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Risk measurement has preoccupied financial market participants
since the dawn of financial history. However, many past attempts have
proven to be impractically complex. For example, upon its introduc-
tion, Harry Markowitz’s Nobel prize-winning theory of portfolio risk
measurement was not adopted in practice because of its onerous data
requirements.’ Indeed, it was Bill Sharpe who, along with others,”> made
portfolio theory the standard of financial risk measurement in real world
applications through the adoption of the simplifying assumption that
all risk could be decomposed into two parts: systematic, market risk
and the residual, company-specific or idiosyncratic risk. The resulting
Capital Asset Pricing Model theorized that since only undiversifiable
market risk is relevant for securities pricing, only the market risk meas-
urement B is necessary, thereby considerably reducing the required
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data inputs. This model yielded a readily measurable estimate of risk
that could be practically applied in a real time market environment. The
only problem was that B proved to have only a tenuous connection
to actual security returns, thereby casting doubts on B’s designation
as the true risk measure.’

With B questioned, and with asset prcing in general being at a bit
of a disarray with respect to whether the notion of “priced risk” is really
relevant, market practitioners searched for a replacement risk mea-
sure that was both accurate and relatively inexpensive to estimate.
Despite the consideration of many other measures and models, Value
at Risk (VaR) has been widely adopted. Part of the reason leading
to the widespread adoption of VaR was the decision of JP Morgan to
create a transparent VaR measurement model, called RiskMetrics.™
RiskMetrics™ was supported by a publicly available database containing
the critical inputs required to estimate the model.*

Another reason behind the widespread adoption of VaR was the intro-
duction in 1998° by the Bank for International Settlements (BIS)
of international bank capital requirements that allowed relatively
sophisticated banks to calculate their capital requirements based on
their own internal modes such as VaR. In this chapter, we introduce
the basic concept of VaR as a measurement tool for market risk. In
later chapters, we apply the VaR concept to the measurement of credit
risk and operational risk exposures.

1.1 ECONOMICS UNDERLYING VaR MEASUREMENT

Financial institutions are specialists in risk management. Indeed, their
primary expertise stems from their ability to both measure and man-
age risk exposure on their own behalf and on behalf of their clients
— either through the evolution of financial market products to shift
risks or through the absorption of their clients’ risk onto their own
balance sheets. Because financial institutions are risk intermediaries,
they maintain an inventory of risk that must be measured carefully
so as to ensure that the risk exposure does not threaten the inter-
mediary’s solvency. Thus, accurate measurement of risk is an essential
first step for proper risk management, and financial intermediaries,
because of the nature of their business, tend to be leading developers
of new risk measurement techniques. In the past, many of these mod-
els were internal models, developed in-house by financial institutions.
Internal models were used for risk management in its truest sense.
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Indeed, the VaR tool is complementary to many other internal risk
measures — such as RAROC developed by Bankers Trust in the 1970s.¢
However, market forces during the late 1990s created conditions that
led to the evolution of VaR as a dominant risk measurement tool for
financial firms.

The US financial environment during the 1990s was characterized
by the de jure separation of commercial banking and investment bank-
ing that dated back to the Glass Steagall Act of 1933.” However, these
restrictions were undermined in practice by Section 20 affiliates (that
permitted commercial bank holding companies to engage in investment
banking activities up to certain limits), mergers between investment
and commercial banks, and commercial bank sales of some “insurance”
products, especially annuities. Thus, commercial banks competed
with investment banks and insurance companies to offer financial
services to clients in an environment characterized by globalization,
enhanced risk exposure, and rapidly evolving securities and market
procedures. Concerned about the impact of the increasing risk envir-
onment on the safety and soundness of the banking system, bank
regulators instituted (in 1992) risk-adjusted bank capital require-
ments that levied a capital charge for both on- and off-balance sheet
credit risk exposures.®

Risk-adjusted capital requirements initially applied only to commercial
banks, although insurance companies’ and securities firms had to
comply with their own reserve and haircut regulations as well as
with market forces that demanded capital cushions against insolvency
based on economic model-based measures of exposure — so called eco-
nomic capital. Among other shortcomings of the BIS capital require-
ments were their neglect of diversification benefits, in measuring a
bank’s risk exposure. Thus, regulatory capital requirements tended
to be higher than economically necessary, thereby undermining com-
mercial banks’ competitive position vis-a-vis largely unregulated
investment banks. To compete with other financial institutions, com-
mercial banks had the incentive to track economic capital requirements
more closely notwithstanding their need to meet regulatory capital
requirements. The more competitive the commercial bank was in
providing investment banking activities, for example, the greater its
incentive to increase its potential profitability by increasing leverage
and reducing its capital reserves.

