The Proper Treatment of Quantification
in Ordinary English
Richard Montague

The aim of this paper is to present in a rigorous way the syntax and semantics of a
certain fragment of a certain dialect of English. For expository purposes the fragment
has been made as simple and restricted as it can be while accommodating all the more
puzzling cases of quantification and reference with which I am acquainted.'

Patrick Suppes claims, in a paper prepared for the present workshop [the 1970 Stanford
Workshop on Grammar and Semantics], that “at the present time the semantics of natural
languages are less satisfactorily formulated than the grammars...[and] a complete
grammar for any significant fragment of natural language is yet to be written.” This
claim would of course be accurate if restricted in its application to the attempts emanating
from the Massachusetts Institute of Technology, but fails to take into account the
syntactic and semantic treatments proposed in Montague (1970a, b). Thus the present
paper cannot claim to present the first complete syntax (or grammar, in Suppes’ termin-
ology) and semantics for a significant fragment of natural language; and it is perhaps not
inappropriate to sketch relations between the earlier proposals and the one given below.

Montague (1970b) contains a general theory of languages, their interpretations, and
the inducing of interpretations by translation. The treatment given below, as well as that
in Montague (1970a) and the treatment of a fragment of English proposed at the end of
Montague (1970b), can all easily be construed as special cases of that general theory. The
fragment in Montague (1970a) was considerably more restricted in scope than those in
Montague (1970b) or the present paper, in that although it admitted indirect discourse, it
failed to accommodate a number of more complex intensional locutions, for instance,
those involving intensional verbs (that is, verbs like seeks, worships, conceives). The
fragment in Montague (1970b) did indeed include intensional verbs but excluded certain
intensional locutions involving pronouns (for instance, the sentence John wishes to
catch a fish and eat it, to which a number of linguists have recently drawn attention).
The present treatment is capable of accounting for such examples, as well as a number of
other heretofore unattempted puzzles, for instance, Professor Partee’s the temperature
is ninety but it is rising and the problem of intensional prepositions. On the other
hand, the present treatment, unlike that in Montague (1970b), will not directly accom-
modate such sentences as J. M. E. Moravcsik’s a unicorn appears to be approaching,
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in which an indefinite term in subject position would have a nonreferential reading, but
must treat them indirectly as paraphrases (of, in this case, it appears that a unicorn is
approaching or that a unicorn is approaching appears to be true).

On their common domain of applicability the three treatments essentially agree in
the truth and entailment conditions imposed on sentences.’ Further, when only dec-
larative sentences come into consideration, it is the construction of such conditions that
(Suppes notwithstanding) should count as the central concern of syntax and seman-
tics.> Nevertheless, the details of the present development possess certain aesthetic
merits, of coherence and conceptual simplicity, not to be found in the treatment of
English in Montague (1970b). (It is in order to preserve these merits that I here forgo a
direct account of such sentences as Moravcsik’s.)

1 The Syntax of a Fragment of English

Let e and 7 be two fixed objects (0 and 1, say) that are distinct and neither ordered pairs
nor ordered triples. Then Cat, or the set of categories of English, is to be the smallest set
X such that (1) e and 7 are in X, and (2) whenever A and B are in X, 4/B and A//B
(that is, (0,4, B) and (1, A, B) respectively) are also in X.

It should be pointed out that our categories are not sets of expressions but will
instead serve as indices of such sets. We regard ¢ and ¢ as the categories of entity
expressions (or individual expressions) and truth value expressions (or declarative
sentences) respectively. We shall regard the categories A/B and A//B as playing the
same semantical but different syntactical roles. An expression of either category is to be
such that when it is combined (in some as yet unspecified way, and indeed in different
ways for the two categories) with an expression of category B, an expression of category
A is produced. (The precise character of the categories A /B and A4 // B is unimportant;
we require only two different kinds of ordered pair.)

It will be observed that our syntactic categories diverge from those of Ajdukiewicz
(1960) only in our introduction of two compound categories (4/B and A//B) where
Ajdukiewicz would have had just one. The fact that we need only two copies is merely
an accident of English or perhaps of our limited fragment; in connection with other
languages it is quite conceivable that a larger number would be required.*

Keeping in mind the intuitive roles described above, we may single out as follows
certain traditional syntactic categories.

IV, or the category of intransitive verb phrases, is to be t/e.
T, or the category of terms, is to be t/IV.

TV, or the category of transitive verb phrases, is to be IV/T.
TAV, or the category of IV-modifying adverbs, is to be IV/IV.
CN, or the category of common noun phrases, is to be t//e.

The following categories will also be exemplified in our fragment although no special
symbol will be introduced for them.

t/t is the category of sentence-modifying adverbs.
TAV/T is the category of IAV-making prepositions.
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IV/t is the category of sentence-taking verb phrases.
IV//1V is the category of IV-taking verb phrases.

By By is understood the set of basic expressions of the category A; the notion is
characterized as follows.

By = {run, walk, talk, rise, change}
Br = {John, Mary, Bill, ninety, hey, he;, hey, ...}
Bry = {find, lose, eat, love, date, be, seek, conceive }
Biay = {rapidly, slowly, voluntarily, allegedly}
Ben = {man, woman, park, fish, pen, unicorn, price, temperature}
By = {necessarily}
Biay/r = {in, about}
Biy/. = {believe that, assert that}
By, /iv = {try to,wish to}
Ba = A (that is, the empty set) if A is any category other than those mentioned
above. (In particular, the sets B, of basic entity expressions and B; of basic
declarative sentences are empty.)

