What is Mathematics About?

Michael Dummett

The two most abstract of the intellectual disci-
plines, philosophy and mathematics, give rise to
the same perplexity: what are they abour? The
perplexity does not arise solely out of ignorance:
even the practitioners of these subjects may find it
difficult to answer the question. Mathematics pre-
sents itself as a science in the general sense in
which history is a science, namely as a sector
in the quest for truth. Even those least instructed
in other sciences, however, have some general idea
what it is that those sciences strive to establish the
truth about. Historians aim at establishing the
truth about what was done by and what happened
to human beings in the past; more exactly, to
human beings after they had invented writing.
Physicists try to discover the general properties
of matter under the widest variety of conditions;
more generally, of matter and of what it propa-
gates, such as light and heat. But what is it that
mathematicians investigate?

An uninformative answer could be given by
listing various types of mathematical object and
mathematical structure: mathematicians study the
properties of natural numbers, real numbers, ordi-
nal numbers, groups, topological spaces, differential
manifolds, lattices, and the like. Apart from the
difficulty of explaining “and the like,” such an
answer is uninformative because it is given from
within: one has to know some mathematics — even
if, in some of the cases, only a little — if one is to
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understand the answer, whereas the sample
answers to the questions concerning history and
physics could be understood without knowing any
history or physics.

Some maintain, nevertheless, that mathematics
is a science like any other. The claim is unconvin-
cing prima facie: what is immediately striking
about mathematics is how unlike any other science
it is. It is true that, in the more mathematicized
sciences such as physics, there may be elaborate
deductions from initial premisses, just as there are
in mathematics; but they play a different role. In
mathematics, their purpose is to establish the-
orems, that is, mathematical truths; in physics,
they serve to elicit consequences of a theory,
which can then be used to make predictions but
also to test the theory. The word “theory” is used
quite differently in mathematics and in the other
sciences. In physics, biology, and so forth, it car-
ried the connotation of a hypothesis; however well
established a physical or biological theory, it
always remains open to refutation or revision. In
mathematics, there is no such connotation. We are
all familiar with the idea of observations designed
to test — to confirm or refute — the general theory
of relativity; but we should be unable to conceive
of observations designed to test number theory or
group theory.

The most determined effort to represent math-
ematics as empirical in character was made by John
Stuart Mill; but he achieved little more than to
point out, what is in any case evident, that math-
ematics can be applied to empirical reality. That,
indeed, is a salient feature of mathematics that any
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philosophical account of it must explain; but it is
not to be explained by characterizing mathematics
as itself an empirical science. Our very vocabulary
indicates the difference. We do not speak of
“applying” a physical theory when we draw phys-
ical consequences from it, but only when we base
some technological innovation upon it. Even
someone who accepted all Mill’s arguments
would have no ground for regarding mathematics
as a science like any other; it would still differ
markedly from all others. For Mill, the axioms
and definitions of mathematics are derived from
very general facts apparent to untutored observa-
tion; but the theorems are still consequences
drawn by deductive reasoning from those axioms
and definitions, without further appeal to observa-
tion, let alone to refined observations made in
artificially created conditions or with the help of
sophisticated instruments. Moreover, as Frege
pointed out, the mathematical notions whose
application Mill was anxious to locate solely in
physical reality have in fact far wider application.
It is misleading to say that we encounter the nat-
ural numbers, for example, in the physical world;
for, while physical situations may indeed need to
be described by citing a natural number as the
number of physical objects of some given kind,
non-physical situations may equally need to be
described by citing a natural number as the num-
ber of non-physical objects of some given kind, for
instance as the number of different proofs of the
fundamental theorem of algebra, or, indeed, of
roots of an equation. The same holds good of
sets. These notions are too general for us to locate
them in any particular realm of reality; as Frege
maintained, they apply within every sector of real-
ity, and the laws governing them hold good, not
only of what we find to exist, but of all of which we
can frame intelligible thoughts.

If mathematics is not about some particular realm
of empirical reality, what, then, s it about? Some
have wished to maintain that it is indeed a science
like any other, or, rather, differing from others only
in that its subject-matter is a super-empirical realm
of abstract entities, to which we have access by
means of an intellectual faculty of intuition analo-
gous to those sensory faculties by means of which we
are aware of the physical realm. Whereas the
empiricist view tied mathematics too closely to cer-
tain of its applications, this view, generally labeled
“platonist,” separates it too widely from them: it
leaves it unintelligible how the denizens of this
atemporal, supra-sensible realm could have any

connection with, or bearing upon, conditions in
the temporal, sensible realm that we inhabit.