JP Morgan (now JP Morgan Chase) was one of a handful of
globally diversified commercial banks that were in a special position
relative to the commercial banking sector on the one hand and the
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investment banking sector on the other. These banks were caught in
between, in a way. On the one hand, from an economic perspective,
these banks could be thought of more as investment banks than as
commercial banks, with large market risks due to trading activities, as
well as advisory and other corporate finance activities. On the other
hand this group of globally diversified commercial banks were hold-
ing a commercial banking license, and, hence, were subject to com-
mercial bank capital adequacy requirements. This special position
gave these banks, JP Morgan being a particular example, a strong incent-
ive to come out with an initiative to remedy the capital adequacy prob-
lems that they faced. Specifically, the capital requirements for market
risk in place were not representative of true economic risk, due to
their limited account of the diversification effect. At the same time
competing financial institutions, in particular, investment banks such
as Merrill Lynch, Goldman Sachs, and Salomon Brothers, were not
subject to bank capital adequacy requirements. As such, the capital
they held for market risk was determined more by economic and
investor considerations than by regulatory requirements. This allowed
these institutions to bolster significantly more impressive ratios such
as return on equity (ROE) and return on assets (ROA) compared with
banks with a banking charter.

In response to the above pressures, JP Morgan took the initiative
to develop an open architecture (rather than in-house) methodology,
called RiskMetrics. RiskMetrics quickly became the industry benchmark
in risk measurement. The publication of RiskMetrics was a pivotal step
moving regulators toward adopting economic capital-based models
in measuring a bank’s capital adequacy. Indeed, bank regulators
worldwide allowed (sophisticated) commercial banks to measure
their market risk exposures using internal models that were often VaR-
based. The market risk amendments to the Basel accord made in-house
risk measurement models a mainstay in the financial sector. Financial
institutions worldwide moved forward with this new approach and
never looked back.

1.1.1  What is VaR?

It was Dennis Weatherstone, at the time the Chairman of JP Morgan,
who clearly stated the basic question that is the basis for VaR as we
know it today — “how much can we lose on our trading portfolio by
tomorrow’s close?” Note that this is a risk measurement, not a risk
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management question. Also, it is not concerned with obtaining a
portfolio position to maximize the profitability of the bank’s traded
portfolio subject to a risk constraint, or any other optimization ques-
tion. Instead, this is a pure question of risk measurement.

There are two approaches to answering Weatherstone’s question.
The first is a probabilistic/statistical approach that is the focus of the
VaR measure. To put the VaR approach into perspective, we briefly
consider the alternative approach — an event-driven, non-quantitative,
subjective approach, which calculates the impact on the portfolio value
of a scenario or a set of scenarios that reflect what is considered “adverse
circumstances.”"

As an example of the scenario approach, consider a specific ex-
ample. Suppose you hold a $1 million portfolio of stocks tracking the
S&P 500 index. For the purpose of our discussion we may assume that
the tracking is perfect, i.e., there is no issue of tracking error. To address
the question of how much this portfolio could lose on a “bad day,”
one could specify a particular bad day in history — say the October
1987 stock market crash during which the market declined 22 per-
cent in one day. This would result in a $220,000 daily amount at risk
for the portfolio if such an adverse scenario were to recur.

This risk measure raises as many questions as it answers. For
instance, how likely is an October 1987-level risk event to recur? Is the
October 1987 risk event the most appropriate risk scenario to use?
Is it possible that other historical “bad days” should instead be used as
the appropriate risk scenario? Moreover, have fundamental changes
in global trading activity in the wake of October 1987 made the mag-
nitude of a recurrence of the crash even larger, or, instead, has the
installation of various circuit-breaker systems made the possibility of
the recurrence of such a rare adverse event even smaller? In chapter 3,
we discuss how these questions may be answered in implementing
scenario analysis to perform stress testing of VaR-based risk measure-
ment systems.

In contrast to the scenario approach, VaR takes a statistical or prob-
abilistic approach to answering Mr. Weatherstone’s question of how
much could be lost on a “bad day.” That is, we define a “bad day” in
a statistical sense, such that there is only an x percent probability that
daily losses will exceed this amount given a distribution of all possible
daily returns over some recent past period. That is, we define a “bad
day” so that there is only an x percent probability of an even worse day.

In order to more formally derive VaR, we must first define some
notation. Since VaR is a probabilistic value the 1 percent VaR (or
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VaR calculated on the basis of the worst day in 100 days) will yield
a different answer than the 5 percent VaR (calculated on the basis of
the worst day in 20 days). We denote a 1 percent VaR as VaR,.,, a 5
percent VaR as VaRs,,, etc. VaR,,, denotes a daily loss that will be equaled
or exceeded only 1 percent of the time. Putting it slightly differently,
there is a 99 percent chance that tomorrow’s daily portfolio value
will exceed today’s value less the VaR,,,. Similarly, VaRs., denotes the
minimum daily loss that will be equaled or exceeded only 5 percent
of the time, such that tomorrow’s daily losses will be less than VaRs.,
with a 95 percent probability. The important practical question is how
do we calculate these VaR measures?

