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Applied Statistics for Civil and Environmental Engineers  
Problem Solution Manual 
by N.T. Kottegoda and R. Rosso 

Chapter 1 - `Preliminary Data Analysis 
 
 
 
1.1. Earthquake records. Measurements of engineering interest have been recorded during 

earthquakes in Japan and in other parts of the world during the period 1802 to 1968. One of the 
critical recordings is of apparent relative density, RDEN. After the commencement of a strong 
earthquake, a saturated fine, loose sand undergoes vibratory motion and consequently the sand 
may liquefy without retaining any shear strength, thus behaving like a dense liquid. This will lead 
to failures in structures supported by the liquefied sand. These are often catastrophic. The standard 
penetration test is used to measure RDEN. Another measurement taken to estimate the prospect of 
liquefaction is that of the intensity at which the ground shakes. This is the peak surface 
acceleration of the soil during the earthquake, ACCEL. The data are from J.T. Christian and 
W.F.Swiger (1975) in J. Geotech. Eng. Div., Proc. ASCE, 101, GT111, 1135-1150 and are 
reproduced by permission of the publisher (ASCE): 

RDEN ACCEL RDEN ACCEL RDEN ACCEL 
(%) (units of g) (%) (units of g) (%) (units of g) 

53 0.219 30 0.138 50 0.313 
64 0.219 72 0.422 44 0.224 
53 0.146 90 0.556 100 0.231 
64 0.146 40 0.447 65 0.334 
65 0.684 50 0.547 68 0.419 
55 0.611 55 0.204 78 0.352 
75 0.591 50 0.170 58 0.363 
72 0.522 55 0.170 80 0.291 
40 0.258 75 0.192 55 0.314 
58 0.250 53 0.292 100 0.377 
43 0.283 70 0.299 100 0.434 
32 0.419 64 0.292 52 0.350 
40 0.123 53 0.225 58 0.334 

       g denotes acceleration due to gravity (9.81 meters per second per second) 
 
Compute the sample mean x , standard deviation  and the coefficient of skewness g1 for RDEN and 
ACCEL. Construct stem-and-leaf plots for each set. Comment on the distributions. Plot the scatter 
diagram and calculate the correlation coefficient r. What conclusions can be reached? 

$s

 
Solution. 
Stem-and-leaf-plot for RDEN:       For stem 10%; for leaves 1% 
    2   3⏐0   2 
    7   4⏐0   0   0   3   4 
 (15) 5⏐0   0   0   2   3   3   3   3   5   5   5   5   8   8   8   
  17   6⏐4   4   4   5   5   8 
  11   7⏐0   2   2   5   5   8 
    5   8⏐0 
    4   9⏐0 
    3 10⏐0   0   0  
   
Stem-and-leaf plot for ACCEL:     For stem 0.1 units of g ; for leaves 0.01 units of g 
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    7  1⏐2   4   5   5   7   7   9 
  19  2⏐0   2   2   2   3   3   5   6   8   9   9   9 
 (9)  3⏐0   1   1   3   3   5   5   6   8 
  11  4⏐2   2   2   3   5 
    6  5⏐2   5   6   9 
    2  6⏐1   8 
 
                                            Mean     Std dev     Skewness  coef     Cor coef 
RDEN                                    61.0      17.39                 0.63                0.28 
ACCEL                                0.327      0.142                 0.70 
 
Scatter diagram plot is shown in Fig. P1.1. 

 
Fig. P1.1 

 
Poor correlation; low coefficients of variation; positive skewness; distribution of the 
gamma or similar type. 
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1.2. Flood discharge. Annual maximum flood flows in the Po river at Pontelagoscuro, Italy over a 61-
year period from 1918 to 1978 are given in the second column of Table E.7.2. Compute the sample 
mean x  and standard deviation . Sketch a histogram and the cumulative relative frequency diagram. 
Compute the quartiles and draw a box and whiskers plot. Comment on the distribution. Flood 
embankments along the banks of the river can withstand a flow of 5000 m3/s. What is the probability 
that this will be exceeded during a 12-month period? 

$s

 
Solution. Po river at Pontelagoscoro in Italy. Ranked annual maximum flow data in 

: s/m3

2,240   2,400   2,470   2,590   2,980   3,000   3,170   3,260   3,270   3,460    
3,660   3,700   3,760   3,900   3,920   4,030   4,150   4,200   4,240   4,380    
4,450   4,540   4,600   4,690   4,880   5,090   5,130   5,270   5,360   5,390    
5,400   5,420   5,460   5,540   5,590   5,630   5,680   5,940   6,080   6,110    
6,430   6,510   6,620   6,620   6,630   6,810   6,830   6,870   6,990   7,220    
7,220   7,240   7,400   7,700   7,730   7,800   7,830   8,030   8,600   8,850    
8,940 
 
n = 61;  Mean = 5408 ; s/m3

Standard deviation = 1735 ; coefficient of variation = 32%, s/m3

median  (31st value) = 5,400 ; range r = 8,940 - 2,220 = 6,720;  2Q s/m3

medians of the bottom and top halves of the ranked data: 
1Q  = (3,920 + 4,030)/2 = 3,975 ;       = (6,810 + 6,830)/2 = 6,820 :     s/m3

2Q s/m3

interquartile range, iqr = 6,820 – 3,975 =   2,845 ; s/m3

89.661log3.31 10 =+=cn  or 
65.4)28452/(616720)2/( 3/13/1 =××== iqrrnnc . 

Take  = 6: class width = r/6 = 1,120 . cn s/m3

Class limits:                 2,220    3,360    4,460    5,580    6,700    7,820    8,940  s/m3

Values within limits:             9          12          13        11          11          5 
 
Sketch of histogram:  
 
                                   __13___ 
                  ____12__⏐            ⏐ 
                 ⏐                             ⏐ 
                 ⏐                             ⏐__11___11____ 
    ___9___                                                          ⏐ 
   ⏐                                                                      ⏐ 
   ⏐                                                                      ⏐  
   ⏐                                                                      ⏐__5___ 
   ⏐                                                                                   ⏐ 
   ⏐                                                                                   ⏐ 
   ⏐                                                                                   ⏐ 
    2,220     3,340      4,460     5,580     6,700      7,820     8,940  s/m3
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Cumulative plot as in Fig.1.1.6. 
2,000    3,000    4,000    5,000    6,000    7,000    8,000    9,000    10,000 . s/m3

Distribution has a small positive skewness. 
 
Sketch of box-and-whiskers plot: 
 
                                              __________________ 
                                             ⏐                   ⏐            ⏐ 
                             ⏐             ⏐__________⏐______⏐                         ⏐ 
 

 
 
Data signposts    2,220       3,975             5,400      6,820                  8,940  s/m3

Quartiles                                                         1Q 2Q 3Q
Frequency based probability of exceedance of 5,000  = 36/61 = 0.59. s/m3
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1.3 Flood discharge. The following are the annual maximum flows in m3/s in the Colorado River at 
Black Canyon for the 52-year period from 1878 to 1929: 

1980 1130 3120 2120 1700 2550 8500 3260 3960 2270 
1700 1570 2830 2120 2410 2550 1980 2120 2410 2410 
1420 1980 2690 3260 1840 2410 1840 3120 3290 3170 
1980 4960 2120 2550 4250 1980 4670 1700 2410 4550 
2690 2270 5660 5950 3400 3120 2070 1470 2410 3310 
3230 3090         

 
[Adapted from Gumbel E.J. (1954): “Statistical Theory of Extreme Values and Some Practical 
Applications,” National Bureau of Standards, Applied Mathematics Series 33, U.S. Govt. Printing 
Office, Washington D.C.]. 
Compute the mean x  and standard deviation . Sketch a histogram and the relative frequency 
diagram. Compute the quartiles and draw a box-and-whiskers plot. How does this distribution differ 
from that of Problem 1.2? 

$s

 
Solution. Colorado river at Black Canyon, USA. Ranked annual maximum flow data 
in : s/m3

1,130   1,420   1,470   1,560   1,700   1,700   1,700   1,840   1,840   1,980    
1,980   1,980   1,980   1,980   2,070   2,120   2,120   2,120   2,120   2,270    
2,270   2,410   2,410   2,410   2,410   2,410   2,410   2,550   2,550   2,550    
2,690   2,690   2,830   3,090   3,120   3,120   3,120   3,170   3,230   3,260    
3,260   3,290   3,310   3,460   3,960   4,250   4,530   4,670   4,960   5,660    
5,950   8,500    

 
n = 52. Median = (2,410 + 2,410) = 2,410 . Medians of the bottom and top halves of the 
ranked data: 

2Q s/m3

1Q  = (1,980 + 1,980)/2 = 1,980 ;       = (3,230 + 3,260)/2 = 3,245 :     s/m3
3Q s/m3

Range r = 8,500 – 1,130 = 7,370 ; iqr =  -  = 3,245 – 1,980  = 1,265 . s/m3
3Q 1Q s/m3

Mean = 2,837 ; Standard deviation = 1,301 ; s/m3 s/m3

Coefficient of variation = 45% 
66.652log3.31 10 =+=cn  or 

87.10)12652/(527370)2/( 3/13/1 =××== iqrrnnc  

Take  = 8; class width= r/8 ≈ 1,000 .To demarcate high outliers add 1.5 iqr cn s/m3

= 1.5 × 1265 ≈ 1,900 to , hence demarcation point = 5,145  s/m3
3Q s/m3

 
Sketch of histogram: 
 
                   __19__ 
                ⏐           ⏐ 
                ⏐           ⏐ 
    __14__⏐           ⏐ 
   ⏐                        ⏐__12_ 
   ⏐                                    ⏐ 
   ⏐                                    ⏐ 
   ⏐                                    ⏐__4___ 
   ⏐                                                 ⏐__2__ 
   ⏐                                                             ⏐                         __1___ 
   ⏐                                                             ⏐                         |           | 
1,000    2,000    3,000    4,000    5,000    6,000    7,000    8,000    9,000 . s/m3
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Sketch of box and whiskers plot: 
 
(Data signposts:lowest value, 3 quartiles, outlier limit, outliers and highest value)    
               ___________________ 
              ⏐            ⏐                     ⏐ 
   ⏐        ⏐______⏐___________⏐             ⏐   ·□□      ⏐ 
1,130 1,980       2,940              3,245      5,145         8,500  s/m3

                                               Quartiles 1Q 2Q 3Q
 

 
 

Comparison: 
Colorado river: higher coefficient of variation, high positive skewness, 3 outliers. 
Po river: lower coefficient of variation, almost symmetrical distribution, no outliers. 
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1.4. Welding joints for steel. At the University of Birmingham, England, laboratory measurements 
were taken of the horizontal legs x and vertical legs y of numerous welding joints for steel buildings. 
The main objective was to make the legs equal to 6 mm. A part of the results is listed below in 
millimeters. The data were provided by Dr.A.G.Kamtekar. 
 
x = 5.5, 5.0, 5.0, 6.0, 7.0, 5.2, 5.5, 5.5, 6.0, 6.0, 4.5, 6.0, 5.5, 7.7, 7.5, 6.0, 5.6, 5.0, 5.5, 5.5,  

6.0, 6.5, 5.5, 5.0, 5.5, 5.5, 6.5, 6.5, 7.0, 5.5, 6.5, 5.5, 6.0, 6.5, 8.5, 5.0, 6.0, 6.5, 5.0, 7.0, 
5.0, 5.0, 6.5, 6.5, 6.0, 4.7, 8.0, 7.0, 5.5, 7.0, 6.6, 6.5, 7.0, 6.0, 6.5, 5.0, 7.0, 7.5, 7.0, 7.0 

y = 6.5, 6.5, 5.5, 7.5, 6.0, 7.0, 5.0, 8.0, 6.7, 7.8, 5.7, 6.5, 5.5, 8.0, 8.0, 6.3, 6.0, 6.0, 6.0, 5.5, 
6.5, 6.0, 6.0, 6.0, 6.0, 6.5, 6.5, 6.0, 6.0, 6.5, 7.5, 7.5, 6.0, 4.5, 7.0, 7.0, 6.0, 4.0, 4.0, 7.0, 
7.0, 6.5, 7.0, 5.0, 5.0, 5.7, 5.0, 5.0, 6.0, 7.0, 6.0, 7.0, 6.0, 5.5, 6.0, 4.0, 5.5, 8.0, 7.5, 6.5 

 
Draw a scatter diagram for these data. Draw a line through the ideal point (x = y = 6 mm) and the origin. 
Draw two lines through the origin that are symmetrical about the first line and envelope all of the 
points. Comment on the results. 
          Draw the cumulative sum (cusum) plots,  

                          Cxn =        and         Cyn =   (∑ −
n

i
xix μ ) ( )∑ −

n

i
yiy μ

for n = 1, 2,..., 60 and μx =  μy= 6. Let  

                                             dxn= Cxn - [Cxi] 
1

1
min

−

=

n

i

 and the critical limit be max (dxn ) = 12 mm. Is the critical limit reached? Repeat for the vertical legs y. 
(Further details of cusum plots are given by Woodall, W.H., and B.M. Adams (1993), “The statistical 
design of cusum charts,” Quality Eng., Vol. 5(4), pp.550-570; the associated control chart is the subject 
of Problem 5.11) 
 
Solution. See 3 graphs annexed: 
  Poor correlation with larger deviations for the x legs; 
  x legs are relatively higher than y legs; 
  Cusum plots: for x legs the critical limit is not reached  
                        for y legs the critical limit is reached  
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1.5. Frost frequency. Excessive frost can be harmful to roads. Frequencies of the number of days of 
frost during April in Greenwich, England, over a 65 year period are given by C.E. Brooks and 
N.Carruthers (1953), Handbook of Statistical Methods in Hydrology, H.M.Stationary Office, London 
and are listed below: 
 

Days of frost: 0 1 2 3 4 5 6 7 8 9 10 
Frequency: 15 11 5 11 7 6 2 3 2 1 2 

 
Draw a line diagram of the data. Comment on the results. Compute the mean number of days of frost in 
1April. What is the probability of a frostfree April in a given year? What change would you expect in 
the frequency distribution for a month in midwinter? 
 