Like the empiricist view, the platonist one fails
to do justice to the role of proof in mathematics.
For, presumably, the supra-sensible realm is as
much God’s creation as is the sensible one; if so,
conditions in it must be as contingent as in the
latter. The continuum hypothesis, for example,
might kappen to hold, even though we can appre-
hend neither its truth nor anything in which its
truth is implicit. That there may be mathematical
facts that we shall be forever incapable of establish-
ing is a possibility admitted by some mathema-
ticians and philosophers of mathematics, though
denied by others. When admitted, however, it is
normally admitted on the ground that our infer-
ential powers are limited: there may be conse-
quences of our initial assumptions that we are
unable to draw. If these are first-order conse-
quences, we could “in principle” draw them,
since they could be elicited by reasoning each
step of which was simple; but the proofs might
be too long and complex for us ever to be able to
hit on them, or even follow them, in practice. If
they are second-order consequences, we may be
unable even in principle to see that they follow.
But, if we take seriously the analogy between our
supposed faculty of intuition and our perceptual
faculties, there is no reason why there may not be
mathematical facts that are in no sense conse-
quences of anything of which we are aware. We
may observe a physical object without either per-
ceiving all its features or being able to deduce all of
them from what we do perceive; if mathematical
structures are merely the inhabitants of another
realm of reality, apprehended by us in a manner
analogous to our perception of physical objects,
there is no reason why the same should not be
true of them. There are indeed hypotheses and
conjectures in mathematics, as there are in astron-
omy; but, while both kinds may be refuted by
deducing consequences and proving them to be
false, the mathematical ones cannot be established
simply by showing their consequences to be true.
In particular, we cannot argue that the truth of a
hypothesis is the only thing that would explain
that of one of its verified consequences; there is
nothing in mathematics that could be described as
inference to the best explanation. Above all, we do
not seek, in order to refute or to confirm a hypoth-
esis, a means of refining our intuitive faculties, as
astronomers seek to improve their instruments.
Rather, if we suppose the hypothesis true, we



seek for a proofof it, and it remains a mere hypoth-
esis, whose assertion would therefore be unwar-
ranted, until we find one. True, we seek to make
our methods of proof ever more explicit and pre-
cise. This is not analogous to the improvement of
the instruments, however. Methods of proof serve
to elicit consequences, not to yield a more exten-
sive evidential base; if the hypothesis is to be
established, this must be done, not by testing its
consequences, but by exhibiting i as a conse-
quence of what we already know. Platonism can
no more explain these differences between math-
ematics and the natural sciences than empiricism
can, for both go astray by claiming to discern too
close an analogy between them.

A brilliant answer to our question, but one now
generally discredited, was given by Gottlob Frege
and sustained by Russell and Whitehead. It was,
essentially, that mathematics is not about anything
in particular: it consists, rather, of the systematic
construction of complex deductive arguments.
Deductive reasoning is capable of eliciting, from
comparatively meager premisses and by routes far
from immediately obvious, a wealth of often sur-
prising consequences; in mathematics, such routes
are explored and the means of deriving those con-
sequences are stored for future use in the form of
propositions. Mathematical theorems, on this
account, embody deductive subroutines which,
once discovered, can be repeatedly used in a vari-
ety of contexts.

This answer, generally called the “logicist” the-
sis, was brilliant because it simultaneously explains
various puzzling features of mathematics. It
explains its methodology, which involves no obser-
vation, but relies on deductive proof. It explains
the exalted qualification it demands for an asser-
tion: in other sciences, a high degree of probability
ranks as sufficient ground for putting forward a
statement as true, but, in mathematics, it must be
incontrovertibly proved. It explains its generality; it
explains our impression of the necessity of its
truths; it explains why we are so perplexed to say
what it is about. Above all, it explains why math-
ematics has such manifold applications, and what
it is for it to be applied. It allows that mathematical
statements are genuinely propositions, true or
false, and hence accounts for what is manifestly
so, that mathematicians may be interested in deter-
mining their truth-values regardless of the uses to
which they may be put; at the same time, it
explains the content of those propositions as
depending on the possibility of applying them,
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and thus justifies Frege’s dictum that it is applic-
ability alone that raises arithmetic from the rank of
a game to that of a science. By contrast, Wittgen-
stein’s account of mathematics, which lays even
greater stress on application, makes the existence
of pure mathematicians a phenomenon for pathol-
ogy. It will be my purpose in this essay to maintain
that the logicist answer, if not the exact truth of the
matter, is closer to the truth than any other than
has been put forward.

The classic versions of logicism both ran
aground on the problem of the existence of math-
ematical objects, those abstract entities of which
mathematical theories, taken at face-value, treat,
and, above all, of the elements of the fundamental
mathematical domains; the domain of the natural
numbers and that of the real numbers. The aim of
representing a mathematical theory as a branch of
logic is in tension with recognizing it as a theory
concerning objects of any kind, as its normal for-
mulation presents it as being: for we ordinarily
think of logic as comprising a set of principles
independent of what objects the universe may hap-
pen to contain. Frege nevertheless believed that the
truth of number theory and of analysis demanded
the existence of those objects with which, on the
face of it, they are concerned; and so he had to
justify the belief in their existence, while reconcil-
ing it with the purely logical character of arithmet-
ical statements. In trying to achieve this, he ran
into actual contradiction. Russell and Whitehead,
greatly concerned with the need to avoid contra-
diction, tried to construct foundations for math-
ematics in accordance with the more natural
conception of logic as independent of the existence
of any particular objects: their classes are not gen-
uine objects at all, but mere surrogates, statements
about them being explained as a disguised means of
talking about properties of objects, properties of
such properties, properties of properties of those
properties, and so on upwards. Frege had never
given any good reason for insisting on the genuine
existence of mathematical objects; perhaps the only
plausible reason lies in the difficulties encountered
by Russell and Whitehead in trying to dispense
with them. The price they paid for doing so was
that, in order to ensure the existence of sufficiently
many of their object-surrogates, they had to make
assumptions that could not be rated as logical, or
even likely to be true. The Axiom of Infinity, say-
ing that there are infinitely many concrete objects,
was needed to make sure that the natural numbers
did not terminate; the Axiom of Reducibility,

Q@D



Michael Dummett

saying that there are sufficiently many properties of
things of a given type definable without speaking of
all properties of those things, was needed to guar-
antee the completeness of the real-number system.