1.1.2 Calculating VaR

Consider again the example used in the previous section of a $1 mil-
lion equity portfolio that tracks the S&P 500 index. Suppose that daily
returns on the S&P 500 index are normally distributed with a mean
of 0 percent per day and a 100 basis point per day standard devia-
tion. Weatherstone’s question is how risky is this position, or, more
specifically, how much can we lose on this position by tomorrow’s
market close?

To answer the question, recall first the basic properties of the nor-
mal distribution. The normal distribution is fully defined by two
parameters: U (the mean) and ¢ (the standard deviation). Figure 1.1
shows the shape of the normal probability density function. The
cumulative distribution tells us the area under the standard normal
density between various points on the X-axis. For example, there is

0.135

STDEV

Figure 1.1 The normal probability distribution
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Table 1.1 Normal distribution cumulative probabilities for commonly used
VaR percentiles

Prob(X < 2) 0.1% 0.5% 1.0% 2.5% 5.0% 10%
z -3.090 -2.576 -2.326 -1.960 —-1.645 -1.282
VaR $30,900 $25,760 $23,260 $19,600 $16,450 $12,820

a 47.5 percent probability that an observation drawn from the normal
distribution will lie between the mean and two standard deviations
below the mean. Table 1.1 shows the probability cutoffs for the normal
distribution using commonly used VaR percentiles.'!

Reading table 1.1 is simple. Given that X is a standard normal
random variable (with mean zero and standard deviation one) then,
for example, Prob(X < —1.645) = 5.0 percent. Stated more generally,
for any normally distributed random variable, there is a 5 percent chance
that an observation will be less than 1.645 standard deviations below
the mean. Returning to our equity portfolio example, the daily
fluctuations in the S&P 500 index are assumed to be normally distri-
buted with a zero mean and a standard deviation of 100 bp. Using
the properties of the normal distribution shown in table 1.1, there is
a 5 percent chance that the S&P 500 will decline tomorrow by more
than 1.645 x 100 bp = 1.645 percent. Based on the $1 million equity
portfolio in the example, this represents a minimum daily loss of $16,450
(0.01645 x $1 million), which will be exceeded only 5 percent of the
time. Thus, the equity portfolio’s VaRs,, = $16,450. That is, there is a
5 percent chance that daily losses on the S&P 500-linked equity port-
folio will equal or exceed $16,450. Alternatively, we could say that
our portfolio has a 95 percent chance of being worth $983,550 or more
($1,000,000 — $16,450) tomorrow. Using table 1.1, we can compute
other VaR measures. For example, VaR,, = $23,260 (2.326 x 0.01 x
$1 million), and so on, as shown in table 1.1. We can define VaR for
whatever risk level (or confidence level) is deemed appropriate.

We have thus far considered only daily VaR measures. However,
we might want to calculate the VaR over a period of time — say a week,
a month or a year. This can be done using the daily VaR model and
the “square root rule.”'? The rule states that the J-day VaR is \J x (daily
VaR). Thus, the one week (5 business days) VaRs., for the equity port-
folio example is V5 X $16,450 = $36,783. Similarly, the annual (using
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250 days as the number of trading days in a year) VaRs,, for the equity
portfolio example is V250 — $16,450 = $260,097; that is, there is a
5 percent probability that the equity portfolio will lose $260,097 or
more (or a 95 percent likelihood that the portfolio will be worth
$739,903 or more) by the end of one year.

VaR can be calculated on either a dollar or a percentage basis. Up until
this point, we have calculated the dollar VaR directly by examining
the probability distribution of dollar losses. Alternatively, we could have
calculated the percentage VaR by examining the probability distribution
of percentage losses as represented by the distribution’s standard devia-
tion. For example, consider the weekly VaR.,, computed as $36,783 for
the equity portfolio example. If instead of calculating the 5 day dollar
VaRs,,, the 5 day standard deviation of S&P 500 index returns were
instead computed, we would obtain 100 bp x V5 = 2.23607 percent.
Calculating the 5 day percentage VaRs,, we obtain 1.645 X 2.23607 =
3.6783 percent. This states that there is a 5 percent probability that the
S&P 500-linked equity portfolio’s value will decline by 3.6783 percent
or more over the next week. Given a $1 million portfolio value, this
translates into a $36,783 ($1m X 0.036783) dollar VaRs.,.

