CHAPTER ONE

MODELS, SYSTEMS,
AND DYNAMICS

We must learn to think in terms of systems. We must learn that in
complex systems we cannot do only one thing. Whether we want it
to or not, any step we take will affect many other things. We must
learn to cope with side effects. We must understand that the effects
of our decisions may turn up in places we never expected to
see them surface. (Dietrich Dorner, The Logic of Failure, p. 198)

WHAT IS A MODEL?

Our environment is both complex and dynamic. Given this complexity we need
a “map” or models to help us to understand what processes and interactions are
important and to evaluate the outcomes of interest. The first step in modeling is to
clearly define what is the problem or problems of interest. For instance, the problem
or question to be answered may be, what will be the population of grizzly bears in
a national park next year? Any model that adequately addresses this problem must
include hypotheses, or statements, about what influences the bear population. By
necessity, such statements cannot be a complete representation of the dynamics of
the grizzly bear population. For instance, the accumulation of pesticides and other
chemicals in the food chain may have an adverse effect on grizzly bear breeding
success rate in the long run, but incorporating chemical and pesticide build-up in
grizzly bears may not help us to improve our prediction of the grizzly bear popula-
tion for next year. Thus the purpose of the model determines the boundary of the
model and what we should or should not include within our “map.”

A model can be a highly complex system of equations developed in an iterative
process that may take months, or even years, to construct. By contrast, it may be
as simple as a single statement that represents an underlying process or relation-
ship that can be used to help resolve a particular research problem. For example,
“The population of grizzly bears in Banff National Park next breeding season will
equal the current population, plus the number of cubs that survive the current
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season less the number of juvenile and adult bears that die during the season.”
This statement can be written out as a mathematical model,

Xppq =X+ b —d;

where x, 1 is the population of grizzly bears in period t + 1, x, is the population
of grizzly bears in period t, b, is the number of cubs successfully reared and d is
the number of juveniles or adult bears that die.

This model provides an understanding, or an interpretation, of the population
dynamics of grizzly bears. The formulation of the model may be derived from
watching breeding females raise cubs during the breeding season. If data are
available on the current population, the number of cubs successfully raised in the
first year of their life and the number of juveniles and adults that die, the model
can be tested by comparing its predictions to the number of bears observed in
next year’s breeding season. If subsequent observations and data match our pre-
dictions to an appropriately defined level of significance, then the model has
achieved its purpose. However, just because a model is useful does not imply that
a model is “true.” Indeed, no single model can be described as being a correct or
true representation of reality as it must, by necessity, be an abstraction.

The specified model of the population dynamics of grizzly bears ignores the
possibility of the migration of grizzly bears from other populations to Banff
National Park, and from grizzly bears in Banff to populations of bears in other
locations. However, if net migration of bears is small compared to the birth or
death rates, the model may still be a good predictor of next year’s breeding pop-
ulation. If the purpose is to predict next year’s breeding population, making the
model more realistic (and including net migration) is not necessarily desirable.
For instance, if including migration in the model increases the prediction error, or
the difference between observed and predicted bear numbers, then it may be
preferable to leave out net migration from the model. In other words, if the
research problem is simply to predict next year’s bear population then a model
that achieves this purpose with a lower prediction error is preferred to another
model, even if the alternative is more realistic and captures more details of the
population dynamics. Thus the judgment of a model is not whether it describes
reality well or not, but whether it helps address the research problem for which it
was built and whether it does so better than alternative models.

A maxim of modeling, known as Occam’s razor, is that the simplest logical
model that addresses the research problem is preferred over alternative models.
Thus the art of modeling is not to include everything that can be incorporated,
but rather to make the model as simple and tractable as possible to help answer
the question that was posed. Knowing what to leave in, and what to leave out
of a model, requires a good understanding of both the processes being mod-
eled and the purpose of the model. For instance, if the purpose of the model
of the population dynamics of bears is to understand the relationships
between bears and their prey, then the model given above is useless. If, however,
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its purpose is to simply predict next year’s population the model may be very
useful. Consequently the judgment on the usefulness of a model is intricately
linked to what problem it tries to address, or the questions for which it was
devised to answer.

MODEL BUILDING

Model building often involves both conjectures and hypotheses based on
observations of phenomena, and that may be called induction, as well as the
specification of a logical and consistent set of statements that purport to explain
the phenomena, and that may be called deduction. Good model building requires
both induction and deduction. Theories cannot be developed in a vacuum without
an understanding of the phenomena being modeled. Similarly, models based
purely on observation run the risk of lacking in rigor and logic where “facts”
and observations may support a completely wrong model. In other words, just
because observations fail to falsify or refute a model, it does not mean that the
model is correct. Moreover, correlation between variables that conform to a
model’s hypotheses does not necessarily imply causation. Many variables are
correlated with each other, but there is not necessarily an underlying causal rela-
tionship between them. For instance, in rich countries the average time spent per
week watching television is positively correlated with life expectancy, but this does
not imply that watching television causes us to live longer. A classic example of
how observations can support an incorrect model is provided by Apollonius
of Perga (265-190 BC) who was one of the greatest mathematicians of antiquity. He
developed a geocentric model of the solar system in which the earth was at the
center and all other planets, including the sun, orbited around it. The model was
supported by observations over many centuries and was able to predict planetary
positions to a surprising degree of accuracy.

The testing or disproving of hypotheses is part of the scientific method whereby
propositions or models are formulated and are then tested to see whether they
conform to empirical observations. The exception, perhaps, is in mathematics,
where “truth” is not determined by experimentation but rather by proof. Thus
mathematical truths, that are in the form “If A, then B,” are results derived by
deduction from the initial axioms or statements or rules. In other words, the
proofs or propositions derived from the initial axioms are “true” in a mathematical
sense whether or not the original axioms were correct or whether or not they
conform to reality. An axiomatic approach to modeling can be very useful and can
provide fundamental insights, but if we seek an understanding of the world
around us then, sooner or later, our models (and axioms!) must connect to reality.

