ. Write down the like-
lihood for n independent realizations of Y and then the posterior density of 
θ under the conventional vague prior p(θ) ∝ 1/θ. Work out the hessian 
of the log posterior and the posterior mode and hence construct an asymp-
totic normal approximation to the posterior. Simulate some data for n = 5, 10,
20 and compare the exact (gamma) posterior density of θ to its normal
approximation.

1.7 APPENDIX TO CHAPTER 1: SOME
PROBABILITY DISTRIBUTIONS

In this appendix we review some of the elementary probability distributions that have
been used in the body of this chapter.

the univariate normal family

The univariate normal family has two parameters, the mean µ and the precision τ.
The kernel is exp{−(τ/2)(y − µ)2} and the full density is

We refer to such a distribution by writing Y ~ n(µ, τ). The standard normal has 
µ = 0, τ = 1, and kernel e −y 2/2 with distribution function ∫ y

−∞e−u2/2du/√(2π). Its
density and distribution functions at the point y are denoted by φ(y) and Φ(y). The
moment generating of a normal (µ, τ) variate is

M(t) = E(e tY) = �
∞

−∞
e typ(y) dy = exp{tµ + t 2/2τ}

from which the mean and variance are

E(Y) = µ;

The variance is denoted by σ 2.

V ( )  .Y =
1
τ

p y y( )  exp{ ( / )(   ) }.= − −
τ
π

τ µ
2

2 2

p y
e
y

y

( | )  
!

,θ θ θ
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Relevant S commands are as follows.

rnorm(n, m, s)................ n independent realizations from a normal distribu-
tion of mean m and standard deviation (not variance and not precision) s.

dnorm(y, m, s)................ the value of the density function at y of a normal 
(m, s) variate.

pnorm(y, m, s)................ the value of the (cumulative) distribution function
at y of a normal (m, s) variate

qnorm(p, m, s)................ the quantile function at p of a normal (m, s) variate.
This will produce the number y which is exceeded with probability 1 − p with
such a distribution.

qqnorm(y)................. this will plot the quantiles of the data vector y against the
quantiles of the standard normal distribution. This provides a graphical test of
normality. The plot will be linear if y comes from a normal distribution but not
otherwise. Non-linearity indicates non-normality.

In S the default values for m and s are zero and one.

the gamma family

The gamma family of probability distributions has kernel p(y) ∝ yα−1e−βy; y > 0; 
α, β > 0. The full density function is

(1.41)

where Γ(α) is the complete gamma function defined by

Γ(α) = �
∞

0
xα−1e−x dx, α > 0.

The family can be thought of as generalizing the exponential family βe −βy which is
a gamma distribution with α = 1. The unit exponential has β = 1 and has mean and
variance equal to one.

The mean and variance of a gamma(α, β) variate are

A one parameter sub-family of the gamma distributions is the χ2 distributions which
have α = ν/2 and β = 1/2 where ν is positive and usually an integer. Their density
functions are

y > 0, ν > 0.p y
y e

v

v y

v
( )  

( / )
,

/ /

/
=

− −2 1 2

22 2Γ
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Relevant S commands follow the same format as for the normal, for example
rgamma(n, a, b) produces n independent realizations from a gamma distribution
with α = a and β = b. Chi-squared (χ2) results can be got from rchisq(n, ν)
etc.

the beta family

The beta densities are continuous on the unit interval and depend on two para-
meters. Their form is

α, β > 0, 0 ≤ x ≤ 1. (1.42)

When α is a positive integer then Γ(α) = (α − 1)!. In particular, Γ(1) = 0! = 1. Since
probability density functions integrate to one over the sample space it follows from
(1.42) that

�
1

0
(1.43)

The means and variances of the densities (1.42) are

(1.44)

The density is symmetrical about X = 1/2 if α = β. If α = β = 1 it reduces to the
uniform distribution.

S commands are again in standard format in which, for example, rbeta(n, a, b)
produces n independent realizations from a beta distribution with α = a and 
β = b.

the multinomial family

Suppose a vector discrete random variable Y = (Y0, Y1, ..., YL) is such that Yj meas-
ures the number of occasions that the j ’th of L + 1 mutually exclusive and exhaust-
ive events occurs in n trials. Thus each of the {Yj} takes values in the set Yj = {0, 1,
2, ..., n} subject to the condition that ∑L

j =0Yj = n. Then if p = {p0, p1, ..., pL} and pj

is the probability that at any one trial the j ’th event occurs,

(1.45)

where ∑L
j =0yj = n; yj ∈ {0, 1, 2, ..., n}; ∑L

j =0pj = 1. (1.46)
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This is best thought of as the distribution of L random variables since the last one
is determined by the condition that they sum to n. The means, variances and covari-
ances of the {Yj} are

E(Yj) = npj ; V(Yj) = npj(1 − pj); C(YiYj) = −npipj .