Solution. 
Line diagram: frequency vs. number of days of frost 
 
15⏐ 
14⏐ 
13⏐ 
12⏐ 
11⏐      ⏐              ⏐ 
10⏐      ⏐              ⏐  
09⏐      ⏐              ⏐   
08⏐      ⏐              ⏐    
07⏐      ⏐              ⏐      ⏐ 
06⏐      ⏐              ⏐      ⏐      ⏐ 
05⏐      ⏐      ⏐      ⏐      ⏐      ⏐ 
04⏐      ⏐      ⏐      ⏐      ⏐      ⏐ 
03⏐      ⏐      ⏐      ⏐      ⏐      ⏐              ⏐ 
02⏐      ⏐      ⏐      ⏐      ⏐      ⏐      ⏐      ⏐      ⏐              ⏐ 
01⏐___⏐___⏐___⏐___⏐___⏐___⏐___⏐___⏐___⏐___⏐ 
    0      1       2      3      4       5      6       7      8       9      10 days of frost 
 
The occurrences of frosts in April have a geometric type of distribution with mean 

92.265/)21019283726657411352111150( =×+×+×+×+×+×+×+×+×+×+×=x
The probability of a frost free April is 15/65 = 0.23. 
In midwinter the shape of the frequency distribution is expected to be reversed with 
lower frequencies for zero or low numbers of days of frosts 
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1.6. Concrete cube test. From 28-day concrete cube tests made in England in 1990, the following 
results of maximum load at failure in kilonewtons and compressive strength in newtons per square 
millimeter were obtained: 
 
Maximum load: 950, 972, 981, 895, 908, 995, 646, 987, 940, 937, 846, 947, 827, 961, 935, 
956 
 
Compressive strength: 42.25, 43.25, 43.50, 39.25, 40.25, 44.25, 28.75, 44.25, 41.75, 41.75, 
38.00, 42.50, 36.75, 42.75, 42.00, 33.50 
 
The data were supplied by Dr.J.E.Ash, University of Birmingham, England. 

Calculate the means x , standard deviations , mean absolute deviations d and the 
coefficients of skewness g1. Draw two stem-and-leaf plots of the data. Draw a scatter diagram and 
calculate the coefficient of correlation. Are there any unexpected results? 

$s

 
Solution. 
Sketch of stem-and-leaf-plot for maximum load 
   1  6*⏐5 
   1  7  ⏐ 
   1  7*⏐  
   2  8  ⏐3 
   3  8*⏐5 
(5)  9  ⏐0   1   4   4   4 
   8  9*⏐5   5   6   6   7   8   9 
   1 10 ⏐0 
   
Stem-and-leaf-plot for compressive strength  
     0  2  ⏐ 
     1  2*⏐9 
     2  3  ⏐4 
    5   3*⏐7  8  9 
 (11)  4 ⏐0   2   2   2   2   3   3   3   4   4   4 
 
Alternative stem-and-leaf-plot for compressive strength  
    0   2⏐ 
    0   2⏐ 
    0   2⏐  
    0   2⏐ 
    1   2⏐9 
    1   3⏐ 
    1   3⏐ 
    2   3⏐ 4 
    3   3⏐7   
    5   3⏐ 8   9 
    6   4⏐0    
  (7)  4⏐2   2   2   2   3   3   3 
    3   4⏐4   4   4 
 
                                       Mean     Std dev    Mean abs dev    Skew coef     Cor coef 
Maximum load                918           86                 58                -2.1              0.846 
Compressive strength        40          4.2                 3.2               -1.5  
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Negative skewness, positive correlation and 10% coefficient of variation. 

 

 
 

See scatter diagram for Problem 1.6. One suspected outlier. 
 
 
 
1.7. Timber strength. For the timber strength data of Table E.1.1 determine the following measures of 
dispersion: 
(a) Interquantile range, iqr 
(b) Mean absolute deviation, d 
(c) Gini’s mean difference, g 
Compare results with the standard deviation  of Table 1.2.2. Repeat these determinations after 
deleting the zero value. Rank the measures of dispersion in increasing order of susceptibility to the 
exclusion of the zero value on the basis of percentage change. 

$s

 
Solution. 
                                                              All data    Exc. zero    Perc. reduction exc. zero 
Interquartile range                       iqr         11.66         11.47                        1.63 
Mean absolute deviation                d           7.55          7.36                         2.48 
Gini’s mean difference                  g         10.89         10.54                         3.20 
Standard deviation (Table 1.2.2)             9.92           9.46                        4.63 ŝ
 
As expected the interquartile range is the most robust statistic. 
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1.8. Population growth. From past records, the population of an urban area has doubled every 10 years. 
Currently, it has a population of 200,000. An engineer needs to make an estimate of the requirements 
for water supply during the next 23 years. What maximum population does one assume for the period? 
 

Solution. 
9850002200000 10/23 =×  

 
 
1.9. Traffic speed. The following is the frequency distribution of travel times of motor cars on the M1 
motorway from Coventry, England to M10, St. Albans according to a survey conducted in England (see 
Ph.D. thesis of Andrew W. Evans, University of Birmingham, England, 1967). 
 
Mean times (min): 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108,113, 118, 123, 128, 133, 
138, 143, 148, 153, 158, 163, 168 
Corresponding frequencies: 10, 24, 109, 127, 122, 119, 97, 102, 104, 92, 68, 72, 66, 61, 36, 
33, 17, 15, 10, 8, 9, 6, 7, 3 
 
Draw the histogram. Describe the salient features. What is the likely reason for the twin peaks? What 
inference can be made from the mean time interval between the two peaks? 
 
Solution. 
Sketch of histogram: 
 
 
 
 
 
 
           127 
           ⏐122 119 
         109          ⏐ 
         ⏐         97 102 104 
         ⏐                          92 
         ⏐                            ⏐ 
         ⏐                             68 72 66 
         ⏐                                         61 
         ⏐                                            ⏐ 
         ⏐                                            36 
         ⏐                                                33 
     24⏐                                                   17 15  
 10⏐                                                                  10 8  9  6  7 
⏐                                                                                           3  
 
53   63   73   83   93   103   113   123   133   143   153   163  mins. 
(Mean times of travel) 
 
Shape of histogram with twin peaks indicate a mixed distribution. 
Those driving non-stop and those stopping in rest areas. 
From the mean distances between successive peaks at the top, the mean stopping time 
is about 25 minutes. 
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1.10. Average speed. On a certain country road that runs from a coastal town to a village in the 
mountains, the average speed of motor cars is 80 km/hr uphill and 100 km/hr downhill. What is the 
average speed for a journey from the town to the village and back? 
 
Solution. 
Let distance = x kilometers 
Average speed = 2x/(x/80+x/100) = 88.9 kilometers per hour, using the harmonic 
mean. 
 
 
1.11. Annual rainfall. Catchment-averaged annual rainfall in the Po River basin of Italy for the 61-
year period from 1918 to 1978 are given in the penultimate column of Table E.7.2. Draw a stem-and-
leaf plot and a box plot of the data. Comment on the type of distribution. 
 
Solution. 
Ranked mean annual rainfall in mm in the Po river basin in Italy from 1918 to 1978: 
  807     846     876     885     886     896     909      913     922     940 
  940     950     959     969     978     986     987      993      995    997 
  999   1011   1015   1017   1026   1028   1029    1046    1046   1051 
1090   1096   1100   1110   1112   1123   1133    1133    1142   1159 
1171   1196   1197   1215   1210   1228   1259    1264    1290   1318 
1323   1345   1349   1356   1362   1422   1496    1501    1529   1564 
1654 
n = 61. Median  = 1,090 mm. Medians of the bottom and top halves of the ranked 
data: 

2Q

1Q  = (978 + 986)/2 = 982 mm;       = (1,228 + 1,259)/2 = 1,243.5 mm:     3Q
Range r = 1,654 – 807 = 847 mm; iqr =  -  = 1,243.5 – 982 = 261.5 mm 3Q 1Q
.To demarcate high outliers add 1.5 iqr 
= 1.5 ×261.5 = 392.25 mm to ; hence demarcation point ≈ 1,636 mm 3Q
 
Stem-and-leaf plot 
     5   8⏐1   5   8   9   9 
   18   9⏐0   1   1   2   4   5   5   6   7   8   9   9   9 
(13) 10⏐0   0   0   1   2   2   3   3   3   5   5   5   9   
  30  11⏐0   0   0   1   3   3   3   4   6   7 
  20  12⏐0   0   2   2   3   6   6   9 
  12  13⏐2   2   5   5   6   6 
    6  14⏐2 
    5  15⏐0   0   3   6 
    1  16⏐5 
 
Sketch of box and whiskers plot: 
 (Data signposts:lowest value, 3 quartiles, high outlier limit, 1 outlier) 
                  _______________ 
                 ⏐            ⏐            ⏐ 
   ⏐            ⏐______⏐______⏐                                     ⏐       ⏐ 
807          982     1,090     1,243.5                               1,636 1,654 mm 
                                          Quartiles 1Q 2Q 3Q
800   900  1,000  1,100  1,200  1,300  1,400  1,500  1,600     1,700mm 
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Comments: The distribution is not symmetrical. It has a long right tail, The highest 
value is a suspected outlier. 
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1.12. Rock test. A contractor engaged in building part of a sewer tunnel claimed that the rock was 
harder than described in his contract with a District Council in the United Kingdom and thus more 
work was required to construct the tunnel than anticipated. An independent company made tests to 
verify the contractor's claim. Among these were uniaxial compressive strengths, of which 123 
specimens are listed here, in meganewtons per square meter. 
 
2.40, 22.08, 16.80, 4.80, 21.36, 9.12, 9.36, 3.60, 15.36, 15.60, 6.24, 9.84, 16.08, 30.00, 20.40, 
12.96, 19.20, 10.32, 15.84, 62.40, 40.80, 4.80, 7.20, 8.88, 14.40, 14.88, 5.76, 18.72, 12.48, 
11.04, 8.64, 19.20, 8.16, 18.96, 8.64, 12.00, 14.88, 17.52, 12.48, 13.44, 9.36, 11.28, 8.88, 
15.12, 9.36, 17.28, 26.40, 4.32, 11.28, 7.92, 13.92, 11.76, 9.60, 8.40, 9.84, 27.60, 6.00, 14.40, 
8.88, 17.04, 12.48, 9.84, 10.80, 12.24, 12.00, 13.20, 11.28, 11.76  11.76, 8.00, 9.36, 15.12, 
11.52, 16.08, 10.80  14.64, 8.40, 13.44, 10.56, 9.12, 13.44, 12.72, 13.68, 11.28, 5.52, 11.04, 
12.00, 7.20, 8.64, 11.76, 8.64, 7.68, 7.68, 13.92, 6.48, 7.20, 7.92, 9.60, 8.64, 9.12, 12.96, 
9.36, 14.64, 9.12, 8.88, 20.40, 17.28, 8.64, 11.76, 7.92, 7.68, 11.04, 12.48, 14.40, 9.84, 9.12, 
8.40, 12.00, 4.80, 12.72, 9.60, 8.64, 9.84 
Draw histograms using Eqs. (1.1.1) and (1.1.2) for the class widths. What do you notice about the 
histograms in general? Draw a box and whiskers plot. What evidence is there to support the 
contractor’s claim? 
 