More recently, Hartry Field has advanced what
may be seen as a modification of the logicist thesis.
Frege argued that the application of a mathemat-
ical theory, outside mathematics or within it,
requires, to warrant it, a stronger claim than the
consistency of the theory being applied. Suppose
that a theorem in one mathematical theory 7 is
proved by appeal to another, auxiliary, theory S. It
is then not enough, Frege reasoned, to know that if
the theory 7' is free from contradiction, then so is
the combination of 7" and §: for that would war-
rant us in claiming no more than that we shall not
involve ourselves in contradiction if we accept the
theorem, whereas we wanted to be in a position to
assert that theorem; and for that, Frege held, we
must know the auxiliary theory .S to be true. Field
argues that we need claim nothing so strong as
truth on behalf of a theory in order to warrant its
applications. It we want to show that a mathemat-
ical theory § can be legitimately invoked as an
auxiliary to some other theory 7 (which may be a
scientific theory or another mathematical one), we
need only claim something intermediate between
the logical truth of .S and its consistency relative to
T, namely that the conjunction of 7 and S is a
conservative extension of 7. This means that any-
thing expressible in the language of 7 that could be
proved from T together with .S could already be
proved — perhaps at greater length and with
greater difficulty — in the theory 7 on its own.

Field, too, is concerned with the existence of
mathematical objects. He agrees with Frege, as
against Russell and Whitehead, that the truth of a
mathematical theory demands the existence of the
mathematical objects of which it purports to treat:
that is his reason for denying the truth of the
theory, since he disbelieves in the existence of
any such objects.

To give substance to the claim that, when the
theory S is added to the theory 7, it yields a
conservative extension of 7, we must be able to
formulate 7" without reference to whatever objects
of the theory .S are regarded as objectionable;
achieving such reformulations is the major part of
Field’s program. His motivation for seeking to
explain the applications of mathematics without
recognizing the existence of mathematical objects
lies in his general disbelief in abstract objects of
any kind. It is on this that criticism has centered:
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can he really formulate scientific theories without
appeal to abstract objects?

For Frege, on the other hand, the error that
blocked any reasonable philosophy of mathematics
was the failure to recognize that abstract objects
may be quite as objective as concrete ones (in his
terminology, non-actual objects as actual ones). He
characterized abstract objects much in the way that
philosophers are disposed to do today, namely as
objects lacking causal powers; by “objective” he
meant something that is neither a content of con-
sciousness nor created by any mental process. It is
a common complaint about abstract objects that,
since they have no causal powers, they cannot
explain anything, and that the world would appear
just the same to us if they did not exist: we can
therefore have no ground to believe in their exist-
ence. For Frege, such a complaint would reveal a
crude misunderstanding. He gave as an example of
an object that is abstract but perfectly objective the
equator. If you tried to explain to someone who
had never heard of it what the equator was, you
would certainly have to convey to him that it
cannot be seen, that you cannot trip over it, and
that you feel nothing when you cross it. If he then
objected that everything would be exactly the same
if there were no such thing as the equator, and that
therefore we can have no reason for supposing it to
exist, it would be clear that he had still not under-
stood what sort of object we take the equator to be.
What has to be done is to explain to him how the
term ‘“the equator” is used in whole sentences:
how it is to be determined whether or not someone
has crossed the equator, whether some natural
feature lies on it or to the north or south of it,
and so on. That is all that can be done, and all that
needs to be done: if he still persists in objecting,
there is nothing we can do but pity him for being
in the grip of a misleading picture.

Thus reference to an abstract object is to be
understood only by grasping the content of sen-
tences involving such reference, and it is only by
specifying the truth-conditions of such sentences
that it can be explained what such an object is: it is
only in the course of saying something intelligible
about an object that we make genuine reference to
it. This, indeed, holds good for all objects, con-
crete or abstract; but, because of their failure to
appreciate the dependence of reference upon the
context of a proposition, philosophers are tempted
to dismiss the object referred to as mythological
only when it is abstract, since sentences involving
reference to concrete objects include those in



which they are indicated by means of demonstra-
tive terms, which is to say that concrete objects can
be encountered. For Frege, however, to treat
mathematical objects such as numbers as fictitious
because abstract is to commit as crude a blunder as
to do the same for the equator, one which springs
from the same misunderstanding about what refer-
ring to an object involves.

In this, Frege was surely right. He did not,
however, take his general defense of the existence
of abstract objects as dispensing us from any work
in particular cases, but only as pointing to the kind
of work that needed to be done. In each case, we
have to specify the truth-conditions of sentences
containing terms for objects of the kind in ques-
tion; in those with which he was concerned, for
natural numbers, or cardinal numbers in general,
and for real numbers. And this was, for him, a
highly problematic task, but one that he believed
he could solve. The first lesson of the contra-
diction was that he was woefully mistaken in
that belief.