A particular case of the multinomial is the binomial which arises when L = 1 so there
are two categories and the probability mass function takes the form

y = 0, 1, ..., n, 0 ≤ p ≤ 1. (1.47)

And a particular case of the binomial is the Bernoulli family which arises when 
n = 1,

pY(y) = py(1 − p)1−y, y ∈ {0, 1}, 0 ≤ p ≤ 1. (1.48)

the dirichlet family

This family generalizes the beta family to a vector p = (p0, p1, ..., pL) in which ∑L
i=0pi

= 1 and the {pi} are non-negative. If α = ∑L
l =0αl the density function takes the form

(1.49)

where {pi} ≥ 0; ∑L
i=1pi = 1; {αi} ≥ 0; ∑L

i=0αi = α.

The means, variances and covariances are

The beta family emerges as the special case in which L = 1. Comparison of (1.49) and
(1.45) shows that if the prior for p is dirichlet then the posterior is of the same form.
This means that the dirichlet is the natural conjugate prior family for the multinomial.

1.8 BIBLIOGRAPHIC NOTES

For a perspective on econometric analysis not dissimilar to that taken in this book
the reader might wish to look at Heckman (2001: 673–748).

Almost all books on Bayesian inference are written by statisticians. The main work
specifically devoted to Bayesian inference in econometrics is Zellner (1971). This is
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a useful book and gives a systematic and detailed account of the main analytical results
and so it is necessarily confined to the simpler, mathematically tractable, models. Written
well before the computer revolution it is naturally dated, but remains a valuable 
reference. Bayesian Analysis in Econometrics and Statistics: The Zellner View and Papers,
edited by Zellner (1997), provides convenient access to more recent work by
Zellner and others. A stimulating early book by Leamer (1978) is well worth read-
ing but is currently out of print. Bauwens, Lubrano and Richard (1999) is a useful
text on econometrics from a Bayesian perspective with a particular emphasis on 
time series models, but again it shows traces of being written before the computer
revolution.

Though statistics and econometrics differ radically in their point of view they have
a great deal in common, particularly computational techniques. Useful sources in
increasing order of difficulty are Gelman, Carlin, Stern and Rubin (2003) and, par-
ticularly, even though it shows the effect of being written before the coming of fast
simulation methods, Berger (1993). Bernardo and Smith (1994) is a major study of
the principles of Bayesian inference written from a perspective strongly influenced
by de Finetti. It contains an account of reference priors, proposed originally by
Bernardo. The proof of convergence of posterior mass functions, theorem 1.2 in this
chapter, is based on theirs. Another recent statistics text is Press (2003).

The source text for a subjective view of inference is de Finetti’s two volumes, Theory
of Probability (1974 and 1975), though it is not easy reading. See also Cox (1961).
Harold Jeffreys’ classic Theory of Probability (1966) is available in paperback from the
Clarendon Press, Oxford. It is not easy reading, partly for notational reasons. Readers
curious about foundational issues might like to read Keynes (1920), particularly chap-
ter 24 which gives a subtle discussion of “objective probability”. Frank Ramsey replied,
arguing for the subjective view, in Ramsey (1931: 156–98). Another valuable source
on foundational issues and the subjective versus objective view of probability is 
Kyburg and Smokler (1964) which contains lengthy excerpts by many of the major
contributors to the debate, including de Finetti. An introductory exposition of Bayesian
method from a subjective point is by Edwards, Lindman and Savage (1963: 193–
242). This article, although published in a psychological journal, is not especially
“psychological” and it is not particularly technical. It is recommended to all those
interested in Bayesian methods. It is reprinted in The Writings of Leonard Jimmie
Savage – A Memorial Selection, published by the American Statistical Association and
the Institute of Mathematical Statistics (1981).

There is a persistent interest in “objective” Bayesian methods that involve priors
or likelihoods that are in some sense minimally informative. A good source, which
is strongly recommended even if you aren’t interested in objective methods, is the
work of E. T. Jaynes, much of it unpublished and which is best accessed through
http:\\omega.math.albany.edu/JaynesBook.html.

Zellner (1986) proposes a variant of the natural conjugate prior that has proved
popular.

Lindley and Smith’s classic article (1972: 1–14) is about hierarchical prior struc-
tures as applied to linear regression models.
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Lindley and Novick (1981: 45–58) provide an enlightening discussion both of
exchangeability and its relation to similar ideas of R. A. Fisher.

Decision theory is dealt with in many books. A recent and clear introductory 
exposition may be found in Leonard and Hsu (1999). A classic monograph on 
Bayesian decision theory is DeGroot (1970). Berger (1993), mentioned above, is
another recommended source on the decision theoretic approach. A recent paper by
Chamberlain (2000: 255–84) is worth study.

Berger and Wolpert (1988) is a very readable study of fundamental principles of
inference and is the main source for this book on the likelihood principle.

On the Bayesian view of identifiability see Kadane (1974: 175–91).
On separating models with multidimensional parameters Lancaster (2000:

391–413) and (2002: 647–60) contain a number of examples.
The paper introducing regression is Galton (1886: 246–63).
Full text copies of all but the most recent Handbook of Econometrics chapters can

be downloaded from www.elsevier.com/hes/books/02/menu02.htm. This source
includes the important Leamer (1983).
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