Solution. 
Ranked uniaxial compressive strengths in meganewtons per square meter: 
  2.40    3.60    4.32    4.80    4.80    4.80    5.52    5.76    6.00    6.24 
  6.48    7.20    7.20    7.20    7.68    7.68    7.68    7.92    7.92    7.92 
  8.00    8.16    8.40    8.40    8.40    8.64    8.64    8.64    8.64    8.64 
  8.64    8.65    8.88    8.88    8.88    8.88    9.12    9.12    9.12    9.12 
  9.12    9.36    9.36    9.36    9.36    9.36    9.60    9.60    9.60    9.84 
  9.84    9.84    9.84    9.84  10.32  10.56  10.80  10.80  11.04  11.04 
11.04  11.28  11.28  11.28  11.28  11.52  11.76  11.76  11.76  11.76 
11.76  12.00  12.00  12.00  12.00  12.24  12.48  12.48  12.48  12.48 
12.72  12.72  12.96  12.96  13.20  13.44  13.44  13.44  13.68  13.92 
13.92  14.40  14.40  14.40  14.64  14.64  14.88  14.88  15.12  15.12 
15.36  15.60  15.84  16.08  16.08  16.80  17.04  17.28  17.28  17.52 
18.72  18.96  19.20  19.20  20.40  20.40  21.36  22.08  26.40  27.60 
30.00  40.80  62.40   
 
n = 123. Median  = 11.28. Medians of the bottom and top halves of the ranked data: 2Q

1Q  = 8.64;       = 14.40. 3Q
Range r = 62.40– 2.40 = 60.00; iqr =  -  = 14.40– 8.64 = 5.76 3Q 1Q

9.7123log3.31 10 =+=cn  or 
9.25)76.52/(12360)2/( 3/13/1 =××== iqrrnnc  

To demarcate high outliers add 1.5 iqr 
= 1.5 × 5.76 ≈ 8.64 to , hence demarcation point = 23.04  3Q
 
Sketch histograms. (1)Take  = 8; class width = r/8 ≈ 8 cn
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            __82__ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
          ⏐           ⏐ 
    21  ⏐           ⏐ 
⏐                        15   
⏐                               ⏐ 
⏐                                     3                   1                      1  
⏐                                         ⏐          |           |           |            | 
0        8        16        24       32       40        48        56         64 
 
 
(2) Take  = 25; class width = r/25 ≈ 3 cn
 
              39  
            ⏐   ⏐ 
            ⏐   ⏐ 
            ⏐   ⏐ 
        27      ⏐ 
        ⏐          23 
        ⏐              ⏐ 
        ⏐              ⏐ 
        ⏐              ⏐ 
        ⏐               12 
     8 ⏐                    ⏐ 
    ⏐                           6  
  1⏐                             ⏐ 2   1    2                       1                                       1                                   
⏐                                                   |                 ⏐   ⏐                                   |    | 
0  3  6  9  12  15  18  21  24  27  30  33  36  39  42  45  48  51  54  57  60  63 
Assymetrical histograms. 
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Sketch of box-and-whiskers plot: 
(Data signposts:lowest value, 3 quartiles, outlier limit, 5 outliers incl. highest value) 
            ________ 
           ⏐       ⏐    ⏐ 
   ⏐      ⏐___⏐__⏐          ⏐     ○   ○   ○                  ○                                        ⏐ 
2.40 8.64 11.28 14.40 23.0 26.4 27.6 30.0         40.8                                   62.4 
                          Quartiles 1Q 2Q 3Q
0      5      10      15      20      25      30      35      40      45      50      55      60      65  

 

 
 
Large skewness and 5 outliers. The shape of the histograms and the high number of 
outliers support the contractor’s claim. 
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1.13. Soil erosion. Measurements taken on farm lands of the amounts of soil washed away by erosion 
suggest a relationship with flow rates. The following results are taken from G.R. Foster, 
W.R.Ostercamp and L.J.Lane, “Effect of Discharge Rate on Rill Erosion”, Winter 1982 Meeting of the 
American Society of Agricultural Engineers: 
 

Flow (L/s)  0.31 0.85 1.26 2.47 3.75 
Soil eroded (kg) 0.82 1.95 2.18 3.01 6.07 

 
Draw a plot of the data. Comment on the results. 
 
Solution. 
Sketch of soil eroded in kilograms vs. flow in liters per second 

 
       6    ⏐                                                                                                      ○ 
       5    ⏐               
       4    ⏐               
       3    ⏐                                                                 ○  
       2    ⏐                     ○       ○ 
       1    ⏐     ○ 
       0      ________________________________________________________ 
             0         0.5         1.0        1.5          2.0          2.5          3.0         3.5         4.0   
                  Flow in liters per second   → 
 

 

 
 
Soil erosion tends to increase linearly with flow rate. Hence a relationship can be 
made for predictive purposes. However one should be cautioned about the validity of 
extrapolations beyond the range of flows observed. 
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1.14. Concrete cube test. The following 28-day compressive strengths, in newtons per square 
millimeter, were obtained from test results on concrete cubes in England: 
 
50.5, 45.8, 49.6, 47.7, 54.0, 49.4, 54.1, 53.1, 56.5, 55.2, 52.7, 52.0, 54.2, 55.2, 53.4, 51.0, 
53.1, 48.5, 51.0, 58.6, 52.5, 49.5, 51.1, 48.1, 50.2, 49.3, 47.3, 52.9, 52.8, 49.5, 48.8, 53.8, 
47.3, 47.7, 52.2  45.7, 53.4, 48.5, 49.1, 43.3 
 
The data were supplied by Dr.J.E.Ash, University of Birmingham, England 
Compare these results with the compressive strengths in Table E.1.2 by drawing back-to-back stem-
and-leaf plots. For this purpose, plot the foregoing results on the left of the stem with reference to 
Fig. 1.3.1 and omit the cumulative frequencies. Comment on the differences in the distributions. 
 
 
Solution. 
Back-to-back stem-and-leaf plot of compressive strengths: Table E1.2 data on right: 
                    3⏐43⏐ 
                      ⏐44⏐ 
                8  7⏐45⏐   
                      ⏐46⏐ 
        7  7  3  3⏐47⏐ 
        8  5  5  1⏐48⏐ 
6  5  5  4  3  1⏐49⏐9 
                5  2⏐50⏐7 
            1  0  0⏐51⏐ 
9  8  7  5  2  0⏐52⏐5 
    8  4  4  1  1⏐53⏐2  4 
            2  1  0⏐54⏐4  6  
                2  2⏐55⏐8 
                    5⏐56⏐3  7  9 
                      ⏐57⏐8  9 
                    6⏐58⏐8  9 
                      ⏐59⏐0  6  8  8  
                      ⏐60⏐0  2  5  5  5  9  9 
                      ⏐61⏐1  5  9 
                      ⏐62⏐ 
                      ⏐63⏐3  4 
                      ⏐64⏐9  9 
                      ⏐65⏐7 
                      ⏐66⏐ 
                      ⏐67⏐2  3 
                      ⏐68⏐1  3  9 
                      ⏐69⏐5 
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Alternative back-to-back stem-and-leaf plot of strengths: Table E1.2 data on right 
                                      ⏐4⏐ 
                                    3⏐  ⏐ 
                                      ⏐  ⏐ 
                        7  7  6  6⏐  ⏐ 
    9  9  9  9  9  9  8  8  8⏐  ⏐ 
        1  1  1  1  0  0  0  0⏐5⏐0  1 
3  3  3  3  3  3  3  3  2  2⏐  ⏐3  3  3 
                5  5  4  4  4  4⏐  ⏐4  5 
                                    7⏐  ⏐6  6  7  7 
                                    9⏐  ⏐8  8  9  9  9 
                                      ⏐6⏐0  0  0  0  0  1  1  1  1  1  1 
                                      ⏐  ⏐2  2  3  3 
                                      ⏐  ⏐5  5  
                                      ⏐  ⏐6  7  7 
                                      ⏐  ⏐8  8  9 
                                      ⏐7⏐0 
The two distributions of compressive strengths of concrete (given in ). Both 
distributions have low coefficients of skewness. The mean and variance are higher for 
data from Table E1.2 

2mm/N
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1.15. Water quality. Water quality measurements are taken daily on the River Ouse at Clapham, 
England. The concentrations of chlorides and phosphates in solution, given below in milligrams per 
liter, are determined over a 30-day period. 
 
Chloride: 64.0, 66.0, 64.0, 62.0, 65.0, 64.0, 64.0, 65.0, 65.0, 67.0, 67.0, 74.0  69.0, 68.0, 68.0, 
69.0, 63.0, 68.0, 66.0, 66.0, 65.0, 64.0, 63.0, 66.0, 55.0, 69.0, 65.0, 61.0, 62.0, 62.0 
Phosphate: 1.31, 1.39, 1.59, 1.68, 1.89, 1.98, 1.97, 1.99, 1.98, 2.15, 2.12, 1.90 1.92, 2.00, 
1.90, 1.74, 1.81, 1.86, 1.86, 1.65, 1.58, 1.74, 1.89, 1.94, 2.07, 1.58, 1.93, 1.72, 1.73, 1.82 
 
Compare the coefficients of variation v. Draw a scatter diagram and compute the correlation coefficient 
r. Comment on the results. Do you see any role in this association for predictive purposes? 
 
Solution. 
 
Coefficients of variation of 4.9% and 10.7%. Scatter diagram follows. r = 0.027.  

 
 
 
There is no role in the association for predictive purposes.  
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1.16. Timber strength. From the timber strength data of Table 1.1.3, compute the 3 percent trimmed 
mean by omitting 3 percent of the observations from the highest and the lowest extremities of the 
ranked data. Compute the standard deviation  and the coefficients of skewness g1 and kurtosis g2. 
Compare with the results for the full sample (as given in Table 1.2.2). 

$s

 
Solution. 
                                     Mean   Std dev  Coef. of variation  Coef of skew   Coef of kurt 
Sample 3% trimmed      8.94     7.94                20%                  0.14               2.48  
Full sample                  39.09     9.92                25%                  0.15               4.46 
 
It is seen that trimming reduces all the statistics. 
 
 
1.17. Concrete beam. Joist-hanger tests carried out at the University of Birmingham, England, on 
concrete beams gave observations of deflections in millimeters and failure load in kilograms. The 
following results pertain to 75 mm × 150 mm hangers on which timber joists rest: 
 
Failure load: 1903, 1665, 1903, 1991, 2229, 1910, 2025, 1991, 1882, 2032, 1896, 1346 
Deflection: 0.69, 0.67, 0.80, 0.50, 0.74, 0.78, 0.57, 0.91, 0.54, 0.50, 0.97, 0.62 
 
Determine by drawing a scatter diagram and computing the correlation coefficients whether there is 
any association between the two variables. Discuss your results. 
 
Solution. 
Scatter diagram follows. 
 

 
 
 r = 0.069. There is no role in the association for predictive purposes.  
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1.18. Hurricane frequency. Hurricane damage is of great concern to civil engineers. The frequencies 
of hurricanes affecting the east coast of the United States each year during a period of 69 years are 
given as follows by H.C.S.Thom (1966), Some Methods of Climatological Analysis, World 
Meteorological Organisation, Geneva: 
 

Number of hurricanes: 0 1 2 3 4 5 6 7 8 9 
Frequency: 1 6 10 16 19 5 7 3 1 1 

 
Draw a line diagram and comment on its form. Discuss differences or similarities between this diagram 
and Fig. 1.1.1. 
 
Solution. 
Sketch of line diagram: frequency vs. number of hurricanes 
 
19                                   ⏐ 
18                                   ⏐  
17                                   ⏐   
16                          ⏐      ⏐  
15                          ⏐      ⏐ 
14                          ⏐      ⏐ 
13                          ⏐      ⏐ 
12                          ⏐      ⏐ 
11                          ⏐      ⏐ 
10                  ⏐      ⏐      ⏐  
09                  ⏐      ⏐      ⏐   
08                  ⏐      ⏐      ⏐    
07                  ⏐      ⏐      ⏐              ⏐ 
06         ⏐      ⏐      ⏐      ⏐               ⏐ 
05         ⏐      ⏐      ⏐      ⏐      ⏐      ⏐ 
04         ⏐      ⏐      ⏐      ⏐      ⏐      ⏐ 
03         ⏐      ⏐      ⏐      ⏐      ⏐      ⏐      ⏐ 
02         ⏐      ⏐      ⏐      ⏐      ⏐      ⏐      ⏐ 
01 ⏐___⏐___⏐___⏐___⏐___⏐___⏐___⏐___⏐___⏐ 
     0       1      2       3      4       5      6       7      8       9  Number of hurricanes 
 
More symmetrical than Fig. 1.1.1 in text. Can be approximated to a normal 
distribution. 
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1.19. Air pollution. On April 13, 1994, the following concentration of pollutants were recorded at 
eight stations of the monitoring system for pollution control located in the downtown area of Milan, 
Italy. 

Station: Aquileia Cenisio Juvara Liguria Marche Senato Verziere Zavattari 
NO2,  

 (μg/m3) 

130 130 115 120 135 142 90 116 

CO, 
 (mg/m3) 

2.9 4.4 3.6 4.1 3.3 5.7 4.8 7.3 

 
Compare the coefficients of variation v of the pollutants and determine their correlation r. 
 
Solution. 
                           Coef. of variation  Coef. of correlsation 

2NO                              1.2%                  -0.15 
  CO                              3.0% 

2NO  and CO have low variation and are uncorrelated 
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1.20. Storm rainfall. The analysis of storm data is essential for predicting flood hazards in urban areas. 
Maximum rainfall depths recorded at Genoa University in Italy, for durations varying from 5 minutes 
to 3 hours, are presented here for the years 1974-1987. 