If we employ the scientific method, hypotheses that are found lacking, or can be
“disproved” in their current formulation, may be modified, or an entirely new
model may be devised to test the hypotheses. Any hypothesis that is “scientific”
must be falsifiable in the sense that it can be disproved from empirical observations.
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Figure 1.1 The model-building process

Indeed, the falsification process should include the specification in advance of the
observations that would falsify the hypothesis. For example, Einstein’s theory of
relativity (special and general) predicted that light passing through space would be
bent when it passed near an object with a massive gravitational field. This predic-
tion was found to be correct in 1919 (14 years after Einstein’s special theory was
published) when it was observed by British scientists, during a solar eclipse, that
distant stars appeared to “move” from a terrestrial perspective as the light they
emitted was bent by our sun. Ideally, the falsification of a model should also require
that the model being tested make predictions that other models cannot. Some-
times the data or observations may not yet exist to disprove a hypothesis, but
provided that such data can be obtained, then the hypothesis is still falsifiable,
although it remains untested.

The scientific approach to model building is iterative. It involves a statement of the
problem(s) to be addressed, a review of the observed behavior or received wisdom,
a formulation of conjectures or statements or equations that purport to explain
the processes and relationships, and the subsequent testing and evaluation of the
model(s), as illustrated by figure 1.1. The thin black arrows indicate the development,
chronology or learning loop of the model-building process that begins first with
the research problem and continues through to evaluation and testing. The thick
arrows indicate a feedback process that influences all the steps in model building.
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The first step in building a model is to establish what is the research problem. The
problem must be sufficiently concise and tractable that the model can realistically
provide some insight into the question. For example, the problem “What are the
costs of climate change?” is so broad that no single model can hope to provide
a meaningful answer to the question. This is not to say that the “big” questions
should not be asked, but rather that answering such a question requires a research
program that will require many models. Indeed, the question regarding the poten-
tial consequences of climate change has spawned a huge and multi-disciplinary
research program under the auspices of the Intergovernmental Panel on Climate
Change (IPCC) that has led to the formulation of many thousands of models. By
contrast, the problem “What are the short-term economic costs for Germany from
meeting its obligations to reduce its greenhouse gas (GHG) emissions, as specified
under the 1997 Kyoto Protocol?” can be investigated (and indeed is currently being
investigated) with an appropriate set of economic models.

The second step in modeling is to review the accepted wisdom. This may include
a review of the existing theory and evaluation of the results of existing models.
This establishes the “reference modes” (Sterman, 2000) or a summary of the
fundamentals of what is known. The review should also include an evaluation and
assessment of the existing data or observations about the problem or phenomena
to be modeled. For example, if the research problem is to predict the future
abundance of animal populations, the reference mode should include the history
of the population and some measures of its births and deaths. The reference modes,
in turn, help shape our initial hypotheses of the relationships, feedbacks, and
relative importance of the variables that are to be included in the model.

The third step in the process is to specify conjectures, ideas or a preliminary
theory that can be developed into testable hypotheses about the processes for
which the model is being built. These hypotheses help dictate the model we
ultimately formulate, along with the existing models in the literature. The
hypotheses that are to be tested should be sufficiently clear and precise so that
they can provide insights into the research problem. The hypotheses to be refuted,
and the reference modes, help to formalize the model used to answer the specified
research questions. For example, a hypothesis underlying an economic model of
climate change could be that reductions in emissions of carbon dioxide reduce real
economic growth. Such a hypothesis would require that we build a model that
explicitly includes measures of economic activity and carbon dioxide emissions,
and their interrelationships.

The fourth, and perhaps hardest, step is to formulate the model. The formal
model must be logical, should avoid unnecessary details and be as simple as
possible while still being able to help answer the posed research question. What
makes a good model is not whether it provides an exact description of the
phenomena being studied, but whether it can provide real insights and under-
standing into the research problem. A model should be more than the sum of its
parts and should be judged by its ability to provide understanding and insights
about the research questions and hypotheses that would otherwise not be possible.
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When formulating a model, simplifying assumptions are required about the
relationships of the variables under study. For example, we may assume that one
variable (such as the price of a good) is unaffected by changes in another variable
(such as income). These assumptions, along with the refutable hypotheses, need
to be tested if the model is to be of use. In other words, if we assume a certain rela-
tionship holds true when formulating a model then for the model to be falsifiable
(as it should be!) this assumption should be able to be tested or refuted.

Models may also require us to subsume a set of postulates or assertions that cannot
be tested. These assertions presuppose a state of the world, or set of behavior, that
cannot be refuted, but may nevertheless be required if the model is to be tractable. For
example, we may assert that consumers are rational when we are formulating a model
of consumer demand that assumes that the quantity demanded is a function of the
relative price of the good. Without the assertion that consumers are rational (which
may or may not be true), it may be difficult to construct a simple model that could, for
example, be used to predict future consumption levels of the good. However,
the assumption of a functional relationship between the relative price and the
consumption of the good in a model, which is used to predict future consumption,
must be tested when evaluating the model. Such tests of the model’s assumptions are
conditional on the assertions or postulates used to formulate the model.

The step that closes the loop in the model-building process is to test and evaluate
the model, the results and hypotheses. Testing of the model may involve many
different approaches and methods. For example, with econometric or statistical
models we can compare our hypotheses with our empirical results. This can be
accomplished by tests for misspecification, measurement (and other) errors, influ-
ence of different functional forms on the results and whether the assumptions used
in estimating the model are valid. In empirical work, care must also be taken to
avoid “data mining” in the sense that we select a model that gives the “best” results
and levels of significance, but fail to report the many other estimates we discarded
to obtain the best model. Such an approach creates a bias in terms of the normal
levels of significance we use for testing whether explanatory variables are statisti-
cally significant from zero or not.