By a basic expression of the present fragment is understood a member of UAECat Ba.
By P, is understood the set of phrases of the category A. (We may read “Pcn”,
“Pry”, and the like as “the set of common noun phrases™, “the set of transitive verb
phrases”, and so on.) These sets are introduced, in a sense to be made precise below, by

the following rules, S1-S17.

Syntactic rules
Basic rules

S1. Ba C Py for every category A.
$2. If { € Pex, then Fo((), F1(), Fa(() € Pr,
where Fy({) = every (,
Fl(g) = the Ca
F,(0) is a { or an { according as the first word in { takes a or an.
S3. If { € Pen and ¢ € Py, then F3 ,((, ¢) € Pen, where F3 n((, ¢) = { such that
¢'; and ¢’ comes from ¢ by replacing each occurrence of he, or him, by

he him

she » or ¢ her respectively, according as the first Bey in { is of
it it

masc.

fem. gender.

neuter

Rules of functional application

S4. If o € Pyry and 6 € Pry, then Fy(a, ) € Py, where Fi(a, 0) = o’ and &' is the
result of replacing the first verb (i.e., member of Bry, Brv, By, or Bry//1yv) in 0
by its third person singular present.
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S5.

S6.
S7.
S8.
S9.

S10.

If 6 € Pry/r and 8 € Pr, then F5(0, B) € Pry, where F5(d, f) = 6 if f does not
have the form he, and F5(J,he,) = 6 him,,.

If6 € PIAV/T and f € P, then Fs(é,ﬁ) € Ppv.

If 6 € Pry), and B € Py, then Fy(6, ) € Prv, where F(d, f) = 6.

Ifo € PIV//IV and f € Py, then Fy(0, ) € Pry.

If 6 € Py, and B € Py, then Fy(9, f) € P..

Ifo € PIV/IV and f € Pyy, then F7(0, f§) € Py, where F7(0, f) = f30.

Rules of conjunction and disjunction

S11.

S12.
S13.

If(:b’ lp € Pt, then F8(¢)3 lp)) F9(¢9 l//) € PD where F8(¢)3 lnb) = d) and l//3 F9(¢7 lp)
= ¢ or .

If Vs 0 S PIV7 then Fs(’% 6)3 F9(y’ 5) € PIV~

If o, f € Pr, then Fy(a, f) € Pr.

Rules of quantification

S14.

S15.
S1e6.

If € Pr and ¢ € Py, then Fyg (2, P) € Py, where either (i) a does not
have the form he;, and Fig (o, ¢) comes from ¢ by replacing the first
occurrence of he, or him, by o and all other occurrences of he, or

he him
him,, by ¢ she } or ¢ her respectively, according as the gender of the
it it
masc.
first Bon or Bt in o is ¢ fem. , or
neuter

(ii) o = heg, and Fig_,(2, ¢) comes from ¢ by replacing all occurrences of he,
or him,, by he; or him,, respectively.

If & € Pt and { € Pcy, then Flo,n(ot, {) € Pen.

If o« € Pt and 6 € Py, then Fl(),n(OC, 0) € Pry.

Rules of tense and sign

S17.

If & € Py and 6 € Py, then Fii(a,9), Fiz(a, 0), Fis(a, 0), Fia(a, 9), Fi5(a, 0)
€ Py, where:

Fi1(a, 8) = ad’ and &' is the result of replacing the first verb in J by its negative
third person singular present;

Fia(o, 8) = 28" and & is the result of replacing the first verb in & by its third
person singular future;

Fiz(a, 8) = 28” and " is the result of replacing the first verb in & by its
negative third person singular future;

Fig(o, 8) = 08™ and 8" is the result of replacing the first verb in & by its third
person singular present perfect; and finally,

Fis(, 8) = 08" and 6" is the result of replacing the first verb in & by its
negative third person singular present perfect.
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The precise characterization of the sets P4, for A a category, is accomplished as follows.
We first define the auxiliary notions occurring in the rules above in an obvious and
traditional way: the gender of an arbitrary member of Bt U B, the indefinite article taken
by an arbitrary basic expression, and the third person singular present, the negative third
person singular present, the third person singular future, the negative third person singular
Sfuture, the third person singular present perfect, and the negative third person singular present
perfect of an arbitrary verb. Then we may regard S1-S17 as constituting a simultaneous
inductive definition of the sets P, . Since, however, inductive definitions of this form are
somewhat unusual, it is perhaps in order to state a corresponding explicit definition: the
sets Py (for A € Cat) are the smallest sets satisfying S1-S17; that is to say, (Pa) yccy 18
the unique family of sets indexed by Cat such that (1) (Pa) s, satisfies SI-S17, and (2)
whenever (P)y) s, is a family of sets indexed by Cat, if (P)y ) s, satisfies S1-S17, then
P, C P/, forall A € Cat. (It is easily shown, using an idea I believe to have originated
with Dr. Perry Smith, that there is exactly one family of sets satisfying these conditions.)

By a meaningful expression of the present fragment of English we may understand a
member of any of the sets Py for A € Cat.