         Maximum rainfall depth recorded at Genoa University, Italy (mm) 

Duration (min) 5 10 20 30 40 50 60 120 180 

Year:          
1974 12.1 19.5 28.8 30.5 32.4 35.5 38.7 48.0 51.6 
1975 10.1 14.9 26.7 31.2 34.7 38.2 40.2 55.0 56.0 
1976 17.9 20.0 31.1 37.2 41.1 51.0 55.7 67.1 80.6 
1977 20.0 32.6 52.6 72.4 90.1 108.8 118.9 146.5 157.3 
1978 5.1 13.6 16.0 21.3 24.1 24.6 25.0 40.7 49.9 
1979 20.5 26.1 36.3 46.1 49.3 50.3 55.6 65.2 90.1 
1980 10.0 15.7 20.9 25.0 30.5 38.0 40.1 58.0 63.8 
1981 12.0 27.9 47.9 56.0 70.0 80.0 89.4 106.9 114.2 
1982 10.0 14.4 20.0 23.3 25.1 26.4 27.2 34.3 41.2 
1983 10.0 12.1 17.3 19.2 22.1 27.3 32.7 54.4 66.5 
1984 20.1 32.8 60.0 65.7 76.1 92.8 105.7 122.3 122.3 
1985 7.6 8.1 13.0 16.5 21.6 25.3 25.3 27.0 32.3 
1986 8.7 11.7 20.0 22.9 26.1 26.3 27.6 41.1 56.7 
1987 24.6 36.7 56.7 73.9 93.9 110.1 128.5 180.8 188.7 

 
Compute the mean x  and standard deviation  and coefficient of skewness g1 for each duration. Are 
there some regularities in the growth of these statistics with increasing duration? Comment on the 
results and the physical relevance to storm characteristics. 

$s

 
Solution. 
Duration, min         5         10        20        30       40        50       60        120        180 
Mean, mm            13.5     20.4    32.0      38.7    45.5     52.5    50.8      60.5        69.4 
Std dev, mm           5.9       9.2    16.1       20.4    26.0     31.7    36.5      47.3      48.9 
Coef of var,%        44        45        50        53       57        60       72         78          70 
Coef of skew        0.50    0.49     0.60     0.68    0.85      0.88    1.12      1.58       1.39 
 
There is higher uncertainty for longer storms. The means and standard deviations 
increase with increasing durations, also distributions become more skewed. The lower 
variability of short bursts of rainfall suggest that rainfalls of short duration , 30 
minutes or less, have similar physical characteristics. 
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1.21. Carbon dioxide. The records of atmospheric trace gases are used in the study of global climatic 
changes. Monthly carbon dioxide concentrations recorded at Mount Cimone, Italy, from 1980 to 1988 
are given here. 

     Carbon dioxide concentration recorded at Mount Cimone, Italy, in parts per million in
volume 

                                                                         Month 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Year             

1980 340.87 339.83 342.27 342.51 338.27 335.52 330.14 328.81 331.17 335.03 339.05 340.43
1981 341.47 343.11 342.39 342.51 339.49 335.28 330.77 330.30 333.55 336.80 339.41 343.18
1982 341.70 344.38 345.68 345.70 340.80 336.66 334.65 332.40 335.15 339.26 341.19 345.18
1983 342.38 346.18 345.00 344.24 342.32 338.34 336.03 335.00 336.57 339.86 343.97 345.61
1984 346.32 349.44 351.33 350.50 346.43 344.35 346.29 335.19 337.59 342.26 344.88 346.91
1985 349.92 348.17 350.62 350.61 345.93 341.43 337.67 337.16 339.40 344.07 349.49 347.40
1986 349.41 351.41 352.29 350.75 348.37 342.96 337.22 338.53 340.90 346.28 348.95 350.52
1987 351.94 353.75 354.79 352.61 350.39 347.38 341.64 341.64 342.19 345.60 350.39 352.36
1988 353.13 355.02 354.96 354.51 352.20 346.71 342.60 344.60 343.66 348.99 352.42 353.27

 
Compute the mean x  and standard deviation  for each year (by rows) and for each month 

(by columns). Because the temporal evolution of the annual mean indicates that carbon dioxide 
increases (probably resulting in global warming) compute the annual rate of increase. Comment on the 
results. 

$s

 
Solution 
Measurements in parts per million in volume 
Year           1980     1981     1982     1983     1984     1985     1986     1987     1988 
Mean        337.0     338.2     340.2    341.3    345.1   345.2     346.5    348.7    350.2 
Std dev         4.8       4.8        4.6        4.0        4.8       5.1          5.3        4.9       4.6 
Annual increase in mean carbon dioxide concentration = (350.2 – 337.0)/8= 1.65 
 
Month     Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct    Nov    Dev 
Mean      346    348    349    348     345      341   337   336     338   342     346    347     
Std dev    4.9     5.9     5.0     4.5     4.9       4.7     5.4   5.2       4.1    4.6      5.0     4.2  
This shows an increase in carbon dioxide in winter months 
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1.22. Historical records of earthquake intensity. Catalogo dei terremoti italiani dall’anno 1000 al 
1980 ("Catalog of Italian earthquakes from year 1000 to 1980") was edited by D. Postpischl in 1985, 
and is available through the National Research Council of Italy. This directory contains all of the 
available historical information on earthquakes that occurred in Italy during the past (nearly) 1000 
years. It also includes values of earthquake intensity in terms of the Mercalli-Canconi-Sieber (MCS) 
index. The following table gives the values of MCS intensity for the city of Rome. 

 

MCS intensity 2 3 4 5 6 7 Total 

      Century        
        XI    2          2 
        XII    1          1 
        XIII    1          1 
        XIV              0 
        XV    1 1 1        3 
        XVI              0 
        XVII    1          1 
        XVIII  7 4 2 2    15 
        XIX 110 125 50 14 1 1 301 
        XX 3  2        5 

Total 113 132 56 22 4 2 329 

 
Draw the line diagram for the whole data and for those recorded in each century. Compare the data 
recorded in the eighteenth century with those recorded in the other centuries. 
 
 
Solution. 
Line diagram for the whole data: frequency vs. MCS intensty 
 
 
 
 
 
 
140        132 
130           ⏐ 
120  113   ⏐ 
110   ⏐      ⏐ 
  80   ⏐      ⏐ 
  70   ⏐      ⏐ 
  60   ⏐      ⏐     56 
  50   ⏐      ⏐      ⏐       
  40   ⏐      ⏐      ⏐       
  30   ⏐      ⏐      ⏐      22 
  20   ⏐      ⏐      ⏐      ⏐           
  10   ⏐___⏐___⏐___⏐___4___2 
         2       3      4       5      6      7 MCS Intensity 
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Line diagram for nineteenth century: frequency vs. MCS intensty 
130         125 
120           ⏐ 
110  110   ⏐ 
  80   ⏐      ⏐ 
  70   ⏐      ⏐ 
  60   ⏐      ⏐ 
  50   ⏐      ⏐      50 
  40   ⏐      ⏐      ⏐ 
  30   ⏐      ⏐      ⏐ 
  20   ⏐      ⏐      ⏐     14 
  10   ⏐___⏐___⏐___⏐___1___1 
         2       3      4       5      6      7 MCS Intensity 
The nineteenth century was extraordinary. When the line diagram for this century is 
compared with that for the whole data from the eleventh century onwards, the 
differences in the frequencies are very small. 
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1.23. Sea waves. Because of scarcity of records, the characteristics of sea waves are often derived from 
other climatological data. For the purpose, the SMB method (named after Sverdrup, Munk, and 
Bretschneider) is widely used in engineering practice [see: U.S. Army Corps of Engineers(1977), Shore 
Protection Manual, Vol. 1, Coastal Engineering Research Center, Washington, DC]. Liberatore and 
Rosso (1983) used this model to simulate sea waves in the upper Adriatic Sea. They investigated two 
different strategies for model calibration, called “no.1” and “no.2” in the table presented here. The table 
also includes the observed and the simulated values of the height of the highest sea wave and of its 
period for measurements taken from August 1977 to September 1978. 

Measured values Simulated values 
  Calibration strategy no. 1 Calibration strategy no. 2 

Height (m) Period (s) Height (m) Period (s) Height (m) Period (s) 
2.26 6.1 1.81 5.4 1.54 5.8 
3.10 4.3 2.93 6.8 2.54 6.4 
3.22 5.7 3.24 7.2 2.80 6.7 
3.84 7.7 3.18 7.1 2.69 6.6 
2.56 5.3 2.74 6.6 2.32 6.1 
2.74 5.7 3.49 7.4 3.00 6.9 
2.28 4.9 2.12 5.8 1.80 5.4 
3.88 6.7 5.10 9.0 4.43 8.4 
2.49 5.0 2.14 5.8 1.81 5.4 
4.22 6.9 4.45 8.8 3.77 7.7 
2.01 5.0 2.57 6.4 2.19 5.9 
2.77 5.9 2.68 6.5 2.27 6.0 
3.61 6.5 3.86 7.8 3.36 7.3 
3.51 7.4 4.02 8.0 3.51 7.5 
2.52 5.0 3.39 7.3 2.95 6.9 
2.12 5.1 2.61 6.5 2.21 6.0 
2.73 6.5 2.22 6.0 1.88 5.5 
3.30 5.4 4.05 8.0 3.49 7.5 

Draw a scatter diagram to compare the observed and simulated values of wave heights and periods. 
Compute the correlation coefficients r. Compute the deviations of the simulated data from the observed 
data, and find the mean x1 , standard deviation  and coefficient of variation v of these deviations. Do 
these results indicate which of the two investigated strategies provides the better representation of sea 
waves from climatological data? 

$s1

 
Solution. 
 H meas Pmeas 

1H  H-  1H 2H  H-  2H 1P  P-  1P 2P  P-  2P
 2.26 6.1 1.81   0.45  1.54   0.72 5.4   0.7 5.8  0.3 
 3.10 4.3 2.93   0.17  2.54   0.56 6.8 -2.5 6.4 -2.1 
 3.22 5.7 3.24 -0.02  2.80   0.42 7.2 -1.5 6.7 -1.0 
 3.84 7.7 3.18   0.66  2.69   1.15 7.1   0.6 6.6   1.1 
 2.56 5.3 2.74 -0.18  2.32   0.24 6.6 -1.3 6.1 -0.8 
 2.74 5.7 3.49 -0.75  3.00 -0.26 7.4 -1.7 6.9 -1.2 
 2.28 4.9 2.12  0.16  1.80  0.48 5.8 -0.9 5.4 -0.5  
 3.88 6.7 5.10 -1.22  4.43 -0.55 9.0 -2.3 8.4 -1.7 
 2.49 5.5 2.14  0.35  1.81  0.68 5.8 -0.3 5.4   0.1 
 4.22 6.9 4.45 -0.23  3.77  0.45 8.8 -1.9 7.7 -0.8 
 2.01 5.0 2.57 -0.56  2.19 -0.18 6.4 -1.4 5.9 -0.9 
 2.77 5.9 2.68  0.09  2.27   0.50 6.5 -0.6 6.0 -0.1 
 3.61 6.5 3.86 -0.25  3.36   0.25 7.8 -1.3 7.3 -0.8 
 3.51 7.4 4.02 -0.51 3.51  0.00 8.0 -0.6 7.5 -0.1 
 2.52 5.0 3.39 -0.87 2.95 -0.43 7.3 -2.3 6.9 -1.9 
 2.12 5.1 2.61 -0.49 2.21 -0.09 6.5 -1.4 6.0 -0.9 
 2.73 6.5 2.22  0.51 1.88 0.85 6.0   0.5 5.5  1.0 
 3.30 5.4 4.05 -0.75 3.49 -0.19 8.0 -2.6 7.5 -2.1 
           
mean 2.953 5.867 3.144 -0.191 2.698 0.256 7.022 -1.156 6.556 -0.689 
stdev 0.660 0.925 0.893 0.529 0.786 0.471 1.020 1.038 0.872 0.950 
cv% 22.3 15.8 28.4 276 29.1 184 14.5 89.8 0.133 138 
           
Cor 0.809    0.801  0.433  0.443  
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Summary of statistics of deviations from observed heights and periods 
F     rom above table 
                                         Strategy 1                                 Strategy 2 
                                    Height, m    Period, s               Height, m      Period, s 
Coef of cor with             0.81            0.43                        0.80             0.44 
   measured data 
Mean                              0.191         1.156                      0.256            0.689 
Std dev                           0.529         1.038                       0.471           0.950 
Coef of var,%                  276             90                          184                137 
 
Very high variabilities of the deviations from observed heights, also in the case of 
periods of waves.The coefficients of correlation are artificially high. There is no clear 
indication of the better strategy. 
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1.24. Surveying. A triangulated network is used to determine the position of three points in space, 
denoted by u1 ≡ (x1 , y1), u2 ≡ (x2 , y2), and u3 ≡ (x3 , y3), by measuring their mutual distances, and 
their distances from two reference points, uA ≡ (xA , yA),and uB ≡ (xB , yB), as shown in Fig. 1.P1. 
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The Cartesian coordinates of the reference points are xA = yA = 0, xB  = 92, and yB = 40 m. The table 
of the measured distances is given next. 

 uA uB u1 u2 u3 

uA 0 100 50 71 92 
uB 100 0 86 70 40 
u1 50 86 0 26 99 
u2 71 70 26 0 93 
u3 92 40 99 93 0 

Using appropriate trigonometric methods find the average location and coefficients of variation of the 
coordinates of point u1 ≡ (x1 , y1). 
 
Solution. 
Use A = 2 atan (sqrt ((s - b)(s –c ) / s / (s - a)))      where s  =  (a + b + c). 
 