Empirical models also require tests of robustness to judge their value and should
include an analysis of the influence of outliers and influential observations, the
effect of the choice of explanatory variables, the selected data series used for
the variables and the chosen time period. Further, careful attention should be given
to the economic significance of the statistical results (McCloskey, 1997). For instance,
simulations can be generated from estimated coefficients to help answer “what if?”
questions about the effect of changes in the magnitude of one or more of the
explanatory variables. Thus, a variable may be statistically significant in the sense
that at the 1 percent level of significance we reject the null hypothesis that its
estimated coefficient equals zero, but it may have only a small influence on the
dependent variable. Conversely, an explanatory variable that may not be statisti-
cally significant at the conventional 5 percent level of significance may potentially
have a very large effect in the sense that a small change in its magnitude could lead
to a large change in the dependent variable.
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Whatever the form or type of model, “testing” should include a comparison
between the results, the initial hypotheses, and the existing literature. Testing
of the model also requires that we evaluate competing models or hypotheses
that may provide different insights or understanding to the research problem.
In other words, the observations may also be consistent with alternative and
competing models and not just the model used in the analysis. Moreover,
when comparing models that equally fit existing observations, the model that
also makes additional and falsifiable predictions is, in general, preferred. The
evaluation of the model and competing models should, in turn, stimulate further
thinking and inquiry into the original question or problem posed, the accepted or
received wisdom and the model that was formulated. Thus, testing and evalua-
tion continue the model-building process and contribute to our understanding of
the problems that originally motivated the research.

Parallel to the model-building process is consideration of not only what is the
research problem, but who is the audience for sharing of the insights and results
of the model. Too frequently researchers expect that their model and results will
“speak for themselves.” Unfortunately, even the most brilliant model builder
will accomplish little in terms of increasing knowledge and understanding if
she fails to present what has been done in a form suitable for the intended audi-
ence. If the intended readership is a group of well-trained and knowledgeable
researchers then motivating the research problem, describing the model and
explaining the results may be sufficient. If, however, the likely audience lacks the
training or background to understand the model, or the implications and caveats
of the results, then considerable effort is required to explain the model and its
implications in a way that is comprehensible to the reader.

MODEL CHARACTERISTICS

Models can be divided into those that involve optimization, whereby an objective
function is optimized over a set of choice or control variables subject to a set of
constraints, and models that simulate changes in processes over time. Optimization
models are frequently used to answer “what should be”-type questions. For
example, what should be the harvest rate in a fishery if we wish to maximize the
present value of net profits? Simulation models are often used to answer “what
would be” questions such as, what would be the earth’s average surface temperature
in 2100 if the concentration of carbon dioxide in the atmosphere were to double?

Optimization and simulation

Optimization and simulation models share a number of important characteristics
and, indeed, sometimes simulations are used to find an “optimum” strategy while
optimization models may be used to simulate possible outcomes under alternative
specifications of the objective functions and/or constraints.
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In environmental and resource economics we often wish to optimize our rate of
discharge or depletion or use of an environmental asset. This requires optimizing
an objective function subject to a set of constraints. Most economic models
optimize over a particular variable whether it be utility, profits, or some other
metric subject to constraints. The appropriate metric is determined by the problem
addressed by the model. For instance, if we wish to determine the level of harvest
of trees that will generate the highest monetary return over time then an objective
function that maximizes the discounted net profits is appropriate. By contrast, if
we were concerned with the costs of production for a given level of harvest, then
an objective function that minimizes the economic costs of production under a
harvest constraint would be appropriate. In such problems, the variables whose
values are chosen in the optimization program are called control variables and
could include, for example, the harvest rate. Variables whose values are deter-
mined within the model, but which depend on the values of the control variables,
are called state variables. State variables might include, for example, the resource
stock. The potential solution is bounded by constraints that may include dynamic
constraints that describe the dynamics of the state variables and boundary condi-
tions that specify any constraints on the starting and ending values of variables.

Simulation models provide predicted values of variables of interest based on
specified initial values and parameters of the model. In many cases, the parameters
and initial conditions for simulation models are obtained from empirical models
or observations of the phenomena under study. Simulation models are enormously
useful in helping us understand the interactions and processes of systems. The
value of simulation models comes from the analysis of the effects of changes
in interactions, parameters, and initial values, called sensitivity analysis. To make
such comparisons as easy as possible, several software packages are available.
The software Vensim (www.vensim.com), Powersim (www.powersim.com) and
Stella (www.hps-inc.com) are widely used and are sophisticated enough to build
models of highly complex systems.

Endogenous and exogenous variables

Whatever the purpose, the modeler must decide what variables should
be determined within the model (be endogenous), and what variables should be
determined from outside (be exogenous), but are included in the model. Variables
that are neither exogenous nor endogenous to the model are excluded vari-
ables and are not incorporated in the model-building process. All variables that
are critical in determining future states of the model should be endogenous,
whether or not the variables change slowly or rapidly. At the very least, model
results should be tested for their robustness to changes in values of those variables
treated as exogenous.

To some extent, the decision as to which variables are endogenous, exogenous
or are excluded depends on both the purpose and the time-scale of the model.
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Figure 1.2 Boundaries of a model of the grizzly bear population in Banff National Park

For example, a model designed to predict economic growth over the next year
could treat population as an exogenous variable and have little effect on the
reliability of the predictions. However, if such a model were used to predict
economic growth over 25 years or more it would likely suffer from important
deficiencies as economic growth and population growth are co-determined and
feed back on each other.

To illustrate the boundaries of models, figure 1.2 shows what variables are
excluded, exogenous and endogenous in the model used to predict the bear
population in Banff National Park. Outside the model boundary are excluded
variables (migration, pesticide accumulation, prey effects). The model includes
exogenous variables (birth and death rates) that may be varied by the modeler, but
are not determined by the model itself. In the core of the model is the endogenous
variable (population) that is determined by the model. The initial and past states of
the endogenous variable, in turn, help determine future values of the endogenous
variable.

Feedback effects

All complex systems are subject to both positive and negative feedback effects.
Positive feedbacks reinforce disturbances to a system and move variables further
away from their original state while negative feedbacks tend to return systems
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to their former state following disturbance. Negative feedback effects may be
illustrated in a simple model of a planet called Daisyworld (Lovelock, 1990). In
this world only two plants exist, white and black daisies. White daisies do better
at higher temperatures than black daisies, but also have a greater albedo effect
and reflect more of the solar radiation reaching the planet’s surface. Shocks to
the system are provided by changes in solar radiation that affect the planet’s surface
temperature and the relative abundance of white and black daisies. In turn, the
abundance of white and black daisies determines the amount of solar radiation
reflected back into space which feeds back to determine the planet’s surface
temperature and the relative abundance of white and black daisies. This system is
presented in figure 1.3.