As an example, let us show that

every man loves a woman such that she loves him
is a declarative sentence (that is, member of P;). By S1, love € Ppy and hej € Pr.
Hence, by S5, love him, € Pyy. Therefore, by S1 and S4, he; loves him, € P,.
Thus, by S1 and S3, woman such that she loves himj € Pcy. Therefore, by S2,
a woman such that she loves him, € Py. Hence, by S1 and S5, love a woman
such that she loves him € Pyy. Therefore, by S1 and S4, he; loves a woman such
that she loves him € P,. Also, by S1 and S2, every man € Pr; and hence, by S14,
every man loves a woman such that she loves him € P,.

We may indicate the way in which this sentence has just been constructed by means

of the following analysis tree:

every man loves a woman such that she loves him, 10, 0

every man, 0 he, loves a woman such that she loves him,, 4

man he, love a woman such that she loves him,, 5

love a woman such that she loves him,, 2

woman such that she loves him,, 3, 1
woman he, loves him,, 4
he] lOVe himo’ 5

love he,
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To each node we attach a meaningful expression, together, in case that expression is not
basic, with the index of that structural operation among Fo—F, F3 0, F5 1, - - -,
Fy—Fy, Fro,0, Fr0,1, - - -, F11—F15 (as characterized above, within S1-S17) which we
understand as having been applied in obtaining the expression in question; the nodes
dominated by any node are to be occupied by the expressions to which the structural
operation is understood as having been applied in obtaining the expression occupying
the superior node. (For example, the numbers 10,0 attached to the top node of the tree
above indicate that the expression attached to that node is regarded as the value of the
operation Fig o as applied to certain arguments; and the nodes beneath indicate that
those arguments are understood to be the expressions every man and hej loves a
woman such that she loves himy.) A precise characterization of an analysis tree in
the sense of these remarks would be routine and will not be given here; for such a
characterization in an analogous context the reader might consult Montague (1970a).

Now there are other ways of constructing the sentence under consideration, and
hence other analysis trees for it; indeed, it can be shown that every declarative sentence
of our fragment has infinitely many analysis trees. But in the case considered, the
various analysis will differ only inessentially; that is to say, they will all lead to the same
semantical results.

There are other cases, however, of which this cannot be said. For instance, the
sentence

John seeks a unicorn
has two essentially different analyses, represented by the following two trees:

John seeks a unicorn, 4

John seek a unicorn, 5

/\

seek a unicorn, 2

unicorn
John seeks a unicorn, 10, 0

a unicorn, 2 John seeks him, 4
unicorn John seek him,, 5
seek he,

As we shall see, the first of these trees corresponds to the de dicto (or nonreferential)
reading of the sentence, and the second to the de re (or referential) reading.

Thus our fragment admits genuinely (that is, semantically) ambiguous sentences. If
it were desired to construct a corresponding unambiguous language, it would be
convenient to take the analysis trees themselves as the expressions of that language; it
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would then be obvious how to characterize (in keeping with Montague (1970b)) the
structural operations of that language and the correspondence relation between its
expressions and those of ordinary English.5 For present purposes, however, no such
construction is necessary.

2 Intensional Logic

We could (as in Montague (1970a)) introduce the semantics of our fragment directly;
but it is probably more perspicuous to proceed indirectly, by (1) setting up a certain
simple artificial language, that of tensed intensional logic, (2) giving the semantics of
that language, and (3) interpreting English indirectly by showing in a rigorous way how
to translate it into the artificial language. This is the procedure we shall adopt;
accordingly, I shall now present the syntax and semantics of a tensed variant of the
intensional logic I have discussed on earlier occasions.®

Let s be a fixed object (2, say) distinct from ¢ and ¢ and not an ordered pair or triple.
Then Type, or the set of types, is the smallest set Y such that (1) ¢,r € Y, (2) whenever
ab € Y,(ab) € Y, and (3) whenever a € Y, (s5,a) € Y.

We shall employ denumerably many variables and infinitely many constants of each
type. In particular, if z is any natural number and a € Type, we understand by v, , the
n™ variable of type a, and by Con, the set of constants of type a. (The precise
cardinality of Con, need not concern us, provided only that it be infinite.)

By ME, is understood the set of meaningful expressions of type a; this notion has the
following recursive definition:

Every variable and constant of type « is in ME,.

If o € ME, and  is a variable of type &, then Auax € ME; ).

If o € ME(, ;) and § € ME,, then o(f) € ME,.

If o, f € ME,, then o = f§ € ME,.

If ¢,y € ME, and u is a variable, then ¢, [P Ay], [P V], [ — Y], [¢ < V],
Vud, Nugp, o, W, Hp € ME,.

If o € ME,, then ["a] € ME ,.

If o € ME(, ,, then ["a] € ME,.

8 Nothing is in any set ME, except as required by 1-7.”

S I N R R

~N S

By a meaningful expression of intensional logic is understood a member of UueT),pe
ME,.

If u is a variable of type a, then Auc is understood as denoting that function from
objects of type a which takes as value, for any such object x, the object denoted by «
when # is understood as denoting x. The expression o(f}) is as usual understood as
denoting the value of the function denoted by « for the argument denoted by f. The
equality symbol =, the negation symbol —, the conjunction symbol A, the disjunction
symbol v, the conditional symbol —, the biconditional symbol <, the existential
quantifier V, and the universal quantifier A are all understood in the usual way.
The symbols [], W, H may be read ‘it is necessary that,” “it will be the case that,”
‘it has been the case that,” respectively. The expression ["«] is regarded as denoting (or
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having as its extension) the intension of the expression o. The expression [o] is
meaningful only if o is an expression that denotes an intension or sense; in such a
case [“a] denotes the corresponding extension.