To be widely adopted as a risk measure, VaR certainly appears to
satisfy the condition that it be easy to estimate. However, does it
satisfy the other condition — that VaR is an accurate risk measure? The
answer to that question hinges on the accuracy of the many assump-
tions that allow the easy calculation of VaR. Unfortunately, it is often
the case that the simplicity of the VaR measures used to analyze the
risk of the equity portfolio, for example, is in large part obtained with
assumptions not supported by empirical evidence. The most import-
ant (and most problematic) of these assumptions is that daily equity
returns are normally distributed. As we examine these (and other)
assumptions in greater depth, we will find a tradeoff between the accur-
acy of assumptions and ease of calculation, such that greater accuracy
is often accompanied by greater complexity.

1.1.3 The assumptions behind VaR calculations

There are several statistical assumptions that must be made in order
to make VaR calculations tractable. First, we consider the stationarity
requirement. That is, a 1 percent fluctuation in returns is equally likely
to occur at any point in time. Stationarity is a common assumption
in financial economics, because it simplifies computations considerably.
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A related assumption is the random walk assumption of intertem-
poral unpredictability. That is, day-to-day fluctuations in returns are
independent; thus, a decline in the S&P 500 index on one day of x
percent has no predictive power regarding returns on the S&P 500 index
on the next day. Equivalently, the random walk assumption can be
represented as the assumption of an expected rate of return equal to
zero, as in the equity portfolio example. That is, if the mean daily return
is zero, then the best guess estimate of tomorrow’s price level (e.g.,
the level of the S&P 500 index) is today’s level. There is no relevant
information available at time ¢ that could help forecast prices at time
t+ 1.

Another straightforward assumption is the non-negativity require-
ment, which stipulates that financial assets with limited liability cannot
attain negative values.'> However, derivatives (e.g., forwards, futures,
and swaps) can violate this assumption. The time consistency requirement
states that all single period assumptions hold over the multiperiod time
horizon.

The most important assumption is the distributional assumption. In
the simple equity portfolio example, we assumed that daily return fluctu-
ations in the S&P 500 index follow a normal distribution with a mean
of zero and a standard deviation of 100 bp. We should examine the
accuracy of each of these three assumptions. First, the assumption of
a zero mean is clearly debatable, since at the very least we know that
equity prices, in the particular case of the S&P 500, have a positive
expected return — the risk free rate plus a market risk premium.'* To
calibrate the numbers for this non-zero mean return case, let us
assume a mean risk free rate of 4 percent p.a. and a risk premium of
6 percent p.a. A total expected return, hence, of 10 percent p.a. trans-
lates into a mean return of approximately four basis points per day
(i.e., 1000 bp/250 days = 4 bp/day). Hence, an alternative assumption
could have been that asset returns are normally distributed with a mean
return of four basis points per day rather than zero basis points per
day. As we shall see later, this is not a critical assumption materially
impacting overall VaR calculations.

Similarly, the assumption of a 100 bp daily standard deviation can
be questioned. Linking daily volatility to annual volatility using the
“square root rule” we can see that this is equivalent to assuming an
annualized standard deviation of 15.8 percent p.a. for the S&P 500
index. The “square root rule” states that under standard assumptions, "
the J-period volatility is equal to the one period volatility inflated by
the square root of J. Here for example, the daily volatility is assumed
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to be 1 percent per day. Assuming 250 trading days in a year gives
us an annual volatility of 1 percent/day x V250 = 15.8 percent p.a.
Historically, this is approximately the observed order of magnitude for
the volatility of well-diversified equity portfolios or wide-coverage indices
in well-developed countries.'®

The most questionable assumption, however, is that of normality
because evidence shows that most securities prices are not normally
distributed.'” Despite this, the assumption that continuously com-
pounded returns are normally distributed is, in fact, a standard
assumption in finance. Recall that the very basic assumption of the
Black—Scholes option pricing model is that asset returns follow a
log-normal diffusion. This assumption is the key to the elegance and
simplicity of the Black—Scholes option pricing formula. The instantane-
ous volatility of asset returns is always multiplied by the square root
of time in the Black-Scholes formula. Under the model’s normality
assumption, returns at any horizon are always independent and
identically normally distributed; the scale is just the square root of the
volatility. All that matters is the “volatility-to-maturity.” Similarly, this
is also the case (as shown earlier in section 1.1.2) for VaR at various
horizons.

1.1.4 Inputs into VaR calculations

VaR calculations require assumptions about the possible future values
of the portfolio some time in the future. There are at least three ways
to calculate a rate of return from period ¢ to t + 1:

e absolute change AS, i1 =S — S (1.1)

e simple return R, = (S1— 80)1s, (1.2)
(or 1+ Ry =5811/5)

e continuously compounded return r,,,, = In(s,,,/s,). (1.3)

Which computational method is the right one to choose? Let us
examine which of these methods conforms to the assumptions dis-
cussed in section 1.1.3.