1a3= 1.444044   a13= 1.172796   a31= 0.524752    total=3.141593 
ba3= 0.411500   ab3= 1.167992   a3b= 1.562101    total=3.141593 
ba1= 1.035146   ab1= 0.523557   a1b= 1.582890    total=3.141593 
oa2= 0.258003   a12= 2.370727   a21= 0.512863    total=3.141593 
ba2= 0.775380   a2b= 1.576732   ab2= 0.789480    total=3.141593 
ta3 = 1.189948   a23= 1.163935   a32= 0.787710    total=3.141593 
ob3= 1.688071   b31= 1.040624   b13= 0.412898   total=3.141593 
ob2= 0.264909   b12= 0.782288   b21= 2.094395   total=3.141593 
tb3 = 1.964650   b23= 0.408439   b32= 0.768504   total=3.141593 
o23= 1.669384   o32= 0.264422    t13= 1.207787   total=3.141593 
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Coordinates of point u1                                              x                        y 
  1  1a3 & 1A                                                        6.320654     49.598880    
  2  ba1 + ba3 & 1A                                              6.191542     49.615170  
  3  ba3 + ba2  + 1 a2  & 1A                                 6.279009     49.604180 
  4  a31 & 1A                                                        6.320652     49.598880  
  5  ba2 + ba3& 2A & ba2 + ba3 –a21& 12         6.279009     49.604180 
  6  1a2 + 2a3 & 1A                                              6.126843     49.623200 
  7  2a3 & 2A  & 2a3-a21&12                              6.126842     49.623200 
  8  a32 & 23  & ta3-a21&12                                5.822723     49.623200 
  9  B + 1ba – ba3  & 1B                                       6.539369     49.616680 
10  B & ob3 - ab3 – ba3  & 1B                             6.506444     49.319430 
11  1b2+1b3 & 2B & 12                                       6.561309     49.250940 
12  1b2+1ba –ba3 & 2B & 12                               6.650522    49.477430 
13  2b3 & 2B & 12                                                6.863803    50.009780 
14 a31 +o32&23 &  2a3 –a21 & 12                      5.726768    49.719150 
15  23a & 23 & 12                                                 6.126844     49.623200   
16  231+13a & 23 & 12                                     6.223382     49.719150    
 
Mean x      6.291607        std dev x      0.291388    coef var x    4.631372 
Mean y    49.601670        std dev y      0.166066    coef var y    0.334798 
y coordinate is more reliable  
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Applied Statistics for Civil and Environmental Engineers  
Problem Solution Manual 
by N.T. Kottegoda and R. Rosso 

Chapter2- Basic Probability Concepts 
 
2.1. Football stadium balcony. A civil engineer is asked to assess the reliability of a balcony 
overlooking a football stadium. The maximum number of people who can be accommodated in the 
balcony is 20. The weight of an individual can be approximately 50 kg, 75 kg, or 100 kg. 
(a) Sketch the sample space. 
(b) Show the following events involving numbers of people and their weights at any time: 

                   A ≡ {there are more than 16 people in the balcony}, 
                   B ≡ {the total weight of people in the balcony is 1500 kg}, 
                   C ≡ {there are more than 15 people of the maximum weight}. 
 

Solution. 
Let N50, N75  and N100  denote the numbers of people on the balcony weighing 50, 75 and 100 
kg respectively, N = N50 + N75  + N100  is constrained by 0 ≤ N ≤20. These inequalities define a 
tetrahedron in the space (N50 + N75 + N100 , 0). This represents the (DISCRETE/LATTICE) 
sample space Ώ. The events A, B and C are proper subsets of Ώ. The sample space is as 
follows. 
 
 
                                          ↑ N100                                    
                                           | 
                                           | 
                                      20/|\  
                                         / | \ 
                                         / | \  
                                      0/ /\ \    
                                       / /  \ \  
                                      / /    \ \  
                              20 //-----\\ 20 
                                  /          \ 
                           N50 /            \ N75 

 
 
A = {16 < N ≤ 20} is represented by the space bounded by the two tetrahedrons (0, 20, 20, 20) 
and (0, 17, 17, 17); integer values only: 
                                          ↑ N100                                   
                                           | 
                                           | 
                                     20 /|\ 
                                   17 / /|\ \ 
                                       / / | \ \ 
                                   0 / / /\ \ \ 
                                      / //  \\ \     
                                17 / //--- \\ \ 17 
                              20 //----- \\ 20 
                                  /           \ 
                             N50 /              \ N75 
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B is represented by the intersection of the plane {50× N50 + 75 × N75  + 100 × N100 = 1500} 
with the tetrahedron (0, 20, 20, 20). This means the integer values that are common to both. 
 
                                          ↑ N100  
                                           | 
                                           | 
                                      20/|\  
 ____________________/ | \ ____________________________________________ 
____________________ / | \ _____________________________________________ 
 _________________ _0/ /\ \ Plane________________________________________ 
__________________  / /  \ \ {50× N50 + 75 × N75  + 100 × N100 = 1500)___________ 
__________________  / /    \ \ ____________________________________________ 
                              20 //-----\\ 20 
                                  /          \ 
                           N50 /            \ N75 
 
C ≡ {N100 > 15} represents integer values bounded by the horizontal plane passing through 
{N100 = 16} and the tetrahedron (0, 20, 20, 20): 
                                          ↑ N100                                    
                                           | 
                                           | 
                                      20/|\  
__________________ 16/ | \ ______________________ Horizontal plane passing _ 
 __________________ 0/ /\ \______________________ through {N100 = 16} 
___________________ / /  \ \ _____________________  
                                      / /    \ \  
                              20 //-----\\ 20 
                                  /          \ 
                           N50 /            \ N75 

 
additional sketch 
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2.2. Reservoir inflows. A reservoir impounds water from a stream X and receives water Y deviated via 
a tunnel from an adjoining catchment. The annual inflow from source X can be approximated to 1 or 2 
or 3 units of 106 m3, and that from source Y is 2 or 3 or 4 units of 106 m3. On appropriate Venn 
diagrams show the following events. 
(a) A ≡ {source X is less than 3 units}. 
(b) B ≡ {source Y is more than 2 units}. 
(c) A + B. 
(d) AB. 
 
Solution. 
Y        ______B ≡ {2<Y ≤ 4}_ 
 ↑        | ___________             | 
4|        || ●            ●   |       ●    |        
  |        ||                     |             | 
3|        || ●            ●   |       ●    | 
  |        ||_________ _|______ | 
2|         | ●            ●   |       ● 
  |         |__________ |  
1|         A ≡{1 ≤X ≤2} 
  | 
0|_____1______2______3_____→X 
 
  ↑ Y     __________________ 
4|         |●           ●             ●   |        
  |         |         A+B                  | 
3|         |●            ●            ●   | 
  |         |                      ______| 
2|         |●            ●    |       ● 
  |         |__________ |  
1|           
  | 
0|_____1______2______3_____→X 
 
 
  ↑ Y   ____________ 
4|        | ●            ●    |       ● 
  |        |        AB        | 
3|        | ●            ●    |       ● 
  |        |___________| 
2|          ●            ●           ● 
  |           
1|           
  | 
0|_____1______2______3_____→X 
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2.3. Sequential construction. The sequence of construction of a structure involves two phases. 
Initially, the foundation is built, then work commences on the superstructure. The completion of the 
foundation can take 4 or 5 months, which are equally likely to be needed. The superstructure requires 5, 
6 or 7 months to be completed, with equal likelihood for each period. The time of completion of the 
superstructure is independent of that taken to complete the foundation. List the possible combinations 
of times for the completion of the project, and determine the associated probabilities. 
 
Solution. 
 

TIME FOR SUPERSTRUCTURE SS→             5 MONTHS   6 MONTHS  7 MONTHS  

TIME FOR FOUNDATION F OF 4 MONTHS           

PROBABILITIES                                  ½ 

                                                        →                            1/3                 1/3                    1/3 

TIME FOR FOUNDATION F OF5 MONTHS→     

PROBABILITIES                                  ½ 

                                                    →                                 1/3                 1/3                    1/3 

_____________________________________________________________________ 

DURATIONS, F/SS            4/5             4/6               4/7             5/5         5/6            5/7 

PROBABILITIES                 1/6             1/6              1/6             1/6          1/6           1/6 

MONTHS FOMPLETION OF  PROJECT         9           10          11         12  

PROBABI.LITIES                                              1/6        1/3         1/3       1/6 

__________________________________________________________________ 

 

 

38



Applied Statistics for Civil and Environmental Engineers 
BY N.T. KOTTEGODA AND R. ROSSO © 

Problem Solution Manual for Chapter 2 - Page 5 (out of 32) 

2.4. Dam spillway. An engineer is designing a spillway for a dam. The evaluation of maximum flow 
data is based on a short period of recordkeeping. The critical flow rates and their probabilities are 
estimated from A, discharge measurements, B, rainfall observations, and C, combination of flow 
discharge and rainfall data, as follows: 
                    Event A from flow data:       8,000 to 12,000 m3/s,    Pr[A] = .5. 
                    Event B from rainfall data: 10,000 to 15,000 m3/s,    Pr[B] = .6. 
                    Event C = A + B:                  8,000 to 15,000 m3/s,    Pr[C] = .9. 
(a) Sketch the foregoing events. 
(b) Show on the sketch AB, AC, and Ac+Bc. 
(c) Determine the probabilities Pr[AB] and Pr[Ac+Bc ]. 
(d) Determine the conditional probabilities Pr[A | B] and Pr[B | A]. 
 
Solution. 
                                                                        ↓ CB)(A +   
    ___________        ___________      _____↓______      ___________ 
    |                     |       |    _______   |      |     _______   |      |                    | 
15|                     |       |    |            |   |      |    |             |   |      |                    | 
14         CA        |       |    |            |   |      |    |  A+B= |   |      |      Ac+Bc.    |   
13|    _______   |       |    |     B    |   |      |    | __C__ |   |       |    ______    |  
12|    |            |   |       |    |            |   |      |    | ////////// |   |      |    |            |   |  
11|    |            |   |       |    |            |   |      |    | / A ≡ // |   |      |    |   AB   |   |   
10|    |     A    |   |       |    |______|   |      |    | //  AC//|   |      |    | _____ |   | 
  9|    |            |   |       |          CB      |      |    | ///////////|   |      |                     |   
  8|    |______|   |       |                     |      |    |______ |   |      |                     |  
  7|__________ |       |__________ |      |___________|      |__________ | 
 
Pr[AB] =  Pr[A] + Pr[B] – Pr[A+B] = 0.5 + 0.6 – 0.9 = 0.2 
Pr[Ac+Bc] = Pr[(A-B)c] = 1 – Pr(AB) = 1 – 0.2 = 0.8 
Pr[A/B] = Pr(A-B) / Pr(B) = 0.2 / 0.6 = 1/3 
Pr[B/A] = Pr[AB] / Pr[A] =  0.2 / 0.5 = 2/5      
 
additional sketch 
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2.5. Wind direction and intensity. Strong winds in a particular area come uniformly from any 
direction from north, θ = 0°, to east, θ = 90°. Wind speed V is also variable, and it can exceed 50 km/h 
with a probability of .04, and 100 km/h with a probability of .01. 
(a) Sketch the sample space for wind speed and direction. 
(b) Sketch the following events: A ≡ {V > 50 km/h }, B ≡ {50 < V < 100 km/h}, AB, A + B, C ≡ {30 < θ  

<60°}, AC, and BC. 
(c) Find Pr[B] and Pr[BC] assuming that wind speed and direction are stochastically independent. 
 
Solution. 
 
  V ↑                            V ↑                             V ↑                              V ↑ 
      |                    |             |                   |              |                    |              |      |//// |      | 
100|                    |       100|                   |        100|__________|        100|      | ////|      | 
      |        Ώ         |             |        A        |              |        B         |               |      | C  |      | 
  50|                    |         50|_________ |          50|__________|          50|      |//// |      | 
      |                    |             |                   |              |                    |              |      |/////|      | 
    0|__________|           0|_________ |            0|__________|            0|___|___|___| 
      0  30  60  90 → θ       0  30  60  90 → θ       0  30  60  90 → θ       0  30  60  90 →θ 
 
 
  V ↑                            V ↑                             V ↑                              V ↑ 
      |                    |             |                   |              |      |      |      |              |                    | 
100|__________|       100| A + B ≡ A |        100|      |      |      |        100|     ____       | 
      |      AB         |             |                   |              |     |AC |      |              |     |BC|       | 
  50|__________|         50|_________ |          50|      |___|      |          50|     |___|       | 
      |                    |             |                   |              |                    |              |                   | 
    0|__________|           0|_________ |            0|__________|            0|_________ | 
      0  30  60  90 → θ       0  30  60  90 → θ       0  30  60  90 → θ       0  30  60  90 →θ 
 
Pr[A] = Pr[V >50] = 0.04 
Pr[D] = Pr[V>100] = 0.01 
Pr[B] = Pr[50<V<100] = Pr[A] – Pr[D] = - 0.4 – 0.1 = .03 
Pr[C] = 1/3 
Pr[BC] = Pr[B] ×Pr[C]= 0.03×1/3 =0.01 
 
additional sketch 

 
 

Ω 
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2.6. Irrigation water supply. A dam is designed to supply water to three separate irrigation schemes, 
I1, I2, and I3. The demand for the first scheme I1  is 0 or 1 or 2 m3/s, whereas that for I2 and I3 is 0 or 

2 or 4 m3/s in each case. 
(a)     Sketch the sample space for I1, I2, and I3 separately, and for I1, I2, and I3 jointly. 
(b)     Show the following events: 
 • A ≡ {I1 > 1 m3/s}; 

 • B ≡ {I2 ≥ 2 m3/s}; 

 • C ≡ {I3 < 4 m3/s}; 

 • Ac; AB; A + B; (A + B)c; ABc; AC; AcC; BcC; BcCc; (where feasible). 
(c) Assuming that the demands from the three schemes are independent of each other, and that all 

possible demands are equally likely to occur, find the probability that the total water demand 
exceeds 5 m3/s. 