We could have done with a much smaller stock of primitive symbols, as in Montague
(1970b); but there is no point in considering here the relevant reductions.

In the presentation of actual expressions of intensional logic square brackets will
sometimes for perspicuity be omitted, and sometimes gratuitously inserted.

Let A, I, 7 be any sets, which we may for the moment regard as the set of entities (or
individuals®), the set of possible worlds, and the set of moments of time respectively. In
addition, let @ be a type. Then D, 4 ;, 7, or the set of possible denotations of type a
corresponding to A, I, 7, may be introduced by the following recursive definition. (If X
and Y are any sets, then as usual we understand by XY the set of all functions with
domain Y and values in X, and by X X Y the Cartesian product of X and Y (that is, the
set of all ordered pairs (x,y) such that x € X and y € Y). Further, we identify the
truth values falsehood and truth with the numbers 0 and 1 respectively.)

D, 41,7 =A,
Dy 4,17 = {0,1}, .
D(g,h),A,],] = DbaA)]’] ”"4,1’]’
D =D, 1

(sya), Ay 1,7 ay Ay 1,7

By 8., .4,1,7, or the Set of senses of type a corresponding to A, I, 7, is understood
D< >A[],thatls DaA[]

By an interpretation (or intensional model) is understood a quintuple (A4, I, 7, <, F)
such that (1) A, I, 7 are nonempty sets, (2) < is a simple (that is, linear) ordering having
¥ as its field, (3) F is a function having as its domain the set of all constants, and (4)
whenever a € Type and o € Con,, F(2) € Sy, 4,1,7-

Suppose that 2 is an interpretation having the form (A4, 7, 7, <, F). Suppose also
that g is an A-assignment (of values to variables), that is, a function having as its domain
the set of all variables and such that g(u) € D, 4,1, 7 whenever u 1s a variable of type a.
If o is a meaningful expression, we shall understand by ¢ the intension of o with
respect to U and g; and if (i,j) € I x J then « %0058 is to be the extension of
with respect to U, 4, , and g—that is, a®¢((i,j)) or the function value of the intension
of & when applied to the point of reference (7,7). These notions may be introduced by
the following recursive definition.

1 If o is a constant, then ¢ is F(a).
If o is a variable, then o758 is g(ar).

3 If x € ME, and u is a variable of type b, then [),uot]g‘)[’i’f’g is that function % with
domain D, 4 ;. 7 such that whenever x is in that domain, A(x) is ARIYY , where ¢ is
the -assignment like g except for the possible difference that g'(x) is x.

4 If o € ME,, ;y and B € ME,, then [o(B)]"> "¢ is o™sii¢(B5/¢) (that is, the
value of the functlon a*55¢ for the argument ﬂg[’ hh8),

5 Ifa, f € ME,, then [ = B]" )¢ is 1 if and only if a8 js f¥rir/¢,

6 1If ¢ € ME,, then [7¢]*>%/¢ is 1 if and only if ¢>"»¢ is 0; and similarly for

/\,\/’ —>’ .
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7 If ¢ € ME, and u is a variable of type a, then [\/uqﬁ]s‘)[”"f’g is 1, if and only if there
exists x € D, 4 7,7 such that (,b\‘)'[”"j’g’ is 1, where ¢’ is as in 3; and similarly for
Nugp.

8 If ¢ € ME,, then [[J¢]™>»/¢ is 1 if and only if ¢*>"/>¢ is 1 for all / € I and
7€ 72 (W58 is 1 if and only if ¢*»/>% is 1 for some ;' such that j < j’; and
7 # /5 and [HP]™ ¢ is 1 if and only if ¢*"/>¢ is 1 for some ;' such that /' < j
and j' #.

9 If o € ME,, then [‘o]*»/¢ is o*>¢.10

10 If o € MEy, ,, then [o]™ 558 is o™ 552((i, ).

If ¢ is a formula (that is, member of ME,), then ¢ is true with respect to 2, ¢, j if and
only if ¢ "¢ is 1 for every -assignment g.

It will be useful to call attention to some particular meaningful expressions of
intensional logic. If y € ME, , and o € ME,, then y denotes (that is, has as its
extension) a set (or really the characteristic function of a set) of objects of type 4, and
we may regard the formula y(a), which denotes truth exactly in case the object denoted
by o is a member of that set, as asserting that the object denoted by o is a member of the
set denoted by 7. If y € ME(, 1), % € ME,, and # € ME,, then y may be regarded as
denoting a (two-place) relation, and y(f, @) is to be the expression y(a)(f5), which asserts
that the objects denoted by f8 and a stand in that relation. If y € ME (, ) and
o € ME,; then y denotes a property, and y{a} is to be the expression [ y](2), which
asserts that the object denoted by o has that property. If y € ME( (, (5 1)), « € ME,
and f§ € ME,, then y may be regarded as denoting a relation-in-intension, and y{f, o} is
to be the expression [*y](f, ), which asserts that the objects denoted by f and o
stand in that relation in intension. If # is a variable of type a and ¢ a formula, then #¢ is
to be Au¢p, which denotes the set of all objects of type a that satisfy ¢ (with respect to
the place marked by u), and #¢ is to be [ ], which denotes the property of objects of
type a expressed by ¢. If o € ME,, then o* is to be ﬁ[P{AOC}], where P is

UO’ (s, ((sy€)52) )+

3 Translating English into Intensional Logic

We first introduce a mapping f from the categories of English to the types of inten-
sional logic. Accordingly, f'is to be a function having Car as its domain and such that

fle)=e,
S0 =1,
S(A/B) = f(A//B) = {{s,[(B)),f(A)) whenever A, B € Cat.