Calculating returns using the absolute change method violates
the stationarity requirement. Consider, for example, using historical
exchange rate data for the dollar-yen exchange rate through periods
when this rate was as high as ¥200/$ or as low as ¥80/$. Do we believe
that a change of ¥2 is as likely to occur at ¥200/$ as it is at ¥80/$?
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Probably not. A more accurate description of exchange rate changes
would be that a 1 percent change is about as likely at all times than
a Y1 change.'®

The simple return as a measure of the change in the underlying
factor, while satisfying the stationarity requirement, does not comply
with the time consistency requirement. In contrast, however, using
continuously compounded returns does satisfy the time consistency
requirement. To see this, consider first the two period return defined
as simple return, expressed as follows:

I+ Rr,z+2 =(1+ Rt,r+l)(1 + Rr+1,r+2)-

Assume that the single period returns, 1 + R,,,, and 1 + R, ,,,, are
normally distributed. What is the distribution of the two period
return 1 + R,,,,? There is little we can say analytically in closed form
on the distribution of a product of two normal random variables.

The opposite is true for the case of the two period continuously
compounded return. The two period return is just the sum of the two
single period returns:

Ties2 = Toen T T 042e

Assume again that the single period returns, r,,,, and r,,, ,,,, are norm-
ally distributed. What is the distribution of the two period return?
This distribution, the sum of two normals, does have a closed form
solution. The sum of two random variables that are jointly normally
distributed is itself normally distributed, and the mean and standard
deviation of the sum can be derived easily. Thus, in general, through-
out this book we will utilize the continuously compounded rate of return
to represent financial market price fluctuations.

The mathematics of continuously compounded rates of return can
be used to understand the “square root rule” utilized in section 1.1.2
to calculate multiperiod, long horizon VaR. Suppose that the com-
pounded rate of return is normally distributed as follows:

Totvtr Tranee2 ™ N(H, 62)'

For simplicity, assume a zero mean (|1 = 0) and constant volatility over
time. In addition, assume that the two returns have zero correlation;
that is, returns are not autocorrelated. The importance of these
assumptions will be discussed in detail in chapter 2. The long horizon
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(here, for simplicity, two period) rate of return is r,,,, (the sum of r,
and 7, ,,,) is normally distributed with a mean of zero (the sum of
the two zero mean returns) and a variance which is just the sum
of the variances,'” which is 26% Hence, the two period continuously
compunded return has a standard deviation which is V(262) = oV2.
More generally, the J-period return is normal, with zero mean, and
a variance which is J times the single period variance:

Vs = T T T2 oo ot Ty ~ N(O, J02)~ (1.4)

This provides us with a direct link between the single period distribu-
tion and the multiperiod distribution. If continuously compounded
returns are assumed normal with zero mean and constant volatility,
then the J-period return is also normal, with zero mean, and a stand-
ard deviation which is the square root of J times the single period
standard deviation. To obtain the probability of long horizon tail
events all we need to do is precisely what we did before — look up the
percentiles of the standard normal distribution. Thus, using the above
result, the VaR of the J-period return is just VJ times the single period
VaR.

There is one exception to the generalization that we should use con-
tinuously compounded rates of return rather than absolute changes
in the level of a given index to measure VaR. The exception is with
all interest rate related variables, such as zero coupon rates, yields to
maturity, swap spreads, Brady strip spreads, credit spreads, etc. When
we measure the rate of change of various interest rates for VaR cal-
culations, we measure the rate of absolute change in the underlying
variable as follows:

Ay =l — Ly

That is, we usually measure the change in terms of absolute basis point
change. For example, if the spread between the yield on a portfolio
of corporates of a certain grade and US Treasuries of similar maturity
(or duration) widened from 200 to 210 basis points, we measure a 10
basis point change in what is called the “quality spread.” A decline in
three month zero rates from 5.25 percent annualized to 5.10 percent
p.a., would be measured as a change of Ai,,,, = —-15 bp.

Calculating VaR from unanticipated fluctuations in interest rates adds
an additional complication to the analysis. Standard VaR calculations
must be adjusted to account for the effect of duration (denoted D),
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i.e. the fact that a 1 percent move in the risk factor (interest rates)
does not necessarily mean a 1 percent move in the position’s value,
but rather a —D percent fluctuation in value. That is:

1 bp move in rates — —D bp move in bond value. (1.5)

To illustrate this, consider a $1 million corporate bond portfolio with
a duration (D) of 10 years and a daily standard deviation of returns
equal to 9 basis points. This implies a VaRs,, = 1.645 X .0009 x 10 x $1
million = $14,805. However, in general, simply incorporating dura-
tion into the VaR calculation as either a magnification or shrinkage
factor raises some non-trivial issues. For example, VaR calculations must
take into account the convexity effect — that is, duration is not constant
at different interest rate levels. This and other issues will be discussed
in Chapter 3 when we consider the VaR of nonlinear derivatives.