 
Solution. 
A simple sketch of the sample space for I1, I2, and I3 jointly and the events       A ≡ {
I1 > 1 m3/s} and Ac{I1 ≤ 1 m3/s}. 
      4m3/s;  2 m3/s↑ 1I  ;  4m3/s 
                         A● 
                         /  |  \ 
     2 m3/s;  A ●   |   ●A  
                     /      |      \        
  0 m3/s;  A●       ●A     ●A 2 m3/s↑ 
                  |\      / | \      /|       
                  |  \  /   |   \  /  | 
                  | A●   | A●   | 
                  |  /   \  |  /   \  | 
1m3/s↑ CA ●        ●        ● CA 1 m3/s↑ 
                  | \     /A \     / | 
                  |  ●  CA   ●    | 
                  |  /  \ CA /  \  | 
4 m3/s; CA ●        ●        ● CA  0 m3/s↑ 
                   \        |        /  
                     \   CA    /  
      2 m3/s CA ●   ●   ● CA 2 m3/s 
                     2I \  |  / 3I     
                           ● CA       
                           0 m3/s 
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A simple sketch of the events BcC and some of the events B ≡ {I2 ≥ 2 m3/s} 
     4m3/s   2 m3/s↑ 1I    4m3/s 
                       B ● 
                         /  |  \ 
       2 m3/s, B●    |   ●B, 2 m3/s 
                    /       |      \        
       0 m3/s ●B    ●B    \ 2 m3/s↑ 
                  |\      / | \      /|       
                  |  \  /   |  \    / | 
                  |   ● B|   ●BcC  
                  | /   \   |   /     | 
              B●        ● BcC         | 
                  | \     / | \     / | 
                  |   ●B  |  ● BcC | 
                  |  /   \  |   / \   | 
    4 m3/s B●       ●BcC 0 m3/s↑ 
                   \        |       /  
                     \      |     /  
          2 m3/sB●   |   ●BcC 2 m3/s 
                     2I \  |  / 3I     
                 0 m3/s ● BcC     
 
A simple sketch of the events AB and ABc  and some of the events AcC 
         4m3/s;  2 m3/s↑ 1I ;  4m3/s 
                         AB● 
                             /  |  \ 
        2 m3/s; AB●    |    ● AB; 2 m3/s 
                        /       |      \        
    0 m3/s; AB●  AB●       ● ABc 2 m3/s↑ 
                     |\      / | \      /|       
                     |  \  /   |   \  /  | 
                   AB●    |    ●ABc     
                     | /    \ / \ /     | 
1 m3/s↑ CAC ●       ● ABc● CAC 1 m3/s↑ 
                     | \     /   \     / | 
                     |   ● CAC ●  | 
                     |  /   \  |   /   \ | 
4 m3/s; CAC ●       ●         |0 m3/s↑ 
                      \       | CAC /  
                        \     |       /  
     2 m3/s; CAC ●   |   ● CAC ; 2m3/s 
                       2I \  |  / 3I     
                             ● CAC      
                      0 m3/s 
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Pr [I1 + I2  + I3 > 5] =  
= Pr [I1 = 0,  I2 =2,  I3 =4] + 
+ Pr [I1 =0, I2, =4, I3 = 2] +  
+ Pr [I1 = 0,  I2 =4,  I3 =4] + 
+ Pr [I1 =1, I2, =2, I3 = 4] + 
+ Pr [I1 = 1,  I2 =4,  I3 =2] + 
+ Pr [I1 =1, I2, =4, I3 = 4] + 
+ Pr [I1 = 2,  I2 =0,  I3 =4] + 
+ Pr [I1 =2, I2, =2, I3 = 2] + 
+ Pr [I1 = 2,  I2 =2,  I3 =4] + 
+ Pr [I1 =2, I2, =4, I3 = 0] + 
+ Pr [I1 = 2,  I2 =4,  I3 =2] + 
+ Pr [I1 =2, I2, =4, I3 = 4] =  
= 12 × 1/3 × 1/3 × 1/3 = 4/9 

 
additional sketch 
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2.7. Port occupancy. An experiment consists of counting the number of ships in a 
small harbor on a particular day and estimating the total tonnage. The maximum 
number of vessels permitted at a given time in the port is six, while each vessel can 
have a tonnage from 5,000 to 25,000. Only the total number of ships and the total 
tonnage is recorded. 
(a) Sketch a sample space for this experiment. 
(b) Indicate on the diagram the regions corresponding to the following events: 
 • A ≡ {the number of ships is less than 5}; 
 • B ≡ {the total tonnage is less less than 35,000}; 
 • C ≡ {three ships each of maximum tonnage are present}; 
 • A + B; AB; Ac + Bc; AcBc; AC ; AcC (where feasible). 
 
Solution. 
Sketches of the sample space and events A, B, C, AC, CA and CC BA +  
 150,000|                   /|      150,000|                   /|       150,000|                  /| 
 135,000|                 /  |      135,000|                 /  |       135,000|                /  | 
 120,000|               /  |  |     120,000|               /  |  |      120,000|              /  |  | 
 105,000|             / |  |  |     105,000|             / |  |  |      105,000|             /|  |  | 
   90.000|           /|  |  |  |       90,000|           /  |A|  | CA   90,000|           /  |   | CC BA +  
   75,000|         /  |  |  |  |       75,000|         /|   |   |  |        75,000|       C•   | CC BA +  
   60,000|       /Ώ|   |  |  |       60,000|       /  |A|   |  |         60,000|≡AC/| CC BA +  
   45,000|     / |   |   |  |  |       45,000|     /|A|   |   | CA       35,000|----/| CC BA +  
   30,000|--/--|--|--|--|-/|       30,000|--/--|--|--|--|-/|         30,000|---/-|--|B|B|-/| CC BA +     
   15,000|  /|   |   /  /     |       15,000|  /|A|   /   /     |        15,000|  /|B|B   /   /   |  
            0|/  /  /             |                0|/  /  /             |                 0|/  /  /              |  
              |_ |_ |_ |_ |_ |_|                  |_ |_ |_ |_ |_|_|                   |_ |_ |_ |_ |_ |_|  
              0 1  2  3 4  5 6                 0 1  2  3  4 5 6                  0 1  2  3  4 5 6 
                                                                                        Vertical scale is uneven 
 
Sketches of events CA CB , AB and A +B; CA C is a null event; uneven vertical scale 
  150,000|                    /|                                           150,000|                    /| 
  135,000|                  /  |                                           135,000|                  /  | 
  120,000|                / |  |                                           120,000|                / |   | 
  105,000|              /   |  | CC BA                                 105,000|              /|  |   |  
    90,000|            /     |  |                                             90,000|            /  |  |   |  
    75,000|          /       |  |                                             75,000|          /|A+B  |  
    60,000|        /         | CC BA                                      60,000|       /  |   |A+B  
    35,000|      /--------|--|                                             35,000|----/|--|--|--|--|  
    30,000|    /-----------/|                                             30,000|---/-|--|--|--|-/| A+B  
    15,000|  /|AB|AB|  |//|                                             15,000|  /|  |A+B/  /  |  
       AB0|/  /  /              |                                               A+B0|/ /  /              |  
               |_ |_ |_ |_ |_ |_|                                                        |_ |_ |_ |_ |_ |_|  
               0 1  2  3 4  5 6                                                        0 1  2  3 4  5 6 
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2.8. Simply supported beam. A load of 200 kg is placed on a simply supported beam of length 6 m. If 
R1, and R2 denote the reactions at the left and right supports, respectively, R1 + R2 = 200 kg for any 
location of the load. 
(a) Define, and sketch the sample space for this experiment. 
(b) Sketch on the diagram the following events. 
 • A ≡ {the load is located at 1 m from support 1}; 
 • B ≡ {the load is located between 2 and 4 m from support 1}; 
 • C ≡ {the load is located between 3 and 5 m from upport 1}; 
 • A + B; AB; B + C; BC; Ac + BC; and AcBcCc (where feasible). 
(c) If the load can vary from 100 to 400 kg, define and sketch the new sample space. Sketch on this 

diagram the following events. 
 • D ≡ {a load heavier than 100 kg is located at 2 to 4 m from support 1}; 
 • E ≡ {a load heavier than 200 kg is located at 3 to 5 m from support 1}; 
 • D + E; DE; and DEc (where feasible). 
 
Solution.                                                                                                              B•    ■C 
Sketch 1(a, b) shows sample space of the experiment, the event●A and the events \  and \ 
                                                                                                                             B•     ■C 
with distances from support 1 at point X, where XY = 6 meters,and support 2 is at point Y. 
The reactions 1R  and 2R  are given on the two axes.  
Sketch 2(a, b) shows the events  B + C, and BC but AB is a null event. The event 

CA ≡ CA +BC covers the full distance XY = 6 meters excluding the event●A. The 
event  

CA CB CC  covers a distance of 2 meters from X (excluding the event●A) and 1 meter 
from Y. 
Sketch 1(c) gives the sample space if the load can vary from 100 to 400 kg. 
     1R                                      1R                                         1R  
      ↑                                        ↑                                         ↑ 
200|\ X  0                           200|\                                   400|\ 
      |  \                                      |  \                                       |/\ 
      |   ●A 1                              |   ●A                                  |///\ 
150|     \                             150|     \                              300|////\ 
      | B• \     2                           | B• \                                   |///// \ 
      |     \  \                                |     \  \                                 |///////\ 
100|      \  \■C 3                 100|      \  \                          200|////////\ 
      |       \  \ \                            |       \  \                               |/////////\ 
      |      B• \ \     4                    |      +   \  •B                        |///////// \ 
  50|             \ \                     50|          \  \    \   BC         100|\ /////////\ 
      |              \ ■C 5                 |       C ■ \  ■C                    |  \ /////////\ 
      |                \                        |               \                          |    \/////////\ 
    0|                 \ Y    6            0|                \                       0|     \/////////\ 
      |_  |_ |_  |_ |_ → 2R            |_  |_ |_  |_ |_ → 2R              |_    |          |_ → 2R                            
______________                    ___________ 
      0      100   200                   0      100   200                    0    100     400 
              1(a, b)                            2(a, b)                                    1(c) 
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Events D and E are shaded in the following sketches 2(c) and 2(d), respectively. 
Distances from support 1 at X are shown as before. Events D + E, D + E and 

CDE follow easily. 
     1R                              1R  
      ↑                                ↑ 
400|\X                         400|\X 
      |  \                               |  \ 
      |   \1                            |   \1 
300|     \                      300|    \ 
      |     /\2                         |     \2 
      |    /\\\                          |      \ 
200|    /\\\\\3                200|\      /\3   
      |   /\\\\\\\                       | \     /\\\ 
      |   /\\\\\\\/\4                   |   \  /\\\\\4 
100|\  /\\\\\\/  \              100|    \/\\\\\\\ 
      | \/\\\/        \5                |     \\\\\\\/\5 
      |  \/            \                  |      \/       \ 
    0|    \             \Y6          0|       \        \Y6 
      |_  |_  |_      |_→ 2R       |_     |        |_→ 2R                                                         
      0 100 200  400             0   200     400 
      2(c) Event D             3(c)Event E 
 
additional sketch 
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2.9. Storm rainfall. Analysis of the data of Problem 1.20 indicates that the estimated probability of a 
storm resulting in more than 40 mm of rainfall in one hour is about 0.5. Using relative frequencies, 
compute the probability that in any year the same rainfall intensity is exceeded over a duration of (a) 20 
minutes, and of (b) 3 hours.  
 If the annual 30-minutes and 1-hour rainfalls refer to the same storm events, what is the 
conditional probability that the intensity does not decrease from 60 mm/hour or more during the first 30 
minutes by more than 25 percent during a one hour period? 
 
Solution. 
Storm rainfall. 60 minute rainfall: The durations of 7 out of 14 annual maximum 
rainfall events exceed 40min. Hence probability of exceedence is 0.5. Intensity = 40 
min/hour. With same intensity in 20 minutes rainfall should exceed 13.3 min. 
Probability of exceedence is 13/14. In 3 hours with the same intensity of  40 
min/hours the rainfall = 120 min. Probability of exceedence = 3/14. 
 