The intention is that English expressions of any category A are to translate into
expressions of type f (A).11

In all that follows let g be a fixed biunique function such that (1) the domain of g is
the set of basic expressions of our fragment of English other than be, necessarily, and
the members of By, and (2) whenever 4 € Cat, o € B4, and « is in the domain of g,
g(x) € Cong(qy. Let j, m, b, n be particular distinct members of Con,. (If we had
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introduced a definite well-ordering of the constants of intensional logic, we could at
this point have explicitly defined g, j, m, b, and n. Such details would, however, be
irrelevant to our present concerns.) Let u, v be the particular individual variables
Do, e, V1, Tespectively; x, y, x, be the particular individual-concept variables vy ( .,
U3, (s, ¢)> V2n, (s, c) Tespectively (for any natural number 7); p be the proposition variable
Vo, (s, 1)> P, O be the variables vy ((5,¢),1))5 U1, (s, ( (s, e), 1) )» Which range over properties of
individual concepts; % be the variable vy, . ((s, ((s,¢),1)),1)> Which ranges over proper-
ties of properties of individual concepts; M be the variable vy ( (., )y, Which ranges
over properties of individuals; .S be the variable vy ( (., (,1))), Which ranges over two-
place relations-in-intension between individuals; and G be the variable vy, (., r(247)))-

We shall now consider some rules of translation, T1-T17, which will be seen to
correspond to the syntactic rules S1-S17 respectively and to constitute, in a sense to be
made precise below, a definition of the translation relation.

Translation rules
Basic rules

T1. (a) If o isin the domain of g, then o translates into g(o).
(b) be translates into APxP{ [ x = "y]}.
(c) necessarily translates into p[[]7p].
(d) John, Mary, Bill, ninety translate into j*, m*, b*, n* respectively.
(e) he, translates into P P{x,}.

T2. If { € Py and { translates into (', then every ( translates into PA x['(x)
— P{x}], the { translates into 13Vy[/\ x[{'(x) < x =y AP{y}], F2() trans-
lates into D\ 2[{'(x) A P{x}].

T3. If { € Pen, ¢ € Py, and {, ¢ translate into (', ¢’ respectively, then F3_,(C, ¢)
translates into £,[{(x,) A $']."2

Rules of functional application

T4, If 6 le Pt/l‘v’ﬁ;/ Ply,and J, B translate into &, B’ respectively, then Fy(d, )
T5. i?‘g S?atlf;;l:,oﬁé /él;’;, and 9§, B translate into &', B’ respectively, then F5(J, )
Té. E"a:; S{?;?;: g/ (;?T, and 9, 8 translate into &', §’ respectively, then Fs(5, )
T7. ;¥agsfaﬁfv?it%5§( APﬁt/,)'and J, B translate into &', B respectively, then Fy(5, )
TS. Ea; S{ESV;I;:\?’ g/ (gﬂ%))l.y, and &, B translate into &', ' respectively, then F(5, )
T9. Eagsl;tgst/jg)eé /l()f,ﬁfl)l;d 5, B translate into &', B respectively, then Fy(d,ff)
T10. E_a; Seag:lsvrvt,o ﬁ/é l;)/l)v’ and &, B translate into &', B’ respectively, then F; (6, f)
translates into 0 ("f').
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Rules of conjunction and disjunction

T11. If ¢, € P and ¢, translate into ¢,/ respectively, then ¢ and i/ translates
into [¢ AY], ¢ or  translates into [¢ v /]

T12. 1Ify,6 € Py and 7, 6 translate into 7', &' respectively, then y and & translates
into &[y'(x) ' (x)],7 or J translates into Z[y(x)v &' (x)].

T13. Ifo,f € Py and o, B translate into o, ' respectively, then o or B translates into

Plo/(P) v ' (P)].

Rules of quantification

T14. If o € Py, ¢ € P, and o, ¢ translate into o, ¢ respectively, then Fio,u(2, §)
translates into o/ (%,¢").

T15. If o € Pr,{ € Pen,and o, { translate into o, (' respectively, then Fio,n(2, §)
translates into Ay (3,[{(v)]).

T16. If o € Pr, 6 € Pry,and o, translate into o, 8" respectively, then Fig_ (o, )
translates into Ay (3,[6'(v)]).

Rules of tense and sign

T17. If o € Py, € Pry,and «, J translate into o, ¢ respectively, then
Fi1(o, 8) translates into 7o/(°d'),
F1y(, 9) translates into Wo/(°5'),
Fi3(x, ) translates into "Wao/'(°5"),
Fi4(ot, 6) translates into Ho!'(8'),
Fi5(o, 6) translates into "Ho/(°d").

The precise import of the rules T1-T17 is that the translation relation may be defined
as the smallest binary relation satisfying them; that is to say, an expression ¢ is
characterized as translating into an expression ¢’ if the pair (¢, ¢') is a member of
every binary relation R such that T1-T17 hold (with the condition that one expression
translates into another replaced by the condition that the relation R holds between the
two expressions).