1.2 DIVERSIFICATION AND VaR

It is well known that risks can be reduced by diversifying across assets
that are imperfectly correlated. Indeed, it was bank regulators’” neglect
of the benefits of diversification in setting capital requirements that
motivated much of the innovation that led to the widespread adop-
tion of VaR measurement techniques. We first illustrate the impact
of diversification on VaR using a simple example and then proceed to
the general specification.
Consider a position in two assets:

e Jong $100 million worth of British pound sterling (GBPs);
e short $100 million worth of Euros.

This position could be thought of as a “spread trade” or a “relative
value” position®® that represents a bet on a rise in the British pound
(GBP) relative to the Euro. In order to determine the risk of this posi-
tion, we must make some assumptions. First, assume that returns are
normally distributed with a mean of zero and a daily standard devia-
tion of 80 basis points for the Euro and 70 basis points for the GBP.
The percentage VaRs., of each position can be calculated easily. For
the Euro position a 1.645 standard deviation move is equivalent to a
move of 1.645 x 80 = 132 bp, and for the GBP a 1.645 standard
devation move is equivalent to a move of 1.645 x 70 = 115 bp. Thus,
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the dollar VaRs., of the positions are, $1.32 million for the Euro posi-
tion ($100m x 0.0132) and $1.15 million for the GBP position
($100m x 0.0115).

What is the risk of the entire portfolio, however? Total risk, with-
out accounting for the effect of diversification, could be thought of
as the summation of each position’s VaR: $1.32m + $1.15m = $2.41
million. However, this summation does not represent an economic
measure because risks are not additive. Intuitively, the likelihood of
losing money on both parts of this position are slim. This is because
the correlation between the $/Euro rate and the $/GBP rate is likely
to be fairly high and because the two opposite positions (one long and
one short) act as a hedge for one another. With a relatively high
correlation between the two risk factors, namely, the $/Euro rate and
the $/GBP rate, the most statistically likely event is to see gains on
one part of the trade being offset by losses on the other. If the long
GBP position is making money, for example, then it is likely that the
short position in the Euro is losing money. This is, in fact, precisely
the nature of spread trades.

For the purpose of this example, we shall assume a correlation of
0.8 between the $/GBP and the $/Euro rates. This correlation is con-
sistent with evidence obtained by examining historical correlations
in the exchange rates over time. What is the VaRs,, for the entire
foreign currency portfolio in this example?

To derive the formula for calculation of the VaR of a portfolio, we
use results from standard portfolio theory. The continuous return on
a two-asset portfolio can be written as follows:

r,=wr+ (I —w)r, (1.6)

where w represents the weight of the first asset and (1 — w) is the
fraction of the portfolio invested in the second asset.”’ The variance
of the portfolio is:

6; = w'oi + (1 — w)’c3 + 2w(l — w)o,,, (1.7)

where 6;, 61 and o3 are the variances on the portfolio, asset 1 and
asset 2, respectively and o, , is the covariance between asset 1 and 2
returns. Restating equation (1.7) in terms of standard deviation
(recall that o, , = p,,0,0,) results in:

6,=V{w?o? + (1 — w)’63 + 2w(l — w)p,,6,6 ,}, (1.8)
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where p,, is the correlation between assets 1 and 2. However, the
percentage VaRs,, can be stated as 1.6456,. Moreover, the 5 percent
percentage VaR for asset 1 (asset 2) can be denoted as %VaR,
(%VaR,) and can be expressed as 1.6456, (1.645G ,). Substituting the
expressions for %VaR, %VaR, and %VaR, into equation (1.8) and
multiplying both sides by 1.645 yields the portfolio’s percentage VaR
as follows:

%VaR, = N{w*%VaR? + (1 — w)>%VaR}3
+ 2w(1 — w)p,,%VaR,%VaR,}. (1.9)

Equation (1.9) represents the formula for the percentage VaR for a
portiolio consisting of two assets.”> However, equation (1.9) is not
directly applicable to our spread trade example because it is a zero invest-
ment strategy and therefore the weights are undefined. Thus, we can
restate equation (1.9) in terms of the dollar VaR. To do that, note that
the dollar VaR is simply the percentage VaR multiplied by the size of
the position. Thus, the weights drop out as follows:

$VaR,= {$VaR? + $VaR3 + 2p, ,$VaR,$VaR,}. (1.10)

Note that in the equation (1.10) version of the VaR formula, the weights
disappeared since they were already incorporated into the dollar VaR
values.

Applying equation (1.10) to our spread trade example, we obtain
the portfolio VaR as follows:

$VaR, = V{$1.32% + (-$1.15)> + 2 x 0.80 x $1.32 x (-$1.15)}
= $0.64MM.