                                                         Year    1974    1975    1976    1977    1979    1981   1984    1987 
30 min  rainfall exceeding 30 min    (1)     30.5     31.2     37.2     72.4      46.1    56.0     65.7     73.9 
60 hours rainfall                               (2)     45.75   46.8     55.8    108.6    69.15    84.0    98.55    111 
     30 min x1.50 
60 min recorded rainfall                   (3)     38.7     40.2      55.7    118.9     55.6    89.4   105.7   128.5 
It is seen that (3) > (2) 
 
Probability that the intensity does not decrease from 60 min/hour or more during the 
first 30 minutes by more than 25 percent during a one hour period = 0.5  
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2.10. Hydropower. Run-of-river hydroelectrical plants convert the natural potential energy of surface 
water in a stream into electrical energy. The plant capacities depend on natural river flow, which 
generally varies during the year according to season and precipitation regime. Assume that the design 
flow of a given power station, say, QD , is the natural flow, which is exceeded during 274 days in a 
year on average. At other times, when the river flow is lower than the design flow, the plant is 
nevertheless capable of producing some power if the flow is not lower than Q0. Moreover, during 
floods it is not possible to convey water to the plant due to sedimentation, which occurs when the 
natural river flow Q exceeds Q1. (a) If Pr[Q < Q0]  = .1 and Pr[Q > Q1] = .05, for how many days in a 
year will the plant be incapable of supplying electric energy? (b) What is the probability that the plant 
works at full capacity? (c) What is the probability that the plant fulfills its minimum target? Note that 
Q0 < QD < Q1. 
 
Solution. 
Sketch of Q vs. days per year Q is exceeded 
    Q 
     ↑ 
  Q1|     • 

DQ |      |                                   • 
  Q0|      |                                   |         • 
    0|      |                                   |          |       • 
________________________ |_____|____ 
     0    18                                270    328  365 
 
P (Q < Q0) = 0.1  365 x 0.1 ≈ 37    insufficient Q 
P (Q > Q1) = 0.5  365 x 0.05 ≈       sedimentation 
 
       N = 0.15 x 365 ≈ 55  days 
Probability (full capacity) = (274-18)/365 ≈ 0.70 
Probability (minimum target) = (328-18)/365 ≈ 0.85 
 
additional sketch 
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2.11. Reservoir operational policy. Consider the water storage S in a reservoir as described in 
Example 2.1 and Fig. 2.1.1. The manager must release in a year an amount of water R that depends on 
the amount of the annual inflow I, the storage S at the beginning of that year, and the demand d in that 
year. The manager follows the following “normal operational policy” for water releases: 
                                        R = d,                  if d ≤ I + S < d + c, 
                                        R = I + S,                              if I + S < d, 
                                        R = I + S - c                                                        if I + S ≥ d + c, 
with c denoting the effective storage capacity of the reservoir. If Pr[d ≤ I + S ≤ d + c ] = .6, Pr[ I + S < 
d] = .1, and Pr[ I + S > d + c] = .3, find the probability that the demand is satisfied. 
 
Solution. 
Sketch of reservoir 
I ↓ 
\____c____________ 
   \______S___ /         \ 
      \                /              \ 
          \          /                     \ 
                  \______________\ 
 
                                     Sketch of operational policy 
                                      R 
                                       ↑                                                        / 
                                        |                                                      / 
                                     d |              /_________________/ 
                                        |        / 
                                        |    / 
                                     0 |/________________________________→I + S 
                                       0             d                            d + c 
                    Probability   |←0.1→|←        0.6            →|←   0.3→ 
Probability that the demand is satisfied = 0.3 + 0.6 = 0.9 
 
additional sketch 
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2.12. Industrial park utilities. Consider the design requirements of water supply and wastewater 
removal systems in a new industrial park, which consists of five independent buildings. Assume that 
the water demand S of each of the five industrial buldings can be 10 or 15 units, whereas the required 
wastewater removal capacity R can be 8, 10 or 15 units. After some interviews with potential clients, 
the designer has estimated that the combined requirements of the two systems are likely to occur with 
the following probabilities at the ith site: 

 R = 15 R = 10 R = 8 

S = 10 .00 .25 .15 
S = 15 .20 .35 .05 

Stochastic independence can also be assumed among the requirements of different buildings. 
(a) What is the probability that the total water  demand exceeds 60 units? 
(b) What is the probability that the total wastewater removal capacity exceeds 50 units? 
 
Solution. 
Summary of probabilities 
 
           S/R             15             10              8 Sum of Probs. 
         10           0         0.25          0.15         0.40 
         15         0.20         0.35          0.05         0.60 
Sum of Probs.         0.20         0.60          0.20         1.00 
 
Pr[S > 60] = Pr[5 × 15] + Pr[4 × 15, 1 × 10] + Pr[3 + 15, 2 × 10] 
= ( )5

5  0.65 + ( )5
4 0.64×0.4 + ( )5

3 ) 0.63 ×0.42 

= 0.07776 + 0.2592 + 0.3456 = 0.68256 
 
                                 ←           40        →            ←         42          →               ←         47         →     
Pr[R ≤ 50] = Pr[0×15, 0×10, 5×8] + Pr[0×15, 1×10, 4×8] + Pr[1×15, 1×10, 3×8] 
 
          ←          49          →           ←          44            →           ←         46            →                    
+Pr[1×15, 1×10, 3×8] + Pr[0×15, 2×10, 3×8] + Pr[0×15, 3×10, 2×8] 
 
          ←         48            →            ←         50           → 
+ Pr[0×15, 4×10, 1×8] + Pr[0×15, 5×10, 0×8] 

23323445 2.06.0102.06.0102.06.02.0202.02.052.06.052.0 ××+××+×××+××+××+=
54 6.02.06.05 +××+  

=0.00032+0.00480+0.00160+0.01920+0.0.0288+0.0864+0.1296+0.07776=0.34848 
Therefore, Pr[R>50] = 1-0.34848= 0.65152 
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2.13. Construction scheduling. Consider the sequential construction scheme of Problem 2.3, and 
assume that both the foundation and the superstructure can be completed at three different rates, say, a, 
b, or c. These rates modify the probability of completion of each phase of construction as shown in the 
table given here. Also, monthly costs vary for the different rates. 

  Cost per Probability of time of completion 
Phase Rate month at rate, 

$ 
4 months 5 months 6 months 7 months 

Foundation a 30,000 ⋅ 3  ⋅ 7 0 0 
Foundation b 36,000 ⋅ 5  . 5 0 0 
Foundation c 42,000 ⋅ 3 ⋅ 7 0 0 

Superstructure a 25,000 0  ⋅ 1 ⋅ 4 ⋅ 5 
Superstructure b 40,000 0 ⋅ 3 ⋅ 3 ⋅ 3 
Superstructure c 50,000 0 ⋅ 5 ⋅ 3 ⋅ 2 

In addition, if the construction is not completed in 11 months, the contractor must pay a penalty of 
$300,000 per month. 
(a)   Compute the expected cost of foundation performed at rate a as the summation for all times of 

completion of the product between the total cost (the product of the number of required months 
and the cost per month) and probability. 

(b) Compute all expected costs. 
(c) Compute the total expected penalty for each possible strategy of completion of the whole 

structure. 
(d) Determine the best strategy by minimizing the sum of total expected cost and penalty. 
 
Solution. 
(a)  Expected cost is 30,000 ×4 × 0.3 + 30,000 × 5 × 0.7 = 36,000 + 105,000 = 
141,000 
(b)E[ aF ] = 30,000 × (4 × 0.3 + 5 × 0.7) = $141,000 
    E[ bF ] = 36,000 × (4 × 0.5 + 5 × 0.5) = $162,000 
    E[ cF ] = 42,000 × (4 × 0.3 + 5 × 0.7) = $197,000 
    E[ aS ] = 25,000 × (5 × 0.1 + 6 × 0.4 + 7 × 0.5) = $160,000 
    E[ bS ] = 40,000 × (5 × 0.3 + 6 × 0.3 + 7 × 0.4) = $244,000 
    E[ cS ] = 50,000 × (5 × 0.5 + 6 ×0.3 + 7 × 0.2) = $285,000 
(c) E[t aF ] = 4 × 0.3 + 5 × 0.7 = 4.7 months;  
     E[t bF ] = 4 × 0.5 + 5 × 0.5 = 4.5 months; 
     E[t cF ] = 4 × 0.3 + 5 × 0.7 = 4.7 months;  
     E[t aS ] = 5 × 0.1 + 6 × 0.4 + 7 × 0.5 = 6.4 months 
     E[t bS ] = 5 × 0.3 + 6 × 0.3 + 7 × 0.4 = 6.1 months 
     E[t cS ] = 5 × 0.5 + 6 × 0.3 + 7 × 0.2 = 5.7 months 
     E[ at ] = 4.7 + 6.4 = 11.1 months; penalty $300,000 × 0.1 = $30,000 
E[ bt ] = 4.5 + 6.1 = 10.6 months; penalty = 0 
E[ ct ] = 4.7 + 5.7 = 10.4 months; penalty = 0. 
(d) Total expected cost with rate a, say, aTEC  = 141,000 + 160,000 + 30,000 
=$331,000 
    Also bTEC  = 162,000 + 244,000 =$406,000 and  
    cTEC  = 197,000 + 285,000 =$482,000. 
  Hence best strategy is rate a. 
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2.14. Research project ranking. A committee consisting of three independent referees (R1 , R2 , and 
R3 ) is to rank four different research project applications (A, B, C and D). Each referee ranks the four 
projects as 3 (for the best), 2, 1, and 0, and then the assigned ranks for each project are summed. 
Assume that the referees are unable to discriminate between projects so that the rankings are randomly 
assigned. What is the probability that project A will receive a total score of 4?  
 
Solution. 

1R  2R  3R  
(1) Total score for project A = 0: 
Ranks for A       1R   0 
                          2R   0 
                          3R   0                                       number of ways                              → 1 
(2) Total score for project A = 1: 
Ranks for A       1R   1 0 0  
                          2R   0 1 0 
                          3R   0 0 1                                 number of ways                             → 3 
 
(3) Total score for project A = 2: 
Ranks for A       1R   2 0 2 1 1 
 0  
                          2R   0 2 2 1 0 1  
                          3R   0 0 2 0 1 1                           number of ways                           → 6 
 
(4) Total score for project A = 3: 
Ranks for A       1R   1 2 1 2 1 0 0 3 0 0 
                          2R   1 1 2 0 0 2 1 0 3 0  
                          3R   1 0 0 1 2 1 2 3 0 3             number of ways                           → 10 
 
(5) Total score for project A = 4: 
Ranks for A       1R   3 3 1 0 1 0 2 0 2 2 1 1 
                          2R   1 0 3 3 0 1 2 2 0 1 2 1 
                          3R   0 1 0 1 3 3 0 2 2 1 1 2 number of ways                               → 12 
 
 
6) Total score for project A = 5: 
Ranks for A       1R   3 2 3 2 0 0 2 2 1 1 1 3 
                          2R   2 3 0 0 3 2 2 1 2 1 3 1  
                          3R   0 0 2 3 2 3 1 2 2 3 1 1  number of ways                           → 12 
 
For A ≥ 5, by symmetry:- for A = 6, number of ways = 10; for A = 7, number of ways = 6; 
for A = 8, number of ways = 3; for A = 9, number of ways = 1. The total number of ways 
= 64. Hence, the probability that project A will receive a total score of 4 = 12/64 = 
0.1875. 
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2.15. Probabilities of reservoir storage. Consider the water storage S in a reservoir described by a 
sequence of four states ω1, ω2, ω3, ω4, where each state describes water volumes ranging from 0 to 
c/4, from c/4 to  2c/4, and so on (see Example 2.10 and Fig. 2.1.2). The reservoir manager is interested 
in the simple events given by Ai,k ≡ {(i - 1) c/4 ≤ S < ic/4} for i  = 1, 2, 3, 4 and annual time periods k = 
1, 2, 3, …. 
 The manager has estimated the following conditional probabilities: Pr[Aj,k+1⏐Ai,k] = 1/2 for j 
= i, and Pr[Aj,k+1⏐Ai,k] = 1/6 for j≠i. What is the transition probability matrix pij from the ith to the jth 
state after one step?  
 What is the probability that state 1 occurs in the third operational period, given that the 
reservoir was in state 4 in the first period? 
 
Solution. 
                                                                          4321 ==== iiii  

Transition probability matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
=
=
=

==

2/16/16/16/1
6/12/16/16/1
6/16/12/16/1
6/16/16/12/1

4
3
2
1

][

j
j
j
j

pQ ij  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0

]1,Pr[ j , for j = 1, 4.  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=×=

2/1
6/1
6/1
6/1

]1,Pr[]2,Pr[ jQj , for j = 1, 4. 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=×=

z
y
x

jQj

9/2

]2,Pr[]3,Pr[ , for j = 1, 4. 

[The top element in the column is the sum (1/12 + 1/36 + 1/36 + 1/12); the other 
elements, x,  y and z are not of interest here.] 
Hence answer is 2/9. 
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2.16. Pumping station. Two pumps operate in parallel to provide water supply of a village located in a 
recreational area. Water demand is subject to considerable weekly and seasonal fluctuations. Each unit 
has a capacity so that it can supply the demand 80 percent of the time in case the other unit fails. The 
probability of failure of each unit is 10 percent, whereas the probability that both units fail is 3 percent. 
What is the probability that the village demand will be satisfied? 
 
Solution. 
 