If we reject Field’s all-encompassing nominal-
ism, his program takes on a different aspect. Much
of the criticism directed at it falls away, once the
task is no longer that of avoiding reference to all
abstract objects; it continues to be of interest
because it focuses on the problem that defeated
both Frege and Russell, of either justifying or
explaining away reference to specifically mathemat-
ical objects, and that remains a problem even after
the general objective of eliminating all reference to
abstract objects has been discarded. Field’s pro-
gram then becomes a new strategy for resolving
the problem of mathematical objects. Neverthe-
less, Field envisages the justification of his con-
servative extension thesis as being accomplished
only piecemeal. For each mathematical theory,
and each theory to which it is applied, the demon-
stration is to be carried out specifically for those
two theories; no presumption is created by the
successful execution of the program in one case
that it will work in others. If, for example, it is
shown that real analysis yields a conservative
extension when adjoined to Newtonian mechanics,
real analysis will not have received a general justi-
fication as a mathematical theory, but only in
application to Newtonian mechanics. Now sup-
pose that some millionaire is converted to Field’s
philosophy of mathematics and endows an insti-
tute to carry out Field’s program for all scientific
theories and all mathematical theories which find
application to them; and suppose that the institute
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is uniformly successful: it has so far examined
every existing scientific theory, and every applica-
tion of mathematics made within it, and has in
each case succeeded in establishing Field’s claim.
Then it has still not established that claim for
future applications of other parts of mathematics
to existing theories, nor for applications of math-
ematics to scientific theories yet to be devised. Long
before this stage, however, we should have become
dissatisfied with the institute’s work. For each
mathematical theory, we should surely demand a
guarantee that it would always yield a conservative
extension when adjoined to any scientific theory,
so that it would be justified once and for all; and
we should also require an explanation why it
demonstrably did yield a conservative extension
when adjoined to every known scientific theory.
Such an explanation would have to turn on the
character of the mathematical theory itself, inde-
pendently of the particular scientific theories to
which it was applied; and it would presumably
provide the sought-for guarantee. Without such
an explanation, we could hardly suppose that we
had reached the fundamental truth of the matter;
for it could not very well be a mere fortunate
coincidence that the theories devised by the math-
ematicians just happened to yield conservative
extensions when adjoined to the theories devel-
oped by physicists and other scientists. It is diffi-
cult to think what such a general explanation could
be, unless it was that mathematical theories, if not
logically true in the strict sense, have some closely
related property. Field’s thesis is not a single one,
but a bundle of numerous particular theses; and, as
such, it lacks the generality that is required of an
adequate account of the applicability of mathemat-
ical theories.

Once we have achieved the required reformula-
tion of the theory 7 to which some mathematical
theory S is to be applied, Field’s strategy is to
prove a representation theorem for 7. To avoid
unnecessary detail, I will illustrate this by Field’s
own preliminary example. Here 7'is (an adaptation
of ) Hilbert’s axiomatization of Euclidean geome-
try, while .S is the theory of real numbers. 7 is
formulated without reference to numbers of any
kind, but with variables ranging only over geo-
metrical objects; it is based on axioms governing
primitive predicates expressing properties of and
relations between them. In Hilbert’s original for-
mulation, there were three sorts of variable, for
points, lines (determined by any two distinct
points), and planes (determined by any three
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non-collinear points); Field prefers to conceive it
as using variables only over points. In this case,
there will be a four-place predicate holding
between points «, y, 2, and » just in case the line
segment xy is congruent to the line segment zmw,
and a three-place predicate saying that y lies
between x and z on some line. Then a partial
rendering of Hilbert’s representation theorem
states that there will be a binary function d from
the points in any model of 7 into the non-negative
real numbers such that

d(x,y) = d(z,w)
just in case xy is congruent to 2w and
d(x,2) =d(x,y) + d(r,2)

just in case y is between x and z. By laying down
suitable conditions on the distance function d, we
could prove a converse, namely that any structure
on which was defined a function d satisfying those
conditions could be converted into a model of 7 by
explaining segment-congruence and betweenness
in the manner just stated.

This helps to explain how real numbers can be
used as an auxiliary device for proving results
within this particular theory, namely the theory
T of Euclidean geometry; it does not, of course,
illuminate the uses of real numbers in other appli-
cations. Field remarks that the function d is
unique only up to multiplication by a positive
constant. This reflects the obvious fact that a
quantity — here, a distance — does not by itself
determine a real number alone, but only in con-
junction with a unit. What uniquely determines a
real number is a ratio between distances: if we
replaced d by a function e of four arguments,
giving the ratio of the distance between x and y
to that between z and w (where z and w are dis-
tinct), we could reformulate the representation
theorem so that e would be unique. (We should
then require that xy be congruent to zw just in case
v =yand z = wore(y, y, 2, w) = 1, and that y be
between x and z just in case y = z or e(x, 2, ), 2) =
e(v, , 7, 2) + 1.) We need not do this, of course; it
is enough to observe that if real numbers are
uniquely determined by ratios between distances,
it at once follows that there will be distance func-
tions d obtained from one another by multiplica-
tion by positive real numbers. (Any such d will be
obtainable from e by setting d(x, y) = e(«x, y, 4, b)
for suitable fixed distinct @ and 4.) Furthermore,

real numbers correspond uniquely to ratios, not
merely between distances, but between quantities
of any one type. Hence, given an adequate analysis,
such as that aimed at in measurement theory, of
what, in general, constitutes a range of quantities,
we have a hope of a general explanation of why
there will be a unique mapping of pairs of objects
that have these quantities on to the real numbers or
on to some subset of them. From these sketchy
remarks, it is possible to glimpse how such a gen-
eral explanation might be made to yield a theorem
of which a whole range of corollaries ensuring a
representation by means of real numbers would be
special cases. We should then have secured the
desired generality for explaining the applications
of real numbers on Fieldian lines. Such a theorem
would encapsulate the general principle for apply-
ing the theory of real numbers.

