
Why Programming and Why Java Programming? 1

Chapter 1

Why Programming and
Why Java™ Programming?

This chapter provides two central premises for the rest of the book. First,
why would a linguist, psycholinguist, literary theorist, and so on want to
know anything about programming? Second, why would Java programming
be a good choice?

1.1 Why Programming?

Working with language data is nearly impossible these days without a com-
puter. Data are massaged, analyzed, sorted, and distributed on computers.
There are various software packages available for language researchers, but
to truly take control of this domain, some amount of programming expertise
is essential. Consider the following simple examples.

Imagine you are a syntactician interested in the use of present-tense verbs.
You have an electronic corpus and want to find all the cases of verbs in the
present tense. How do you do it?

You’re a literary stylist and want to investigate the distribution of words
with iambic stress in Milton’s poetry.

Imagine you are a phonologist. You’re interested in consonant clusters.
You have an electronic dictionary and want to find the largest word-final
consonant cluster. Do you go through it by hand?

Finally, you’re a psycholinguist and you want to perform an experiment to
investigate how people syllabify nonsense words.

All of these are fairly typical research tasks. If you don’t know how to
program yourself, you have only limited options. One possibility is to do the
job by hand. For example, the syntactician could simply print out the corpus
and go through it line by line. If the corpus is small enough, this might not be



2 Why Programming and Why Java Programming?

so onerous, but if the corpus is large, or if one really wants to be sure of one’s
results, then this method is fraught with peril (and really boring). Another
solution is to hire somebody else to do the job, but the same considerations
apply. Yet a third possibility is to make use of some existing software
package.

This last option is occasionally workable, but can fall short in several
ways. First, an existing package is restricted by its design. That is, your needs
may not match what the software was designed to do, rendering your task
impossible or very difficult. Moreover, the software may not be intuitive, and
may require learning some arcane set of commands or some difficult control
language. Finally, while software may exist to do what you want, it may be
unavailable on the platform you work on (Windows, Mac, or Unix), or it
may be too costly.

1.2 Why Java Technology?

The Java programming language may provide an answer. First, it is a com-
plete programming language, with all the bells and whistles. It can do all the
file manipulation and text searching one might want, while at the same time,
it has all the graphical capabilities of a language like C.

Moreover, it’s free. There are free Java implementations for every type of
computer. In addition, code written and compiled on one type of machine
will run on any other type. In other words, you can write your code at home
on your Mac, and run it at work on your Windows machine, or send it to a
colleague to run under Unix. This also suggests that Java programs you write
should continue to be usable for many years, since the language is so widely
used.

Finally, one of the most compelling features of Java programs is the fact
that they can be run over the web in your web browser. What this means is
that you can write a program, put it on the web, and allow others to run
your program on their own machines simply by going to your web page.

The only downside is that since the Java language can do so much, it can
be quite complex. There are lots and lots of features that enable Java programs
to do pretty much anything you want. For the novice programmer, this can
be intimidating.

We won’t let this deter us though. My strategy will be to pick and choose.
I’ll introduce those bits of Java technology that are necessary to do the kinds
of things people who work with language typically want to do. The rest – all
the bells and whistles that we don’t need on our train – we’ll leave for later.
I’ll let you know where they are and how to find out more, but we won’t
digress to deal with them here.



Why Programming and Why Java Programming? 3

1.3 Download and Install the
Java Development Kit

Before going on to actually writing Java programs, your computer must be
properly configured so that the software for developing programs is available.
You must make sure that the Java Development Kit (JDK) is installed on
your computer. If it is, the command java -version, when typed at the system
prompt, will print out appropriate version information. (For a Mac, where
there is no system prompt, you must do a search for the program javac, using
the Find File command in the Finder.)

If you don’t find java or javac on your system, the JDK can be downloaded
for free over the web. The appropriate URL is http://www.javasoft.com.
Versions of the JDK for Windows and Solaris can be downloaded directly
from that site. For other computer types, there are links there to the appro-
priate site.

It’s really very easy to install the JDK, but if you find it daunting at the
beginning, you might find it easier to work on a computer that already has
the JDK installed. Most mainframe computers have it already installed. If
you have access to one – through work or school – you might try running the
early programs in the book there.

Let’s briefly go over how to install the JDK under Windows. The first step
is to download the JDK installer over the web. This is a huge file and you
should arrange carefully how to do this. If you have a dedicated very fast
connection, there’s no problem, but if you want to install the JDK at home
over the phone, you need to plan carefully. Depending on the speed of your
modem, the download could take hours.

If you plan to download the file by phone, you might want to curl up with
a book while doing so. Alternatively, it is possible, for a fee, to obtain the
JDK on CD-ROM. Finally, if you have ethernet access at work, download
the file there, and bring it home on a zip disk.

The JDK installer is typically downloaded in compressed form. For
Windows, zip compression is the easiest one to deal with. (For example, in
Windows 98, the compressed zip file can be uncompressed automatically.)

Once uncompressed, the second step is to run the install program. This
will create a directory called something like j2dk1.x, where x is the version
number.

The third step is to add the java and javac programs to your path. This
is done by editing your autoexec.bat file. Note that this is something you
have to be very careful with. Make sure to make a backup copy of your
autoexec.bat file before editing it, and make sure to consult your documenta-
tion if you’ve never done this before. First, select the MS-DOS prompt from
the Programs menu. Second, type cd \ to switch to the root directory. Type



4 Why Programming and Why Java Programming?

copy autoexec.bat autoexec.bak to make a copy of your autoexec.bat file.
Third, type edit autoexec.bat to edit the file. Use the arrow keys to move
to the first empty line at the end of the file. Add the following line set
path=%PATH%;\j2dk1.x\bin, where x is the appropriate version number in
the directory installed. Finally, select quit from the file menu to quit the edit
program, making sure to save your changes when prompted. The change will
take place when Windows is next started.

Analogous steps are needed to install the JDK under Unix. For Macs, there
are different compression options, and the relevant directory is MRJ SDK x,
where x is the appropriate version number. There is no Mac path to alter.

1.4 How to Read this Book

Learning to program isn’t really hard, but you do need to do it the right way.
The key is to start programming right away. As you read this book, you
should make sure to try out the programs as we go through them. In fact, it
would be ideal to read the book at the computer. Also, don’t forget to try the
exercises! You’ll note that answers are not given at the end of the book. This
is for two reasons. First, having answers is a big temptation. More import-
antly, however, most of the exercises involve revising or writing programs.
There are often many ways to achieve the same goal and I would rather you
find some way to answer an exercise question than feel you have to find my
way of answering one of them.

Start by running the programs exactly as given, either by downloading
them from the website or – even better – by typing them in yourself. (Typing
them in yourself will make the task familiar and draw your attention to
aspects of the code you might miss otherwise.)

When you start to feel more comfortable, try varying the code a bit. The
programs up through chapter 3 are perfectly safe and variations can’t harm
your computer. After that point, certain operations should be handled with
care, but I’ll warn you about those as we go through.

The key, though, is to have fun!