Both positive and negative feedbacks are important in environmental systems.
For instance, the earth’s climate includes many different positive and negative
feedback effects that contribute to keeping our planet’s average surface tempera-
ture close to 14 degrees Celsius. These feedbacks are illustrated in figure 1.4. One
negative feedback comes from a rising surface temperature that raises the amount
of water vapor in the atmosphere that, in turn, increases cloud cover that increases
the amount of solar radiation reflected back into space and helps to reduce surface
temperature. A positive feedback comes from a rising temperature that increases
the melting of the permafrost and wetlands in northern latitudes that, in turn,
releases methane (a greenhouse gas) and increases the concentration of green-
house gases in the atmosphere. An increase in greenhouse gas concentrations
increases the ability of the atmosphere to retain heat radiating from the surface
and eventually raises surface temperatures.
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Figure 1.4 Examples of positive and negative feedbacks with climate change

Whatever the model, and whether it be used for optimization or simulation, the
fundamental feedbacks of the system should be incorporated. More generally, a
failure to incorporate feedback effects into models is likely to result in serious
errors in prediction and a failure to understand the important interactions between
variables. For example, in a set of models built in the 1970s that were enormously
useful in helping people think about the interconnections and dynamics between
human activities and environmental outcomes, modelers failed to adequately
model the feedbacks between prices, quantity demanded and the supply (proven
reserves) for non-renewable resources. In illustrations of the possible effects of
unlimited economic growth where the demand for resources was assumed to
increase exponentially, the model incorrectly predicted that the world’s present
and known reserves of gold, tin, petroleum, and silver in 1972 would be exhausted
by 1990 (Meadows et al., 1974).

Stocks and flows

Common to both optimization and simulation models are stock and flow variables.
Stocks, such as the level of capital, can be added to and subtracted from by flows,
such as investment and depreciation. In dynamic optimization models, stock and
flow relationships are characterized by dynamic constraints that define how a
stock changes over time. For example, in an optimization model to maximize the
present value of net profits from a fishery, the dynamic constraint that governs
the fish stock could be

dx/dt = F(x) — h(t)
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where dx/dt is the change in the fish stock with respect to time, F(x) is the natural
growth function of the fish stock and h(t) is the harvest per time period. In this
case, F(x) is a flow determined by nature and the level of the stock and h(t) is a
flow determined by decisions of fishers.

The relationship between stocks and flows can also be visualized in a simulation
model, where natural growth is an inflow and natural mortality and the total
fishing harvest are outflows represented by large arrows that increase or decrease
the stock. A feedback relationship between a flow and a stock is represented by a
single-line arrow that indicates the level of the fish stock helps determine both
natural growth and natural mortality. A representation of a model in this form in
figure 1.5 helps us to understand the relationships, causal connections, and
feedbacks in a system.

MODEL DYNAMICS

The most cursory examination of the world around us reveals that life, our planet,
and our universe are continually changing. The fossil record indicates that the earth
has suffered from several mass extinctions, and that the earth’s biota has changed
dramatically in the relatively short period of time that modern humans have been
in existence. Thus, researchers who wish to understand environmental challenges,
and how to manage natural resources, must recognize that the world is dynamic.

Characteristics of dynamic systems

All natural systems are dynamic in the sense that they change over time, but are
able to sustain life despite shocks. For example, the human body is a natural system
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whose changes are governed by both underlying processes (such as genetics) and
external factors that are partly under our control and predictable (such as our diet)
and unpredictable events (such as being struck by lightning). Despite the many
changes and shocks that our bodies undergo during our lifetime, they provide us
with a blood pressure and a body temperature that vary by surprisingly small
amounts despite huge variations and changes in our environment. Such a process
that sustains life and that arises from both positive and negative feedbacks is called
homeostasis and is a common feature in living systems.

Another important feature of dynamic systems is whether they, or variables
within the system, tend to converge to a fixed point or steady state over time. In
other words, is there some point, should it ever be reached, where the variable or
system will remain at forever. The existence of fixed points and whether we can
ever reach them is of particular importance when managing natural systems. For
example, in a fishery we might wish to keep the resource stock within some
desirable range and if we are not in this range, we would like to know whether
we can arrive at these desirable levels, given sufficient time. This is illustrated in
figure 1.6 where the fixed point might represent a desirable level of the resource
stock. In this particular example, the fixed point is globally stable because whatever
the initial value of the variable (be it greater or less than the fixed point) the
variable will converge to it over time. The movement or transition of a variable or
system from one value to another over time is called a trajectory and is also
illustrated in figure 1.6.

A fixed point may or may not be an optimum in the sense that it optimizes a
given objective function, but if it is an optimum it provides a point to which we
would like the system or variable to converge. Ideally, we would wish for our
global optimum (most desirable point) to be a globally stable fixed point in the
sense that whatever the initial values of the system the trajectories always converge
to the optimum. In reality, dynamic optimization is rarely so straightforward and
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it involves devising a program such that trajectories approach a desired set of
values. In some cases, a small change in the trajectories may lead to a radically
different (and undesirable) outcome.

Despite the sophistication we can bring to modeling dynamic systems and
behavior, our interpretation and prediction of actual systems can be very limited. In
part, this arises because system dynamics often arise from both deterministic and
stochastic processes and separating the causes, effects, and feedbacks can be very
difficult. Fortunately, predicting future values in natural systems is made easier by
negative feedbacks. The more able is a system to return to a former state the larger
is the magnitude of a shock then the greater is its resilience (Holling, 1973).
Unfortunately (for predictive purposes), and no matter how resilient is a system,
there is ultimately some threshold point or nonlinearity beyond which the system
switches or flips into a fundamentally different state. For example, acid rain over
several years may gradually increase the acidity of a fresh-water lake with little
apparent effect on the ecosystem, but suddenly at a certain point the environmental
system may flip to a fundamentally different state. In the case of acid rain and fresh-
water lakes, at a pH threshold point of 5.8 algal mats began to appear along the lake
shore disrupting fish breeding and other aspects of the ecosystem.