This, however, would do nothing to convince
Field of the existence of real numbers. Frege held
that real numbers are ratios between quantities.
Once we have abandoned the superstitious nomin-
alist horror of abstract objects in general, there
would be nothing problematic about the existence
of real numbers in the context of some empirical
theory involving quantities of one or another kind,
if they were identified with ratios between those
quantities. What real numbers there were would
depend upon what quantities there were: there
would be no danger of our not having sufficiently
many real numbers for our purposes.

The difficulty about mathematical objects thus
arises because we want our mathematical theories
to be pure in the sense of not depending for the
existence of their objects on empirical reality, but
yet to satisfy axioms guaranteeing sufficiently
many objects for any applications that we may
have occasion to make. The significant distinction
is not between abstract objects and concrete
objects, but between mathematical objects and all
others, concrete or abstract. Plenty of abstract
objects exist only contingently, the equator, for
example: their existence is contingent upon the
existence of concrete objects, and upon their
behavior or the relations obtaining between them.
Ratios between empirically given quantities would
be dependent abstract objects of this kind. By
contrast, the existence of mathematical objects is
assumed to be independent of what concrete
objects the world contains.

In order to confer upon a general term applying
to concrete objects — the term “star,” for example
— a sense adequate for its use in existential state-



ments and universal generalizations, we consider it
enough that we have a sharp criterion for whether
it applies to a given object, and a sharp criterion
for what is to count as one such object — one star,
say — and what as two distinct ones: a criterion of
application and a criterion of identity. The same
indeed holds true for a term, like ‘“‘prime number,”
applying to mathematical objects, but regarded as
defined over an already given domain. It is other-
wise, however, for such a mathematical term as
“natural number” or “real number” which deter-
mines a domain of quantification. For a term of
this sort, we make a further demand: namely, that
we should “‘grasp” the domain, that is, the totality
of objects to which the term applies, in the sense of
being able to circumscribe it by saying what
objects, in general, it comprises — what natural
numbers, or what real numbers, there are.

The reason for this difference is evident. For
any kind of concrete object, or of abstract object
whose existence depends upon concrete objects,
external reality will determine what objects of
that kind there are; but what mathematical objects
there are within a fundamental domain of quanti-
fication is supposed to be independent of how
things happen to be in the world, and so, if it is
to be determinate, we must determine it. On the
face of it, indeed, a criterion of application and a
criterion of identity do not suffice to confer deter-
minate truth-conditions on generalizations invol-
ving some general term, even when it is a term
covering concrete objects: they can only give them
a content to be construed as embodying a claim. So
understood, an existential statement amounts to a
claim to be able to give an instance; a universal
statement is of the form “Any object to which the
term is recognized as being applicable will be
found to satisfy such-and-such a further condi-
tion.” An utterance that embodies a claim is
accepted as justified if the one who makes it can
vindicate his claim, and rejected as unjustified if he
fails to do so; a universally quantified statement is
shown to be unjustified if a counterexample comes
to light, but is justified only if the speaker can give
adequate grounds for the conditional expectation
he arouses. The difference between such an utter-
ance and one that carries some definite truth-con-
dition is that the claim relates to what the speaker
can do or what reasons he can give, whereas the
truth-condition must be capable of being stated
independently of his abilities or his knowledge.

This is not, however, how we usually think of
quantified statements about empirical objects. We
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normally suppose that, given that we are clear what
has to be true of a celestial object for it to be a star,
and when a star observed on one occasion is the
same as one observed on another, we need do
nothing more to assure definite truth-conditions
to statements of the form “There is a star with
such-and-such a property” or “All stars have
such-and-such a property.” This assumption
reflects our natural realism concerning the physical
universe. Whether this realism about the phys-
ical universe is sound, or (as I myself strongly
suspect) ought itself to be challenged, is a question
not here at issue: what matters in the present
context is the contrast between what we standardly
take to be needed to secure determinate truth-
conditions for statements involving generality in
the empirical case and in the mathematical one.

We are, indeed, usually disposed to be quite as
firmly resolved that our mathematical statements
should have truth-conditions that they determin-
ately either satisfy or fail to satisfy as we are
that this should hold good of our empirical state-
ments. This is something that it never occurred to
Frege to doubt. He acknowledged the necessity for
specifying the truth-conditions of the statements
of a mathematical theory; unfortunately, he per-
suaded himself that the domain of the individual
variables could be determined simply by laying
down the formation rules of the fundamental
terms and fixing the criterion of identity for
them, which he did by means of an impredicative
specification, and produced an ingenious but falla-
cious argument to this effect.