The translation relation is of course not a function; a meaningful expression of
English may translate into several different expressions of intensional logic. We could,
however, speak of the translation of a given meaningful expression of English corres-
ponding to any given analysis tree for that expression; the rather obvious definition of
this notion will be omitted here. The interpretations of intensional logic may, by way of
the translation relation, be made to play a second role as interpretations of English."
Not all interpretations of intensional logic, however, would be reasonable candidates
for interpretations of English. In particular, it would be reasonable in this context to
restrict attention to those interpretations of intensional logic in which the following
formulas are true (with respect to all; or equivalently some, worlds and moments of
time):
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1 Vulu = o], where o is j, m, b, or n,
O[d(x) — Vu x ="u], where J translates any member of Bey other than price or

temperature,

3 VMAxO[(x) <> M{ x}], where 0 translates any member of Byy other than rise or
change,

4 VSAAPO[(x, P) — P{pS{ x, y}}], where J translates find, lose, eat, love,
or date,

APN MAx[0(x, P) < M{ x}], where 0 translates seek or conceive,
ApVMAx[[d(x, p) < M{ x}], where 0 translates believe that or assert that,
APVMAx[[(x, P) < M{ x}], where 0 translates try to or wish to,

VGAPA Q Ax[H(P)Q)(x) — PN GICy)Q)(x)]}], where § translates in,

[ [seek(x,P) < try-to'(x,"[find’ (P)])], where seek, try-to), find’ translate
seek, try to, find respectively.

OO0 N1 &N U

The truth of (1) guarantees that proper nouns will be ‘“logically determinate”
according to the interpretations under consideration, that is, will have extensions in-
variant with respect to possible worlds and moments of time. In view of (2), “ordinary”
common nouns (for example, horse) will denote sets of constant individual concepts
(for example, the set of constant functions on worlds and moments having horses as
their values; from an intuitive viewpoint, this is no different from the set of horses). It
would be unacceptable to impose this condition on such “extraordinary” common
nouns as price or temperature; the individual concepts in their extensions would in
the most natural cases be functions whose values vary with their temporal arguments.
The truth of (3) is the natural requirement of extensionality for intransitive verbs, that
of (4) the condition of extensionality (or extensional first-order reducibility) for
transitive verbs, and that of (8) the condition of extensionality (or extensional first-
order reducibility) for prepositions. The intensional (or nonextensional) transitive verbs
seek and conceive, as well as the verbs believe that, assert that, try to, wish to of
other categories, are nevertheless extensional with respect to subject position, and this is
expressed by imposing conditions (5)—(7). Condition (9) is the natural definition of
seek as try to find.

Several notions of a logically possible interpretation may reasonably come into
consideration, depending on whether, and if so how many, conditions analogous to
(1)-(9), stemming from our intended system of translation, are to be imposed. For
present purposes we may perhaps resolve the matter as follows: by a logically possible
interpretation understand an interpretation of intensional logic in which formulas (1)—
(9) are true (with respect to all worlds and moments of time). Logical truth, logical
consequence, and logical equivalence, for formulas of intensional logic, are to be
characterized accordingly. For instance, a formula ¢ of intensional logic is construed
as logically true if it is true in every logically possible interpretation, with respect to all
worlds and moments of time of that interpretation; and two formulas ¢ and  of
intensional logic are logically equivalent if and only if the biconditional [¢p < /] is
logically true.

If 0 is an expression of intensional logic of such type as to translate a transitive or
intransitive verb, then J« is to be an expression designating the set of individuals or
relation between individuals that naturally corresponds to the set or relation designated
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by 6. In particular, if 6 € MEsqv), then dx is to be the expression #d([ u]); and
if 6 € MEs(rv), then dx is to be Avad(["u],["v*]). Notice that since f(CN) = f(IV),
this characterization is also applicable in the case in which 0 translates a common noun.

It is a consequence of principles (2), (3), (4) that if § is among the constants involved
in those principles (that is, constants translating “ordinary” common nouns or ‘“‘exten-
sional” transitive or intransitive verbs), then 0 is definable in terms of 0x. More
exactly, the following formulas are logically true (Editors’ note: The first formula
below actually holds only for Bry, not for Bey):

([d(x) <> 0%("x)],if 0 translates any member of Bey or Bry other than price, tem-
perature, rise, or change;

O[(x, P) <> P{y0%("x, y)}], if O translates any member of Bry other than seek or
conceive.

Notice that although the verb be (or its translation) is not covered by principle (4), it is
by the last principle above. The reason why the extensionality of be was not explicitly
assumed is that it can be proved. (More precisely, the analogue of (4) in which ¢ is the
expression translating be is true in all interpretations (with respect to all worlds and
moments).)

4 Examples

The virtues of the present treatment can perhaps best be appreciated by considering
particular English sentences and the precisely interpreted sentences of intensional logic
that translate them. I shall give a list of such examples. It is understood that each
English sentence listed below translates into some formula logically equivalent to each
of the one or more formulas of intensional logic listed with it, and that every formula
into which the English sentence translates is logically equivalent to one of those
formulas. It should be emphasized that this is not a matter of vague intuition, as in
elementary logic courses, but an assertion to which we have assigned exact significance
in preceding sections and which can be rigorously proved. (The constants of inten-
sional logic that translate various basic expressions of English are designated below by
primed variants of those expressions.)

The first five examples indicate that in simple extensional cases symbolizations of
the expected forms are obtained.