This system behavior can be visualized in figure 1.7 where movements of the
ball represent perturbations to a system and the low point in the “bowl” indicates
the system’s original state. Provided that the perturbations are not too large the
system has a tendency to return to its original state. If, however, the system
receives a large shock and is pushed “over the side” the process may become
irreversible and the system may never return to its original state.

Discrete time models

Various techniques and approaches have been used to help model the dynamics of
the environment and natural resources. Difference equations are used in modeling
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systems where change occurs at discrete points in time. Difference equations
suppose that future values of variables of a system are a function of the current and
possibly past values. A first-order difference equation, given below, supposes that
the next period value is only a function of the current period value.

Xe 1= f(xy)

where f(x;) may be either a linear or nonlinear function.

Difference equations can be used to model both linear and nonlinear behavior.
They may also generate fixed points or steady-states (x) where x, is unchanged for
all time, i.e.,

x =f(x) V't

If the system converges to a fixed point, whatever the initial value of x,, it is stable
or convergent. For example, a system modeled by the difference equation, where
a and b are constants,

xt+1:ﬂ+bxt

will converge to its fixed point of a/(1 — b), provided that |b| <1. The fixed point
is found by setting x; ;, ; = x; and then solving for x, in terms of a and b. If b <0 then
the values of x; will oscillate between positive and negative values. If b >1 then the
values of x; become increasingly large as time progresses and there exists no fixed
point or equilibrium. The solution to a difference equation is consistent with the
original equation, but contains no lagged values. For this particular difference
equation the solution is

xe=a/(1—b)+b(xg—a/(1—D)).

The solution allows us to predict x; at any time period provided we know the
initial value (xg) and the parameter values (2 and b).

Difference equations can also be used to model seemingly very complex system
behavior. A commonly used model of the population dynamics of some animal
populations is logistic growth,

Xp+1=ax(1—xy)

where g is a constant. Logistic growth characterizes a population that has a low
rate of increase when its population level is small and when it is large, and has
its highest rates of growth at intermediate levels of the stock. Thus at low popu-
lation levels a positive feedback exists between the population and growth in
the population, but at a high population a negative feedback exists such that
further increases in population reduce population growth. Such behavior is
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Figure 1.8 S-shaped growth

called density dependent growth. Logistic growth is sometimes referred to as
sigmoidal or s-shaped growth, as shown in figure 1.8 because of the shape that it
resembles when the total population is plotted against time and begins at a very
low level. Because of negative feedback effects the population eventually reaches
a carrying capacity beyond which the population cannot be sustained by the
environment.

Chaos

To help understand the potential behavior of dynamic but deterministic systems,
consider the trajectories or values of x, over time in a logistic model. Provided
that <1 then x, converges to the fixed point 0 (population becomes extinct)
because with each period of time x; becomes successively smaller. In this case, the
parameter 4 is at a level that extinction of the population is irreversible, whatever
the initial population.

If a is greater than 1 but less than 3 then whatever the initial value of x, the
population will converge to the same fixed point or carrying capacity, for a given
value of a. As we progressively increase a above 3 then the trajectory (set of points
that represent the level of the population at different periods in time) of x; starts
to move towards not one, but two points called attractors and will go back
and forth between the points. At increasingly higher values of a the number of
attractors for the trajectory also rises such that the number of attractors doubles
from 2 to 4 when a = 3.45 and doubles again to 8 points at a = 3.54, and keeps on
doubling at slightly higher values of a. This switch in the qualitative behavior
of a system is called a bifurcation and, in this case, is called period doubling to
indicate that a small change in a parameter in the system doubles the number
of attractors. As the number of attractors doubles, the time that it takes the
system to return to a given attractor also doubles. Thus it takes twice as long to
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Figure 1.9 Bifurcation to chaos

return to a given attractor when there are four attractors than when there are just
two attractors.

For values of a greater than 3.57 and equal to or less than 4, the system exhibits
chaos and, depending on the initial value of x,, the attractor (the points to which
the system moves towards over time) may have an infinite number of values. The
pattern of attractors for different values of a is illustrated in figure 1.9. Although
the system is deterministic such that future values are completely determined, the
system is highly sensitive to the initial value of x, and the parameter a. Moreover,
chaos can generate very complex dynamics without random shocks or stochastic
events and if variables and states of the world are measured imprecisely, we can
never predict their long-term values.

In reality, many systems are subject to both deterministic processes and
stochastic events. For example, a population that is chaotic (and therefore deter-
ministic) may also be subject to random shocks, such as changes in climate,
that also influence its future state. Separating out the effects of shocks from the
outcomes of deterministic processes or distinguishing between chaotic systems
(which are deterministic) and systems that are not chaotic, but subject to stochastic
fluctuations or events, is extremely difficult.

Continuous time models
Another way to model dynamics is to assume that change occurs continuously
rather than at discrete points in time. The continuous time analog to difference

equations are differential equations that can be written as

dx/dt = f(x,t)
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where f(x,t) can be a linear or nonlinear function. For comparison, the differential
equation and continuous time analog to the difference equation for logistic
growth is:

dx/dt=ax (1—x)

In the case where the differential equation is not a function of time, such as with
logistic growth, the equation is said to be autonomous. The population with logistic
growth has three fixed points (when dx/dt =0); one when x =0, a second when
x=1/2, and a third when x = 1. The first case is when the population is extinct, the
second case is when the growth in the population is maximized or the point where
(dx/dt)/dx =0 and the third point is when the population is at its carrying capacity.
The representation of the relationship between dx/dt and x is given in figure 1.10.

As with difference equations, a system of differential equations can be specified
to represent the behavior of several and interacting variables over time. Various
methods can be used to generate solutions to systems modeled by differential
equations. Their solution must be consistent with the original equation, but must
not contain any derivative term. Whether or not a system has fixed points and
whether the system converges to a fixed point, and from which values, is a fun-
damental question. Such a question is of particular importance in optimization
models where we may be concerned with reaching a target population level (such
as a fishery stock) that maximizes our chosen objective function (such as the
present value of net profits).