Despite his realism about mathematics, even
Frege did not think that mathematical reality
determined the truth or falsity of statements
quantifying over a domain of mathematical objects,
without our needing to specify their truth-
conditions; and his successors, mindful of the dis-
aster that overtook him, have accepted the need to
specify the domain outright, or to form some con-
ception of it, before interpreting the primitive
predicates of a theory as applying to elements of
that domain. Notoriously, however, we have found
little better means of accomplishing this task than
Frege did. The characterizations of the domains of
fundamental mathematical theories such as the
theory of real numbers that we are accustomed to
employ usually convince no one that any sharp
conception underlies them save those who are
already convinced; this leads to an impasse in the
philosophy of mathematics where faith opposes
incredulity without either possessing the resources
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to overcome the other. Moreover, this outcome
seems intrinsic to the situation. A fundamental
mathematical theory, for present purposes, is one
from which we originally derive our conception of
a totality of the relevant cardinality: it appears
evident that we cannot characterize the domain of
such a theory without circularity.

What is the way out of this impasse? We may
approach this by asking after the error that under-
lay the assumptions which led Frege into contra-
diction — not that involved in his fallacious
justification of those assumptions, but in the
assumptions themselves. We have grown so accus-
tomed to the paradoxes of set theory that we no
longer marvel at them; yet their discovery was one
of the most profound conceptual discoveries of all
time, fully worthy to rank with the discovery of
irrational numbers. Cantor saw far more deeply
into the matter than Frege did: he was aware,
long before, that one cannot simply assume every
concept to have an extension with a determinate
cardinality. Yet even he did not see all the way: for
he made the distinction between concepts that do,
and those that do not, have such an extension an
absolute one, whereas the depth of the discovery
lies in the fact that it is not. Taken as an absolute
distinction, it generates irresoluble perplexity. We
are thoroughly at home with the conception of
transfinite cardinal numbers; but consider what
happens when someone is first introduced to that
conception. A certain resistance has first to be
overcome: to someone who has long been used to
finite cardinals, and only to them, it seems obvious
that there can only be finite cardinals. A cardinal
number, for him, is arrived at by counting; and the
very definition of an infinite totality is that it is
impossible to count it. This is not a stupid pre-
judice. The scholastics favored an argument to
show that the human race could not always have
existed, on the ground that, if it had, there would
be no number that would be the number of all the
human beings there had ever been, whereas for
every concept there must be a number which is
that of the objects falling under it. All the same,
the prejudice is one that can be overcome: the
beginner can be persuaded that it makes sense,
after all, to speak of the number of natural num-
bers. Once his initial prejudice has been overcome,
the next stage is to convince the beginner that
there are distinct transfinite cardinal numbers:
not all infinite totalities have as many members as
each other. When he has become accustomed to
this idea, he is extremely likely to ask, “How many

transfinite cardinals are there?”” How should he be
answered? He is very likely to be answered by
being told, “You must not ask that question.”
But why should he not? If it was, after all, all
right to ask, “How many numbers are there?”, in
the sense in which “number” meant “finite cardi-
nal,” how can it be wrong to ask the same question
when “number” means “finite or transfinite car-
dinal”? A mere prohibition leaves the matter a
mystery. If gives no help to say that there are
some totalities so large that no number can be
assigned to them. We can gain some grasp of the
idea of a totality too big to be counted, even at the
stage when we think that, if it cannot be counted, it
does not have a number; but, once we have
accepted that totalities too big to be counted may
yet have numbers, the idea of one too big even to
have a number conveys nothing at all. And merely
to say, “If you persist in talking about the number
of all cardinal numbers, you will run into contra-
diction,” is to wield the big stick, not to offer an
explanation.

The fact revealed by the set-theoretic paradoxes
was the existence of indefinitely extensible con-
cepts — a fact of which Frege did not dream and
even Cantor had only an obscure perception. An
indefinitely extensible concept is one such that, if
we can form a definite conception of a totality all of
whose members fall under that concept, we can, by
reference to that totality, characterize a larger
totality of all whose members fall under it. Rus-
sell’s concept class not a member of itself provides a
beautiful example of an indefinitely extensible
concept. Suppose that we have conceived of a
class C all of whose members fall under the con-
cept. Then it would certainly involve a contradic-
tion to suppose C to be a member of itself. Hence,
by considering the totality consisting of the mem-
bers of C together with C itself, we have specified a
more inclusive totality than C all of whose mem-
bers fall under the concept class not a member of
itself. Are we to say, then, that the concept class not
a member of itself does not have an extension? We
must indeed say that, by the nature of the case, we
can form no conception of the totality of all objects
falling under that concept, even of the totality of
all objects of which we can conceive and which we
should recognize as falling under that concept. On
the other hand, to the question whether it is wrong
to suppose that every concept defined over a deter-
minate domain of distinguishable objects has an
extension we must answer, ‘“Surely not.” Suppose
that we have succeeded in specifying, or in clearly



conceiving, some determinate domain of distin-
guishable objects, some or all of which are classes,
and over which the membership relation is well
defined. Then we must regard it as determinate,
for an element of that domain, whether or not it is
a class and, if so, whether or not it is a member of
itself. A concept whose application to a determin-
ate totality is itself determinate must pick out a
determinate subtotality of elements that fall under
it; and so the concept class not a member of itself
must have a definite extension within that domain.
All that we are forbidden to suppose is that any
class belonging to the domain coincides with the
extension of that concept. Frege’s mistake thus did
not lie in taking the notion of a class, or, more
exactly, his notion of a value-range (the extension
of a function), to be a logical rather than a math-
ematical one, as is sometimes said, not even in any
straightforward sense, in supposing every function
to have an extension, it lay in failing to perceive the
notion to be an indefinitely extensible one, or,
more generally, in failing to allow for indefinitely
extensible concepts at all.