Bill walks : walk(b)

a man walks : Vu[man (x) » walk (x)]

every man walks : Au[man (1) — walkk(«)]

the man walks : Vo Au[[mank(x) < u = v] A walkl(v)]
John finds a unicorn : Vu [unicornk () A find (7, u)]

The next sentence, though superficially like the last, is ambiguous and has two
essentially different symbolizations corresponding to the two analysis trees presented
above; the first gives the de dicto reading; and the second the de re.
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John seeks a unicorn :{ seek/(?, P\/z/t[unicorn%(u? rPut)
Vu[unicorny (u) A seeks (7, u)]

The source of the ambiguity of John seeks a unicorn will perhaps be clarified if we
compare that sentence with the intuitively synonymous John tries to find a unicorn,
which contains no intensional verbs but only the extensional verb find and the
“higher-order” verb try to. Here, though perhaps not in John seeks a unicorn, the
ambiguity is clearly a matter of scope, and indeed depends on the possibility of
regarding either the component find a unicorn or the whole sentence as the scope
of the existential quantification indicated by a unicorn.

) ) try-to’(*, y Vu[unicorn(u) A findk("y, u)])
John tries to find a unicorn :{ Va[unicorns(u) » try-to' (7,  find(‘y, )]

It might be suggested, as in Quine (1960) or Montague (1969), that intensional verbs
be allowed only as paraphrases of more tractable locutions (such as try to find).'*
Such a proposal, however, would not be naturally applicable, for want of a paraphrase,
to such intensional verbs as conceive and such intensional prepositions as about;
and I regard it as one of the principal virtues of the present treatment, as well as the one
in Montague (1970b), that it enables us to deal directly with intensional locutions. The
next example accordingly concerns about and gives us, as intuition demands, one
reading of John talks about a unicorn that does not entail that there are unicorns.

. about’(PVu[unicorn(u) n P{"u}])("talk’)(/)
John talks about a unicorn { Va[unicorn, (u) » about'("u*)("talk')( )]
The next two examples indicate that our uniform symbolization of be will ad-
equately cover both the is of identity and the is of predication; views along this line,
though not the rather complicated analysis of be given here, may be found in Quine

(1960).

Bill is Mary:b =m
Bill is a man : man ()

The next few examples concern an interesting puzzle due to Barbara Hall Partee
involving a kind of intensionality not previously observed by philosophers. From the
premises the temperature is ninety and the temperature rises, the conclusion
ninety rises would appear to follow by normal principles of logic; yet there are
occasions on which both premises are true, but none on which the conclusion is.
According to the following symbolizations, however, the argument in question turns
out not to be valid. (The reason, speaking very loosely, is this. The temperature
“denotes” an individual concept, not an individual; and rise, unlike most verbs,
depends for its applicability on the full behavior of individual concepts, not just on
their extensions with respect to the actual world and (what is more relevant here)
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moment of time. Yet the sentence the temperature is ninety asserts the identity not
of two individual concepts but only of their extensions.)

the temperature is ninety : Vy[A «[temperature’(x) < x = y|A[y] = n]
the temperature rises: Vy[A x[temperature/(x) <> x = y| rrise( )]
ninety rises : rise'("n)

We thus see the virtue of having intransitive verbs and common nouns denote sets of
individual concepts rather than sets of individuals — a consequence of our general
development that might at first appear awkward and unnatural. It would be possible to
treat the Partee argument itself without introducing this feature, but not certain
analogous arguments involving indefinite rather than definite terms. Notice, for in-
stance, that a price rises and every price is a number must not be allowed to entail
a number rises. Indeed they do not according to our treatment; to see this, perhaps it
is enough to consider the first premise, which, unlike a man walks, requires individ-
ual-concept variables (and not simply individual variables) for its symbolization.

a price rises :\Vx[price’(v) A rise’(x)]

The next example shows that ambiguity can arise even when there is no element of
intensionality, simply because quantifying terms may be introduced in more than one
order.

Vu[womank(u) » Av[mank(v) — lovek(u, v)]]
a woman loves every man : / ) .
Av[many(v) — Vu[womany(u) A lovex(u, v)]]

The next example indicates the necessity of allowing verb phrases as well as
sentences to be conjoined and quantified. Without such provisions the sentence John
wishes to find a unicorn and eat it would (unacceptably, as several linguists have
pointed out in connection with parallel examples) have only a “referential”’ reading,
that is, one that entails that there are unicorns.

John wishes to find a unicorn and eat it:
Vu[unicorn (u) n wish-to' (7, y[find%("y, ) A eatl("y, u)])]

wish-to' ("}, yVu[unicornk (u) A find%(“y, u) A eatk("y, u)])

The next example is somewhat simpler, in that it does not involve conjoining or
quantifying verb phrases; but it also illustrates the possibility of a nonreferential
reading in the presence of a pronoun.

Mary believes that John finds a unicorn and he eats it:
Vu[unicorn(u) A believe-that'("m, [findk(}, u) » eats(}, u)])]

believe-that'("m, "Vu[unicornk(u) A findk(/, u) » eati(, u)])
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On the other hand, in each of the following examples only one reading is possible,
and that the referential:

(1) John seeks a unicorn and Mary seeks it,
(2) John tries to find a unicorn and wishes to eat it,
Vu[unicorn(x) A try-to’ ("7, 7 [findk("y, u)]) n wish-to'(7, j [eats ( 7y, )])]

This is, according to my intuitions (and, if I guess correctly from remarks in Partee
(1970), those of Barbara Partee as well), as it should be; but David Kaplan would differ,
at least as to (2). Let him, however, and those who might sympathize with him consider
the following variant of (2) and attempt to make nonreferential sense of it:

(2') John wishes to find a unicorn and tries to eat it.