In the example, the British pound position is long and therefore the
VaR = $100m x 0.0132 = $1.35 million. However, the Euro position
is short and therefore the VaR = —-$100m x 0.0115 = —$1.15 million.
These values are input into equation (1.10) to obtain the VaR esti-
mate of $640,000, suggesting that there is a 5 percent probability that
the portfolio will lose at least $640,000 in a trading day. This
number is considerably lower than the sum of the two VaRs ($2.41
million). The risk reduction is entirely due to the diversification effect.
The risk reduction is particularly strong here due to the negative value
for the last term in the equation.?
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There is a large economic difference between the undiversified risk
measure, $2.41 million, and the diversified risk VaR measure $0.64
million. This difference is an extreme characterization of the economic
impact of bank capital adequacy requirements prior to the enactment
of the market risk amendment to the Basel Accord which recognized
correlations among assets in internal models calculating capital require-
ments for market risk as part of overall capital requirements. Use of
the undiversified risk measure in setting capital requirements (i.e.
simply adding exposures) is tantamount to assuming perfect positive
correlations between all exposures. This assumption is particularly
inappropriate for well-diversified globalized financial instititutions.

1.2.1  Factors affecting portfolio diversification

Diversification may be viewed as one of the most important risk
management measures undertaken by a financial institution. Just
how risk sensitive the diversified portfolio is depends on the para-
meter values. To examine the factors impacting potential diversification
benefits, we reproduce equation (1.8) representing the portfolio’s
standard deviation:

o, = V{w?c? + (1 —-w)’03 + 2w(1 — W)p,,6,6 ,}.

Assuming 67 = 63 = 67 the standard deviation can be rewritten as:
6, = oV{1 - 2w(1 — w)(1 - p)}. (1.11)

Minimizing risk could be viewed as minimizing the portfolio’s standard
deviation. Using equation (1.11), we can examine the parameter
values that minimize o,.

Considering the impact of the position weights, w, we can solve for
the value of that minimizes ¢,. For simplicity, assume that the posi-
tion weights take on values between zero and 1 (i.e., there are no
short positions allowed). The product of the weights, w(1 — w), rises
as w rises from zero to 0.5, and then falls as w rises further to 1. Since
(1 — p) is always positive (or zero), maximizing w(l — w) results in
maximal risk reduction. Thus, the portfolio with w = 0.50 is the one
with the lowest possible volatility. For w = 0.50, w(l — w) = 0.25.
In contrast, if w = 0.90, the risk reduction potential is much lower,
since w(1 — w) = 0.09. This implies that risk diversification is reduced
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by asset concentration (i.e. 90 percent of the portfolio invested in a
single position). This illustrates the diversification effect — risk is
reduced when investments are evenly spread across several assets and
not concentrated in a single asset.

Equation (1.11) also illustrates the power of correlations in obtaining
risk diversification benefits. The correlation effect is maximized when the
correlation coefficient (denoted p) achieves its lower bound of —1. If the
correlation between the two porfolio components is perfectly negative
and the portfolio is equally weighted (i.e., w = 0.50 and p =—-1), then
the portfolio’s standard deviation is zero. This illustrates how two risky
assets can be combined to create a riskless portfolio, such that for each
movement in one of the assets there is a perfectly offsetting move-
ment in the other asset — i.e., the portfolio is perfectly hedged.** Fin-
ally, equation (1.11) shows that the greater the asset volatility, ¢, the
greater the portfolio risk exposure — the so-called volatility effect.

1.2.2 Decomposing volatility into systematic
and idiosyncratic risk

Total volatility can be decomposed into asset-specific (or idiosyncratic)
volatility and systematic volatility. This is an important decomposition
for large, well-diversified portfolios. The total volatility of an asset within
the framework of a well-diversified portfolio is less important. The
important component, in measuring an asset’s marginal risk contri-
bution, is that asset’s systematic volatility since in a well-diversified
portfolio asset-specific risk is diversified away.

To see the role of idiosyncratic and systematic risk, consider a large port-
folio of N assets. As before, suppose that all assets have the same stand-
ard deviation ¢ and that the correlation across all assets is p. Assume
further that the portfolio is equally weighted (i.e., all weights are equal
to 1/N). The portfolio variance is the sum of N terms of own-asset
volatilities adjusted by the weight, and N(N — 1)/2 covariance terms:

6, = V[N(1/N)26* + 2[N(N — 1)/2](1/N)(1/N)pc?}.  (1.12)

14
And, hence, we obtain:
sz\/{GZ/N+ [(N - 1)/N]pc?}, (1.13)

or simplifying terms:
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6, = oV{1/N + p(N — 1)/N}. (1.14)

As N gets larger, i.e., the portfolio becomes better diversified, the first
term, 1/N, approaches zero. That is, the role of the asset’s own volatil-
ity diminishes. For a large portfolio of uncorrelated assets (i.e., p = 0)
we obtain:

lim,_,.c, = lim,_,.V{c?/N} = 0. (1.15)