There can be no objection to quantifying over
all objects falling under some indefinitely exten-
sible concept, say over everything we should, given
an intelligible description of it, recognize as an
ordinal number, provided that we do not think of
the statements formed by means of such quantifi-
cation as having determinate truth-conditions; we
can understand them only as making claims of the
kind already sketched. They will not then satisfy
the laws of classical logic, but only the weaker laws
of intuitionistic logic. Abandoning classical logic
will not, by itself, preserve us from contradiction if
we maintain the same assumptions as before; but,
since we no longer conceive ourselves to be quan-
tifying over a fully determinate totality, we shall
have no motive to do so.

Cantor’s celebrated diagonal argument to show
that the totality of real numbers is not denumer-
able has precisely the form of a principle of exten-
sion for an indefinitely extensible concept: given
any denumerable totality of real numbers, we can
define, in terms of that totality, a real number that
does not belong to it. The argument does not show
that the real numbers form a non-denumerable
totality unless we assume at the outset that they
form a determinate totality comprising all that we
shall ever recognize as a real number: the alterna-
tive is to regard the concept real number as an
indefinitely extensible one. It might be objected
that no contradiction results from taking the real
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numbers to form a determinate totality. There is,
however, no ground to suppose that treating an
indefinitely extensible concept as a definite one
will always lead to inconsistency; it may merely
lead to our supposing ourselves to have a definite
idea when we do not. This hypothesis explains the
lameness of our attempts at a characterization of
the supposed determinate totality of all real num-
bers, and relieves us of the embarrassment result-
ing from the apparent need for such a
characterization; for the characterization of an
indefinitely extensible concept demands much
less than the once-for-all characterization of a
determinate totality.

The adoption of this solution has a steep price,
which most mathematicians would be unwilling to
pay: the rejection of classical methods of argument
in mathematics in favor of constructive ones. The
prejudices of mathematicians do not constitute an
argument, however: the important question for us
is whether constructive mathematics is adequate
for applications. We have so far assumed a realist
view of the physical universe: would this be com-
patible with a less than fully realist view of math-
ematics? Not on the face of it; but, having taken
the concept real number, but not yet that of natural
number, to be indefinitely extensible, we have not
yet attained a fully constructive conception of the
real numbers, since they are essentially infinite
objects, involving some notion such as that of an
infinite sequence. By contrast, each natural num-
ber is a finite, that is, finitely describable, object:
the totality of natural numbers is therefore of a
radically different kind from the totality of real
numbers. It does not follow that we may call it a
determinate totality. Consider Frege’s “proof”
that every natural number has a successor: given
any initial segment of the natural numbers, from 0
to n, the number of terms of that segment is again a
natural number, but one larger than any term of
the segment. As Frege presents it, the proof begs
the question, since it rests on the assumption that
we already have a domain containing the cardinal
number of any subset of that domain; but the
striking resemblance between this argument and
that which showed the indefinite extensibility of
the concept set not a member of itself suggests a
reinterpretation of it as showing the indefinite
extensibility of the concept natural number. The
natural objection is that, when we attain the total-
ity of all natural numbers, the supposed principle
of extension ceases to apply, since the number of
natural numbers is not itself a natural number.
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This, however, is again to assume that we have a
grasp of the totality of natural numbers: but do we?
Certainly we have a clear grasp of the step from
any natural number to its successor; but this is
merely the essential principle of extension. The
totality of natural numbers contains what, from
our standpoint, are enormous numbers, and yet
others relatively to which those are minute, and
so on indefinitely; do we really have a grasp of such
a totality?

A natural response is to claim that the question
has been begged. In classing real number as an
indefinitely extensible concept, we have assumed
that any totality of which we can have a definite
conception is at most denumerable; in classing
natural number as one, we have assumed that such
a totality will be finite. Burden-of-proof contro-
versies are always difficult to resolve; but, in this
instance, it is surely clear that it is the other side
that has begged the question. It is claiming to be
able to convey a conception of the totality of real
numbers, without circularity, to one who does not
yet have it. We are assuming that the latter does
not have, either, a conception of any other totality
of the power of the continuum. He therefore does
not assume as a principle that any totality of which
it is possible to form a definite conception is at
most denumerable: he merely has as yet no con-
ception of any totality of higher cardinality. Like-
wise, a conception of the totality of the natural
numbers is supposed to be conveyed to one as
yet unaware of any but finite totalities; but all
that he is given is a principle of extension for
passing from any finite totality to a larger one.
The fact is that a concept determining an intrinsic-
ally infinite totality — one whose infinity follows
from the concept itself — simply #s an indefinitely
extensible one; in the long history of mankind’s
grappling with the notion of infinity, this fact
could not be clearly perceived until the set-theore-
tic paradoxes forced us to recognize the existence
of indefinitely extensible concepts. Not all inde-
finitely extensible concepts are equally exorbitant,
indeed; we have been long familiar, from the work
initiated by Cantor, with the fact that there is not
just one uniform notion of infinity, but a variety of
them: but this should not hinder us from acknow-
ledging that every concept with an intrinsically
infinite extension belongs to one or another type
of indefinitely extensible one.