Like difference equations, differential equations can be used to model a range of
dynamic behavior. For example, variables in a system may exhibit exponential
growth or decay such that the rate of change in the variable over time is proportional
to the size of the variable, i.e.,

dx/dt= (a— b)x.
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In the case of a population, we can define a as the birth rate and b as the death rate
and (a — b) as the net growth rate. If the net growth rate is positive (negative) then
the population will continuously grow (decay) over time. The solution to this dif-
ferential equation can be found by integrating both sides of the equation where
the lower and upper limits of integration are 0 and t and is given by,

x(t) = x e~ bt

where x(t) is the value of the population in time t, and x, is the initial value of
the population. In this system, future values of the variable or population are
completely determined by the net growth rate (parameters a and b) and the initial
starting value. The system has only one fixed point (point where dx/dt = 0) when
x(t)=0. The dynamics of the system for positive net growth are illustrated in
figure 1.11. Although some variables may exhibit exponential growth over periods
of time, no natural system can have exponential growth in the long run as ulti-
mately energy, space, or other constraints must place a finite limit on the size of
the variable or system.

DYNAMIC OPTIMIZATION

Dynamic optimization is an important method of analysis in environmental and
resource economics. For discrete time problems the method called dynamic
programming, pioneered by the American mathematician Richard Bellman in the
1950s, is often employed. For continuous time problems, economists frequently use
a method called optimal control first developed by the Russian mathematician L. S.
Pontryagin, and his colleagues, about fifty years ago. To be understood prop-
erly, both optimal control and dynamic programming require intensive study.
Fortunately, the principles and intuition of both methods can be readily understood
and applied in environmental and resource economics.
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For both methods, the optimization problem must be properly specified. This
requires an understanding of what variable(s) are under the control or decision of
the person making the optimizing decisions. Such variables are called control
variables in optimal control and decision variables in dynamic programming. The
choice of these variables determines the values of state variables that are deter-
mined within the dynamic optimization model. The constraints to the problem
include both dynamic constraints that represent how the state variables change
over time and boundary conditions that specify the initial or starting values of the
state variables, and possibly their value at the end of the program. Whether either
approach yields a maximum or not also depends on so-called sufficiency conditions.
For our purposes, this can be satisfied if the objective functional is differentiable
and strictly concave in the control variable, no direct constraints are imposed on
the value of the control variable, and the functions that govern how the state
variables change over time — the transition equation in dynamic programming or
the dynamic constraint in optimal control — are both differentiable and concave.

Dynamic programming

Dynamic programming is an algorithm that allows us to solve optimization
problems that can be written as a multi-stage decision process where informa-
tion about “the state of the world” is completely summarized in the current value
of the state variable(s).

The algorithm is derived from the principle of optimality that allows us to solve a
set of smaller problems for each decision stage, such that the value of the state
variable in the next period depends only on the value of the state variable in the
current period and the decision in the current period.

If the objective function satisfies certain sufficiency conditions and is also the sum
of the net benefit or stage returns at each stage or point where a decision is made,
we can define Bellman’s functional recurrence equation to solve a discrete dynamic
optimization problem. Starting with Bellman’s functional recurrence equation for
the last stage or final period, the algorithm obliges us to work backwards systemat-
ically to the initial period. The initial value of the state variable(s) is then used to
solve the problem for all values of the decision variables and state variables at every
period in the program. To illustrate, take the following problem,

Max 3(s(),d(9) (1)

Subject to:
s(t+1) =g (s(8).4d(0) 2)
s(1)=sy, s(T+1) =574 3
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where T is the final period in the program, f,(s(f),d(t)) is the net benefit or stage
return function which depends on the state variable at time ¢, 5(f), and the decision
variable at time t, d(t). The function g(s(t),d(t)) is the transition or transformation
function at time t and determines the value of the state variable in the following
stage or time period. An initial value of the state variable (s;) is always required to
obtain a solution, but this does not necessarily apply for its final value (st 1). The
functional recurrence equation for this problem is,

Vi(s(t)) = max g [fi(s(D)d(E)) + Via(s(t +1))] )

where from (2), V,11(s(t+ 1)) = V4 1(g: (s(£),d(2))).

In general, V7, 1(s(T+1))=0, as it is beyond the final stage or period of the
program, T. The method of solution is to first express the problem in the form
of the functional recurrence equation for the final stage or time period (T in the
problem above) and use the value of the state variable at T+1 to obtain an
expression for Vi(s(T)) solely in terms of s(T). Next, we write the functional recur-
rence equation for the next to last stage or penultimate period (T — 1), substitute
Vr(s(T)) that we found previously into the expression for V_q(s(T — 1)) and use the
transition equation to substitute out s(T) for s(T —1) and d(T — 1). We then use
the first-order condition (QVr_1(s(T))/(@d(T—1)) =0 at time T—1 to obtain an
expression for d*(T—1) in terms of s(T—1) and then substitute it into
Vr—1(s(T — 1)) so that the equation is solely in terms of s(T —1). This backward
recursion continues until we reach the first stage (or ¢t =1 in the problem above)
ensuring that for each stage or time period, t, Vi(s(t) ) has as its argument only s(¢).
Using the initial condition, or initial value for the state variable, we can then
determine 4*(1) and then 5*(2) and so on until d*(T) and s*(T), thus offering a full
solution to the problem.

To illustrate the approach we can specify a simple two-period “cake eating”
problem where a person receives a “cake” at the start of the first period (t = 1), but
which must be consumed by the end of the program (t = 3). The objective is to
maximize utility over time by consuming the cake where utility in each period
equals the square root of the amount of the cake consumed, i.e.,

Max U = x;1/2 + x,!/2 (5)
Subject to:
i = 1 (6)
h=m—x )
a3 = 0 (8)

where x; is the amount of the cake consumed in period i and g; is the amount
of cake remaining at period i. For this problem, the sufficiency conditions are
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satisfied, thus, the approach yields a maximum. The functional recurrence
equation in this case is,

Vi(ay) = max x(f) [xtl/z + Vis1(ac+1)] ©)
Subject to:

A+ 1= 0 — X¢ (10)

where expression (9) or Vi(a,) is the return function and is the maximum value for (5)
at time t, given the amount of cake left to be consumed (a,). Expression (10) is the
transition equation that determines the value of the next period’s state variable.