Of course there are other uses of pronouns than the ones treated in this paper — for
instance, their use as what have been called in Geach (1962, 1967) and Partee (1970)
pronouns of laziness, that is, as “‘standing for” longer terms bearing a somewhat indefin-
ite relation to other expressions in the sentence in question (or preceding sentences
within the discourse in question). For instance, it is not impossible to construe it in (2)
as standing for the unicorn he finds (that is, the unicorn such that he finds it), a
unicorn he finds, or every unicorn he finds, and in this way to obtain a nonrefer-
ential reading of that sentence; but this is not a reading with which David Kaplan
would be content.

Notes

Much of the content reported here was supported by United States National Science Foundation
Grant GS-2785. I am indebted to Mr. Michael Bennett, Mr. Harry Deutsch, and Mr. Daniel Gallin
for helpful comments.

1 The medieval and twentieth-century philosophical literature has pointed out a number of such
difficulties, most of them involving so-called intensional contexts. I am indebted to Barbara Hall
Partee for pointing out others, both in conversation and in her provocative paper Partee (1970).
(This remark should not, however, be taken as implying agreement with any of Professor Partee’s
conclusions.)

2 With the exception that in Montague (1970b) a number of intuitively plausible ambiguities were
for simplicity ruled out.

3 In connection with imperatives and interrogatives truth and entailment conditions are of course
inappropriate, and would be replaced by fulfilment conditions and a characterization of the
semantic content of a correct answer.

4 It was perhaps the failure to pursue the possibility of syntactically splitting categories originally
conceived in semantic terms that accounts for the fact that Ajdukiewicz’s proposals have not
previously led to a successful syntax. They have, however, been employed semantically in
Montague (1970a) and, in a modified version, in Lewis (1970).

5 This way of constructing an underlying unambiguous language, though convenient here, would
be unsuitable in connection with fragments of natural language exhibiting greater syntactical
complexities of certain sorts.
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6 In particular, in talks before the Southern California Logic Colloquium and the Association for
Symbolic Logic in April and May of 1969, and in the paper Montague (1970b). The addition of
tenses is rather routine in the light of the discussion in Montague (1968); and it would be
possible to replace the tense operators by predicates, thus preserving exactly the language in
Montague (1970b), in the manner indicated in Montague (1970c).

7 Clause (8) is of course vague but can be eliminated in a familiar way. To be exact, the recursive
definition given above can be replaced by the following explicit definition: ME, is the set of all
objects o such that oRa, where R is the smallest relation such that clauses (1)—(7) hold (with all
parts of the form “f € ME,” replaced by “fRa”).

8 Or possible individuals. If there are individuals that are only possible but not actual, A is to
contain them; but this is an issue on which it would be unethical for me as a logician (or linguist
or grammarian or semanticist, for that matter) to take a stand.

9 [Richmond H. Thomason’s note: Here, [] is interpreted in the sense of ‘“‘necessarily always.”]

10 [Richmond H. Thomason’s note: The form of this definition is not quite correct, since a8 is
undefined when o is not a constant. But the intention is clear; what is to be defined recursively is
a¥s555¢ Clauses (1) and (9) should be revised to read as follows.

1 If ais a constant then a?l’f’j’g is F(a)({i,7))-
9 If « € ME, then [Aoc]m”’/’g is that function % with domain 7/ X 7 such that whenever

<l’j> el X], h((l,]>) = gg[’i»],é’.
The intension o2¢ of o relative to 2 and g is then defined explicitly:

h¢ is that function 4 with domain I x ¥ such that whenever (i,7) € I x J, h((i,7)) = a5,
It then follows as a corollary that ["o]®> /¢ = o8 for all Ly elIxj.]

11 The simplicity and uniformity of the present correspondence stands in remarkable contrast to
the ad hoc character of the type assignment in Montague (1970b).

12 [Richmond H. Thomason’s note: To avoid collision of variables, the translation must be
FmlC () A1, where W is the result of replacing all occurrences of x, in @' by occurrences of
x,,, where m is the least even number such that x,, has no occurrences in either {' or ¢'.]

13 Alternatives are possible. For instance, we could instead consider direct interpretations of English
induced by interpretations of intensional logic in conjunction with our translation procedure; the
precise general construction is given in Montague (1970b). Though this would probably be the
best approach from a general viewpoint, it would introduce slight complications that need not be
considered in the present paper.

14 Strictly speaking, this would mean, within the framework of the present paper, introducing a
syntactic operation F such that, for example, F' (John tries to find a unicorn) = John seeks a
unicorn, a syntactic rule to the effect that F(¢) € P, whenever ¢ € P,, and a corresponding
translation rule that whenever ¢ € P, and ¢ translates into ¢’, F(¢) translates into ¢'.

Notes 9, 10, and 12 are reproduced by permission of Yale University Press from Richard Montague,
Formal Philosophy. Selected Papers of Richard Montague, edited and with an introduction by
Richmond H. Thomason. New Haven, Conn.: Yale University Press, 1974.
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