The recognition of this fact compels us to adopt
a thoroughly constructive version of analysis: we
cannot fully grasp any one real number, but only to

an approximation, although there are important
differences in the extent to which we can grasp
them, for example between those for which we
have an effective method of finding their decimal
expansions and those for which we do not. This
strongly suggests that the constructive theory of
real numbers is better adapted to their applications
than its classical counterpart; for, although the
realist assumption is that every quantity has some
determinate magnitude, represented, relatively to
some unit, by a real number, it is a commonplace
that we can never arrive at that magnitude save to
within an approximation.

This partly answers our question how far a
realist view of the physical universe could survive
the replacement of classical by constructive analy-
sis. On a constructive view of the matter, the
magnitude of any quantity, relatively to a unit,
may be taken to be given by a particular real
number, which we may at any stage determine to
a closer approximation by refinement of the meas-
urement process; but no precise determination of
it will ever be warranted, nor presumed to obtain
independently of our incapacity to determine it.
The assumption that it has a precise value, stand-
ing in determinate order relations to all rational
numbers and known to God if not to us, stems
from the realist metaphysics that informs much of
our physical theory. This observation does not,
however, settle whether the assumption is integral
to those theories or a piece of metaphysics detach-
able from them; and this question cannot be
answered without detailed investigation. If it
should prove that the applications of any math-
ematical theory to physics can be adequately
effected by a constructive version of that theory,
it would follow that realist assumptions play no
role in physical theory as such, but merely govern
the interpretation we put upon our physical the-
ories; in this case, physics itself might for practical
purposes remain aloof from metaphysics. If, on the
other hand, it were to prove that constructive
mathematics is inadequate to yield the applications
of mathematics that we actually make, and that
classical mathematics is strictly required for
them, it would follow that those realist assump-
tions do play a significant role in physics as pre-
sently understood. That would not settle the
matter, of course. There would then be a meta-
physical question whether the realist assumptions
could be justified; if not, our physics, as well as our
mathematics, would call for revision along con-
structive lines.



But would it not be better to adopt Field’s
approach, rather than one calling for a revision of
practice on the part of the majority of mathema-
ticians? What the answer ought to be if there were
any real promise of success for Field’s enterprise is
hard to say; but there is a simple reason why he has
provided none. He proposes to infer the conserva-
tiveness of a given mathematical theory with respect
to a given physical theory from the relevant repre-
sentation theorem by means of a uniform argument
resting upon the consistency of a version of ZF with
Urelemente. Why, then, does he believe ZF to be
consistent? Most people do, indeed: but then most
people are not nominalists. They believe ZF to be
consistent because they suppose themselves in pos-
session of a perhaps hazily conceived intuitive
model of the theory; Field can have no such reason.
Any such intuitive model must involve a conception
of the totality of ordinals less than the first strongly
inaccessible one; and no explanation of the term
“model” has been offered according to which the
elements of a model need not be supposed to exist.
The reason offered by Field himself for believing in
the consistency of ZF is that ““if it weren’t consistent
someone would have probably discovered an incon-
sistency in it by now”’; he refers to this as inductive
knowledge. To have an inductive basis for the con-
viction, it is not enough to observe that some the-
ories have been discovered to be inconsistent in a
relatively short time; it would be necessary also to
know, of some theories not discovered to be incon-
sistent within around three-quarters of a century,
that they are consistent. Without non-inductive
knowledge of the consistency of some comparable
mathematical theories there can be no inductive
knowledge of the consistency of any mathe-
matical theory. Field’s proof of conservativeness
therefore rests upon a conviction for which he can
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claim no ground whatever; one far more extra-
vagant than any belief in the totality of real
numbers.

I have argued that it is useless to cast around for
new answers to the question what mathematics is
about: the logicists already had essentially the cor-
rect answer. They were defeated by the problem of
mathematical objects because they had incompat-
ible aims: to represent mathematics as a genuine
science, that is, as a body of truths, and not a mere
auxiliary of other sciences; to keep it uncontami-
nated from empirical notions; and to justify classical
mathematics in its entirely, and, in particular, the
untrammeled use of classical logic in mathematical
proofs. Field wishes to abandon the first, and
others argue for abandoning the second: I have
argued the abandonment of the third. On some
conceptions of logic, it may be protested that this
is not a purely logicist account, on the ground that
mathematical objects still do not qualify to be
called logical objects; but this is little more than a
boundary dispute. If the domains of the funda-
mental mathematical theories are taken to be
given by indefinitely extensible concepts, then we
have what Frege sought and failed to find: a way of
characterizing them that renders our right to refer
to them unproblematic while yet leaving the exis-
tence of their elements independent of any con-
tingent states of affairs. If the price of this solution
to the problem of the basis of those theories is that
argumentation within mathematics is compelled to
become more cautious than that which classical
mathematicians have been accustomed to use,
and more sensitive to distinctions to which they
have been accustomed to be indifferent, it is a price
worth paying, especially if the resulting versions
of the theories indeed prove more apt for their
applications.