The functional recurrence equation when t =2 is

Va(a5) = max[x,'/? + V(as)] (11)

Subject to:
a3 =0y — Xp (12)
a;=0 (13)

where V3(a3) has the value of zero as it is the value of the return function after the
end of the program or optimization period. Combining the constraints (12) and (13)
we can obtain an expression for x, in terms of a, that we can use to rewrite the
functional recurrence equation solely in terms of a,, i.e.,

Va(ay) = ay'/? (14)

The next step is to write the functional recurrence equation for the previous
period, t=1, i.e,

Vi(ay) = max[x;"/2 + Vy(ay)] (15)

Subject to:
BHh=a01—Xx (16)
0 =1 17)

We can substitute in the previously found return function V,(a,) and then use (16)
to obtain an expression for (15) solely in terms of 4; and x; by substituting out
for ay, i.e.,

Vi(ay) = max[x; "2 + (a; — x7)"/?]
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The necessary condition for a maximum requires that,

AVi(@)/dx; = (1/2)x; /2= 1/2(ay — x7) /2 =0
= x1 = ‘11 — xl
= xl* =(1/2)a, 18)

Given that a; =1, then (x*, x,%, a,*) = (0.5, 0.5, 0.5). This represents a complete
solution to the “cake eating” problem over two periods.

Optimal control

Optimal control provides a set of necessary conditions to help solve dynamic
problems in continuous time. These necessary conditions, sometimes called the
maximum principle, are used to solve for optimal paths or trajectories for the control
and state variables. The general form of problem that can be solved using optimal
control, without discounting the future and where the end of the program T is
fixed, can be represented by (19)—(21).

Max 'V = f fla(t),x(t),t] dt (19)
=0
Subject to:
da/dt = gla(t), x(t), t] (20)
a(0) = ag (21)

In this problem, V is called the objective functional, x(t) is the control variable and
a(t) is the state variable. All of the variables are functions of time. The dynamic
constraint is given by (20) and governs how the state variable changes over time.
The minimal boundary condition is the initial value of the state variable and is
given by (21). In some problems, the terminal value of the state variable may also
be specified as another boundary condition.

The method of solution is to write a function called a Hamiltonian that consists
of the objective functional plus the dynamic constraint multiplied by a co-state or
adjoint variable that is also a function of time, normally defined by the Greek
symbol lambda, or A. The co-state variable can be interpreted as the shadow or
imputed price of the state variable at a given instant in time and, in this sense, is
analogous to the notion of a Lagrangian multiplier in static optimization.

At the end of the program, denoted by T, it must be the case that A(T) =0 if
a(T) >0, otherwise we would not be on an optimal path and we would not be
maximizing the objective functional subject to the constraints. To understand this
point, consider the situation if a(T) >0 and A(T) > 0. In this case the state variable
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has a positive value (because A(T) > 0), yet we have chosen to leave some of it at the
end of the program. This must be sub-optimal because we could reduce the amount
of the state variable remaining at the end of the program and simultaneously
increase the objective functional.

For the problem specified by (19)-(21), the Hamiltonian function is as follows,

Hla(t), x(t), A(t), t] = fla(t), x(t), t] + A(t)gla(t), x(t), t] (22)

Provided there are no constraints on the control variable and the objective func-

tional is differentiable in the control variable, the necessary conditions for solving
(19)-(21) are listed below.

oH/0x(t)=0 (23)
dA(t)/dt = —oH/da(t) (24)
da/dt = gla(t), x(t), t] (25)

a(0) = ag (26)
AMT)=0 ifa(T)>0 (27)

Condition (23) states that an optimal path requires that the partial derivative of the
Hamiltonian function with respect to the control variable must equal zero at each
point in time. Condition (24) states that the change in the co-state variable with
respect to time must equal the negative of the partial derivative of the Hamiltonian
function with respect to the state variable. Conditions (25) and (26) recover
the dynamic constraint given by (20) and the boundary condition given by (21)
in the original problem. Condition (27) is called a transversality condition that
ensures the trajectories are optimal at terminal time T when the program ends.

Given that the conditions (23)—(27) use variables that are functions of time, find-
ing the optimal paths for the control, state, and co-state variables often involves
solving differential equations. Sometimes explicit solutions of these differential
equations are impossible. In such cases, the “solution” or optimal paths of the
variables may be represented qualitatively in terms of phase diagrams provided
that the problem is autonomous such that time only appears as a function in the
control, state, or co-state variables and not explicitly by itself. Phase diagrams trace
out the points where the control and state variables are unchanging with respect
to time, i.e., the points where dx(t)/dt = da(t)/dt = 0. Phase diagrams may also be
constructed where explicit solutions are possible as they allow us to visualize and
characterize the steady state of the dynamic system and the potential trajectories
(if any) to the steady state.

To illustrate the optimal control approach, we can solve the continuous time
analog to the “cake eating” problem. In continuous time, the problem can be
defined by (28)—(31).

2
MaxV | x(t)?dt (28)
=0

t=
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Subject to:
da/dt= —x(t) (29)
a(0)=1 (30)
a(2)=0 (31)

In this problem, x(t) is the control variable and is the amount of cake eaten at
an instant in time and a(t) is the state variable, or the amount of cake remaining
at an instant in time. Expression (29) is the dynamic constraint where da/dt is the
instantaneous change in the amount of cake remaining with respect to time and
equals the negative of the amount of cake consumed at each instant in time.
Equation (30) is the initial boundary condition and specifies the initial amount of
cake available at t=0. We also have an extra boundary condition, given by
constraint (31), that specifies that all the cake must be eaten by the end of the
program.
The Hamiltonian for the dynamic problem given by (28)-(31) is,

HIx(t), A(B)] = x(t)'/> + A()[—x(1)] (32)

The necessary conditions that must be satisfied to solve (28)—(31) are given below.