In words, the limit of the portfolio’s standard deviation, as N goes to
infinity, is zero — a riskfree portfolio. This results from the assump-
tion of a portfolio with an infinite number of uncorrelated assets.
Fluctuations in each asset in the portfolio would have a diminishingly
small impact on the portfolio’s overall volatility, to the point where
the effect is zero so that all risk is essentially idiosyncratic. Of course,
practically speaking, it would be impossible to find a large number of
uncorrelated assets to construct this hypothetical portfolio. However,
this is a limiting case for the more realistic case of a portfolio with
both idiosyncratic and systematic risk exposures.
To summarise:

e High variance increases porfolio volatility.

e Asset concentration increases portfolio volatility.

e Well-balanced (equally weighted) portfolios benefit the most from
the diversification effect.

e Lower correlation reduces portfolio volatility.

e Systematic risk is the most important determinant of the volatility
of well-diversified portfolios.

e Assets’ idiosyncratic volatility gets diversified away.

1.2.3 Diversification: Words of caution — the case of
long-term capital management (LTCM)

Risk diversification is very powerful and motivates much financial activ-
ity. As an example, consider the economic rationale of what is known
as a fund of hedge funds (FoHF). A FoHF invests in a number of dif-
ferent hedge funds. For example, suppose that a FoHF distributes a
total of $900 million equally among nine hedge funds. Suppose the
annualized standard deviation of each of these funds is 15 percent p.a.
This is a fairly realistic assumption as such funds are in the habit of
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levering up their positions to the point that their total volatility is
in the vicinity of overall market volatility. The undiversified standard
deviation of this investment in the annual horizon is 15 percent p.a.
or $135 million (0.15 X $900 million).

Suppose that the FoHF managers have two important selection
criteria. First, they try to choose fund managers with excess perform-
ance ability as measured by their fund’s Sharpe ratio — the ratio of
expected excess return over and above the risk free rate to the volatil-
ity of the fund’s assets. Suppose the standard that is applied is that
managers are exected to provide a Sharpe ratio of at least 2 — that is,
an expected excess return equal to twice the fund’s volatility. Thus, the
fund’s target expected return is equal to the riskfree rate, say 5 per-
cent, plus 2 X 15 percent, for a total expected return of 35 percent p.a.

The second criterion that the FoHF managers apply in choosing
funds is to choose funds with low levels of cross correlation in order
to better diversify across the investments. They pick one fund which
is a macro fund (betting on macroeconomic events), another fund that
is in the risk arbitrage business (betting on the results of mergers and
acquisitions), another fund in the business of fixed income arbitrage,
and so on. Suppose the FOHF managers are successful in obtaining a
portfolio of nine such funds with distinct investment strategies such
that they believe that a zero correlation across all strategies is a reason-
able assumption.

As constructed above, the FoHF portfolio will achieve a strong
diversification benefit. Using equation (1.15), the diversified port-
folio’s standard deviation is V9 x $15 million = $45 million, much lower
than the undiversified standard deviation of $135 million. This rep-
resents a standard deviation for the entire FoHF equal to 5 percent
($45m/$900m), or about one-third of the single investment standard
deviation of 15 percent. Moreover, since the expected excess return
is still 35 percent per fund, the FoHF can achieve a much higher Sharpe
ratio. The FoHF’s expected excess return is 30 percent with a stand-
ard deviation of only 5 percent, thereby yielding a Sharpe ratio of 6
(= 30/5); far in excess of the target Sharpe ratio of 2.

This example describes the structure of Long Term Capital Man-
agement’s (LTCM) hedge fund. The highly distinguished proprietors
of the hedge fund based in Greenwich, Connecticut, thought that
they were investing in a well-designed FoHF consisting of a number
of trading strategies that were assumed to be independent. This inde-
pendence assumption across all strategies allowed the firm to lever up
significantly. The strategies that LTCM invested in included such
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trades as: (i) trading on-the-run vs. off-the-run US Treasuries; (ii) trad-
ing mortgage backed securities hedged by US Treasury futures; (iii)
trading Japanese warrants hedged by related equities; (iv) trading
Swedish vs. Italian government bonds betting on Euro convergence;
(v) trading global swap spreads (over Treasuries); and (vi) trading long
positions in corporates hedged by government bonds, betting on
declines in spreads. Theoretically as well as empirically these trades
had little in common and it was reasonable to expect that their cor-
relations were close to zero.

Of course, that assumption proved to be fatally false. When Russia
defaulted on its sovereign debt obligations in August 1998, all trades
turned south together, thereby raising correlations and eliminating
diversification benefits just at the moment when they were most needed.
The stellar reputations of the managers of LTCM should serve as a
reminder to us that any model is only as good as the quality of its
assumptions about the model inputs and parameter estimates. As
we evaluate different VaR models, we will return to this theme
repeatedly, particularly when we attempt to measure operational risk
and credit risk VaR using the “incomplete” data sets that are currently
available.