OH/dx(t) = x(t) /2= A(t) =0 (33)
dA(t)/dt = —9H/da(t) = 0 (34)
da/dt = —x(t) (35)

a(0)=1 (36)

a2) =0 (37)

In this case, we do not specify that A(T) =0 as the transversality condition is
superfluous given the boundary condition specified by (37). Simplifying (33), we
obtain the following expression for x(t) in terms of A(t), i.e.,

_ 1
4A(t)?

x(t) (33

Substituting (33") into (35), or the dynamic constraint, and observing from (34)
that dA(t)/dt =0, we can integrate both sides of the resulting expression with
respect to time to obtain equation (38), where K is a constant of integration, i.e.,

a(t) = K—t/4(A()) (38)

The value of K in (38) can be solved by substituting the initial boundary condition,
or (36), into (38) for when t=0, i.e.,

1=K—-0/4(A(0))> =K=1
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Figure 1.12 Optimal paths in a “cake-eating” problem

Thus, we can rewrite the optimal path for the state variable, a(t), as follows,
a(t)=1—1t/4(A(1))? (38)

It now remains to solve for the co-state variable, A(t). Before we do so, we can char-
acterize the solution by noting from (34) that the co-state variable is unchanging
with respect to time, i.e., it is a constant. Similarly, from the expression for x(t) in
(33"), expression (34) also implies that the control variable is unchanging with
respect to time, i.e., dx(t)/dt=0. In other words, both the control and co-state
variables will be a constant over the program from t=0 to t=2.

From the boundary condition at the end of the program, condition (37), we can
solve out for the value of the co-state variable at t = 2 using (38') and thus find the
value of A(2), i.e,,

0=1-240M2))> =AQ2)=V12 (39)

If A(t) has the value of the V1,2 at t =2, it must also have this value at every point
in time during the program given condition (34). Substituting the value of A(t)
given in (39) into (33’), and also into (38’), we obtain the optimal paths for the
control and state variables, i.e.,

x(t)=1/2 (33")
aty=1-1t/2 (38”)

The optimal paths described by (33”) and (38”) are illustrated in figure 1.12.
In figure 1.12, the area defined by triangle 0-1-2 equals one, as does the rectangu-
lar area defined beneath the x(t) line and the horizontal axis, indicating that the
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amount consumed over the program exactly equals the amount of cake at the
beginning of the program. The slope of the a(t) line is da(t)/dt and equals —1/2
(or the negative of x(t)) and characterizes the dynamic constraint given
by (29) or (35).

If we discount future values and costs, both the Hamiltonian and the necessary
conditions need to be modified. In the case of discounting, the objective functional
can be specified by (40).

MaxV = f fla(t),x(t)t]le " dt (40)

In (40), exp ' or e~ is the continuous time discount factor, e = base of the natural
logarithm and & is the instantaneous discount rate. If we use the constraints given
by (20) and (21) and the objective functional given by (40), the Hamiltonian with
discounting is given by (41).

Hla(t), x(t), A(t), §, t] = fla(t), x(t), tle > + A(t)g[a(t), x(t), t] (41)

Expression (41) is defined as the present-value Hamiltonian. More commonly, the
necessary conditions are defined from the current-value Hamiltonian defined as
H=H¢&" ie,

H = fla(t), x(t), t] + un(t)gla(t), x(t), t] (42)

where u(t) = e®* A(t). The only changes to the necessary conditions (now defined
in terms of the current-value Hamiltonian) given by (23) to (27) are in
terms of the co-state variable. These modified necessary conditions are given
by (43)-(47).

9H/dx(t) =0 (43)

du(t)/ dt — S(t) = —9H/da(t) (44)
da/dt = gla(t), x(t), t] (45)
a(0) = ay (46)

w(T)e % = 0if a(T) >0 (47)

If the program has an infinite time horizon and the problem is autonomous then
the transversality condition given by (47) only holds true in the limit as t — oo, pro-
vided no constraints are imposed on the value of the state variables. For problems
where the terminal time T is chosen by the solution to the program, an additional
transversality constraint also applies, namely, H(T) e °T = 0. In other words, the
present-value Hamiltonian must be zero at terminal time.
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DYNAMICS AND ENVIRONMENTAL AND
RESOURCE ECONOMICS

An understanding of models, model building, dynamics and systems provides a
useful starting point for appreciating the research problems and approaches that
predominate in environmental, ecological, and resource economics. In models of
fisheries, water, forestry, and other natural resources a fundamental question is,
how can we do the best we can given our own and nature’s constraints? For such
problems, dynamic optimization models are widely employed. Depending upon
the nature of the problem, several different approaches can be used for their
solution. Such problems can be solved by “pen and paper,” but software is also
available. For models that are linear in both the objective function and constraints
powerful algorithms exist for their solution and several different software pack-
ages are available, including GAMS (www.gams.com) that can solve very large
mathematical programming problems. However, even quite complex optimiza-
tion problems can be solved using spreadsheet software, such as Excel (Conrad,
1999). For highly nonlinear objective functions, maxima and minima can be solved
for using software packages such as MATHEMATICA (www.wolfram.com) or
MAPLE (www.maplesoft.com).

A comprehension of environmental values, environmental accounting, economic
growth and the environment, and the interconnections in the global commons also
requires that we understand the broad dynamics and feedback effects of the
systems we wish to understand. Whatever the question or problem, a systematic
and scientific approach to modeling provides us with a framework for increasing
our understanding of and, ultimately, improving our environment.

FURTHER READING

This chapter provides an introduction to modeling, systems, and dynamics. Given the
importance of modeling in economics, surprisingly very few books explain or discuss how
to economically model research problems. A wonderful exception is Blaug (1980) who
provides a description of the key methodological issues in economics. Sterman (2000),
chapter 3, gives an excellent introduction to the building of simulation models.

A plethora of texts exist on the methods of dynamic analysis. A useful introduction that
offers questions and answers in mathematical economics is Grafton and Sargent (1996). A text-
book on mathematical economics that is comprehensive and comprehensible is Hoy et al.
(2001). Three of the best textbooks on dynamic optimization models, with applications to
economics, are Shone (1997), Léonard and Van Long (1992) and Chiang (1992). An excellent
book on the solution of dynamic optimization models in natural resource economics is Conrad
(1999). Several good texts on building and using simulation models exist including Ford (1999)
and Deaton and Winebrake (1999). Williams (1997) is a rigorous but highly accessible book
on chaos.
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