Pr[F1] = 0.1 – 0.03 = 0.07 
Pr[F2] = 0.1 – 0.03 = 0.07 
Pr[F12 ] = 0.03 
 
where Fi ≡ failure of only pump i 
and     ijF  ≡ both pumps i and j fail. 
The 2 pumps are the independent because 
P(F12) = 0.03 ≠ P(F1)×P(F2). 
 
Pr[Village unsatisfied] = Pr[U]= 

]Pr[]|Pr[]Pr[]|Pr[]Pr[]|Pr[ 22111212 FFUFFUFFU ++   
=1 × Pr[F12 ] + 0.2 × Pr[F1] + 0.2 ×Pr[F2] 
 
= 0.03 + 0.2 x 0.07 + 0.2 x 0.07 = 0.058 
 
Pr[Village satisfied] = Pr[S] = 1 – 0.058 = 0.942   
 
additional sketch 
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2.17. Analysis of reservoir lifetime. A reservoir is designed for an area with high erosional rates. The 
engineer is interested in determining the lifetime of the reservoir, which can come to an end either 
because the impounding dam can be destroyed by a flood exceeding the spillway capacity or because 
excessive sedimentation results in a severe loss in reservoir capacity. It is necessary to determine the 
probability that the structure will come to an end of its useful life in each of the years after 
construction. One can assume a constant probability q that in any year a flow exceeding the spillway 
capacity can occur, and an exponentially increasing probability pi  that reservoir sedimentation can 
occur in the ith year after construction, given that no significant sedimentation has occurred prior to the 
ith year, that is, pi = 1 - exp(-βi), with β > 0. 
 Denote by An the event associated with a destructive flood occurring in the nth year after 
construction, and by Bn that associated with excessive sedimentation. 
(a) What is the probability that the system will survive for n years, that is 

                                 ( )( ) ( )[ ]Pr ...A B A B A Bc c c c
n
c

n
c

1 1 2 2 ? 

(b) What is the probability that the system will come to an end in the nth year, where Sn denotes 
survival up to the nth year, 

                                 ( )[ ] [ ]Pr PrA B S Sn n n n+ −-1 1 ? 
(c) Compute the foregoing probabilities for q  =  .01, β = .002, and n = 25. 
 
Solution. 
Analysis of reservoir lifetime: An destructive flood in year n, Bn same with respect to 
sediment 

(a) Pr[(Ac
1 Bc

1) (Ac
2 Bc

2) .. (Ac
n Bc

n)] = 
nn

n
n

i

in eqeq 2
1

1

)1()1(
+

−

=

− −=− ∏
ββ  

 
= 0.9525  e-0.002x13x25 = 0.4061  
 
[for q = 0.01, β = .0.02, n = 25] 
 
(b) Pr[(An+Bn)| Sn-1] Pr [Sn-1]   ,where S denotes survival up to nth year, 
= [1 – e-βn + q e-βn]  [(1-q)n-1 e –βn(n-1)/2] 
 
{This is obtained from Pr[An + Bn] = Pr[An] + Pr [Bn] – Pr [An Bn] 
 
= q + (1- e-βn ) – q(1 – e-βn)} 
 
For q= 0.1, β = .002 and n = 25,  
 
Probability = [1 – 0.99 e-0.05] [0.99 24 ×e-.002 x 25x12] 
 
= . 02513 
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2.18. Highway system. To reach Grenoble, France, from Turin, Italy, one can follow either of two 
routes. The first directly connects Turin and Grenoble, whereas the second passes through Chambery, 
France. During extreme weather conditions in winter, travel between Turin and Grenoble is not always 
possible because some parts of the highway may not be open to traffic. Denote with A, B, and C the 
events that highways from Turin to Grenoble, Turin to Chambery and Chambery to Grenoble are open, 
respectively. In anticipation of driving from Turin to Grenoble, a traveler listens to the next day’s 
weather forecast. If snow is forecast for the next day over the southern Alps, one can assume (on the 
basis of past records) that Pr[A] = .6, Pr[B] = .7, Pr[C] = .4, Pr[C | B] = .5, and Pr[A | BC] = .4. 
(a) What is the probability that the traveler will be able to reach Grenoble from Turin? 
(b) What is the probability that the traveler will be able to drive from Turin to Grenoble by way of 

Chambery? 
(c) Which route should be taken in order to maximize his chance to reach Grenoble? 
 
Solution. 
A  Turin(T) – Grenoble(G) , Pr[A]= 0.6;  
B  Turin – Chambery(C),  Pr[B] = 0.7;. 
C Chambery – Grenoble,  Pr[C] = 0.4 ; 
Pr(C|B) = 0.5; Pr(A|BC) = 0.7 
 
 
[1]  Pr(TG) = P [A] + Pr[BC] – Pr[ABC] = Pr [A] + Pr[C|B] Pr[B] – Pr [A|BC] Pr [BC] 
      = Pr[A] + Pr[C|B] Pr [B] – Pr [A|BC) Pr [C|B] Pr [B] = 0.6+0.5×0.7-0.4×0.5×0.7=. 
81 
 
[2] Pr (TG/Chambery) = Pr[B] + Pr[C] - Pr[BC] = Pr[B] + Pr[C] - Pr[C|B] Pr[B] 
         =0.7 + 0.4 – 0.5×0.7 = 0.75 
 
[3]  Pr [TG| Directly]  =  P [A] = 0.6. Therefore, take route [2] via Chambery  
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2.19. Wastewater treatment. The wastewater from an industrial plant requires  treatment before 
disposal in the sea. This process consists of three sequential stages. For simplicity, define these stages 
as primary, secondary, and tertiary treatments, respectively. The result for each stage can be rated as 
unsatisfactory, incomplete, and satisfactory. Denote with Ak the event that the kth stage of the treatment 
process is unsatisfactory, with Bk the event that it is incomplete, and with Ck the event that it is 
satisfactory. The associated probabilities are given in the following table. 

 Pr[Ak] Pr[Bk] Pr[Ck] 
k  =  1 .1 .3 .6 
k  =  2 .2 .3 .5 
k  =  3 .1 .5 .4 

 
Further, assume that the three stages of the process are stochastically independent. If the satisfactory 
overall treatment requires that none of the three stages is unsatisfactory and at least two of these stages 
are satisfactory, what is the probability of this event? 
 
Solution. 
The 5 combinations satisfying these conditions and the associated probabilities: 

 
Pr[B1 C2  C3] = 0.3 x 0.5 x 0.4 = 0.060 
Pr[C1 B2 C3] = 0.6 x 0.3 x 0.4 = 0.072         
Pr[C1 C2 B3] = 0.6 x 0.5 x 0.5 = 0.150 
Pr[C1 C2 C3] = 0.6 x 0.5 x 0.4 = 0.120 
Sum of probabilities                 =0.402 
 
 
 
 
 
2.20. Earthquake occurrence and intensity. Because of the uncertainties associated with the 
occurrence and intensity of earthquakes, one must consider earthquakes occurring in a given location as 
random phenomena. MCS intensity is a measure based on earthquake impact on the landscape, 
buildings, and population. In Problem 1.22 records of earthquake intensity in terms of MCS index are 
given for a period of about 1000 years in Rome, Italy. They are ranked from 2 to 7 for increasing 
intensities. In 10 centuries 329 earthquakes were reported in the study area, and in only two centuries 
there were no occurrences. Calculate a frequency-based estimate of the probability that at least one 
earthquake is likely to occur in a century. What is the probability that a recorded earthquake is of 
intensity 7? 
 
Solution. 
(1) The frequency-base estimate of the probability that at least one earthquake is 
likely to occur in a century. Data from 10 centuries are given. Only in 2 centuries 
earthquakes     not observed  The probability of such an event = 0.8 
 
(2) The probability that a recorded earthquake is of intensity 7 = 2/329. 
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2.21. Air pollution control. The air pollution in Milan, Italy, is mainly caused by industrial, 
automobile, and heating emissions. A newly elected local government wishes to control these three 
sources of pollution within a period of four years. The chances of successfully controlling these sources 
are 80 percent, 70 percent and 50 percent, respectively. The government assumes that if only one of 
these three sources is successfully controlled, the probability of bringing air pollution below the 
acceptable level would be 50 percent only, but this probability increases to 80 percent if two of them 
are successfully controlled. The government also assumes stochastic independence among controlling 
industrial, heating, and automobile exhausts. What is the probability that two of the sources of air 
pollution will be successfully controlled in Milan during the four-year period? 
 
Solution. 
Let I, A and H represent the successful control of pollution caused by industrial, 
automobile, and heating emissions, respectively.  
The probability of controlling all 3 sources of pollution Pr[IAH] = Pr[I] × Pr[A] × 
Pr[H] = 0.8×0.7×0.5 = 0.28 
There are 3 combinations of controlling only two sources of pollution successfully: 
Pr[ cIAH ] = 0.8×0.7×(1-0.5)  = 0.28 
Pr[ HIAc ] = 0.8×(1-0.7)×0.5 = 0.12 
Pr[ AHI c ] = (1-0.8)×0.7×0.5= 0.07 
Sum of probabilities              = 0.47 
Therefore the probability of successfully controlling air pollution with respect to at 
least 2 of the sources  = 0.28+0.47 = 0.75. 
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2.22. Imperfect concrete testing. An existing reinforced concrete building must be tested for possible 
obsolescence. Based on professional judgement, the engineer classifies concrete quality as either 35 to 
39.9, 40 to 44.9, 45 to 49.9, or 50 to 60 N/mm2 based on a 28-day test of compressive strength of 
concrete cubes. The relative likelihoods assigned to these four states are .2, .3, .4, and .1, respectively. 
Concrete cores are to be cut and tested to help ascertain the true state, although the engineer knows that 
results from test cores are not conclusive. Therefore, conditional probabilities are estimated to account 
for the uncertainties involved in examining the cores. These probabilities describe the likelihood that 
the value of core strength indicated predicts a given unknown state. For example, if the true state is 35 
to 39.9 N/mm2, there is a 70 percent chance that the tested core strength also lies between 35 and 
39.9 N/mm2, but there is a 20 percent chance that it will lie between 40 and 44.9 N/mm2, and a 10 
percent chance that it lies in the range 45 to 49.9 N/mm2. The conditional probabilities are tabulated 
next. 

 State 
 x1 

35-39.9 N/mm2 

x2 

40-44.9 N/mm2
x3 

45-49.9 N/mm2
x4 

50-60 N/mm2 
Core Strength     

y1:35– 39.9 N/mm2 0.7 0.2 0.1 0.0 

y2:40– 44.9 N/mm2 0.2 0.6 0.2 0.1 

y3:45– 49.9 N/mm2 0.1 0.1 0.6 0.2 

y4: 50 - 60 N/mm2 0.0 0.1 0.1 0.7 

 
If the engineer takes three subsequent cores, and the laboratory tests yield z(1) = 41, z(2) = 49 and z(3) 
= 44 N/mm2, respectively, what are the posterior probabilities of the four states at the end of the 
experiment? The required posterior probability is given by Pr[state xi | sample z(3) = y2 ]. 
 
Solution. 
Imperfect concrete testing. The prior probabilities are 
 
C1)35 to 39.9 N/mm2 C2)   40 to 44.9  C3)   45 to 49.9 C4)   50 to 80 
               0.2   0.3   0.4   0.1 

 
Conditional probabilities 
 
Measured state ↓          True state  → C1  C2  C3  C4 
                        C1                          0.7  0.2  0.1  0.0 
Sample 1)  →  C2    0.2  0.6  0.2  0.1 
Sample 3)  → 
Sample 2)  → C3     0.1  0.1  0.6  0.2 
                       C4                  0.0  0.1  0.1  0.7 
 
SAMPLE (1). The denominator for Bayes theorem 
=0.2×0.2+0.6×0.3+0.2×0.4+0.1×0.1 = 0.04+0.18+0.08+0.01 = 0.31 
Posterior probabilities Pr[C1|S1] Pr[C2|S1)]  Pr[C3|S1]   Pr[C4|S1] 
      0.04/0.31=0.129   0.18/0.31=0.581   0.08/0.31=0.258    0.01/0.31= 0.0320 
 
SAMPLE (2). The denominator for  Bayes theorem = 
0.1×0.129+0.1×0.581+0.6×0.258+0.2×0.032 = 0129+0.0581+0.1548+0.0064= 0.2322 
Posterior probs Pr[C1/S2] Pr[C2/S2]          Pr[C3/S2]                   
Pr[C4/S2]   
   0.0129/.2322=0.055   .0.0581/.2322=0.25   0.1548/.2322 =0.667   0.0064/.2322= 
0.028 
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SAMPLE (3)  The denominator for Bayes theorem =0.2×0.055 +0.6×0.25+0.2×0.667 
+0.1×0.028=0.011+0.15+0.1334+.0028= 0.2972 
 
Posterior probabilities Pr[C1/S3]=.011/.2972= 0.04     Pr[C2/S3]=0.15/0.2972= 0.50 
    Pr[C3/S3]=0.1334/.2972= 0.45   Pr[C4/S3]=0.0028/0.2972=0.01 
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2.23. Highway pavement. Before any 250-m length of a pavement is accepted by the State Highway 
Department, the thickness of a 30-cm is monitored by an ultrasonics instrument to verify compliance to 
specification. Each section is rejected if the measured thickness is less than 10 cm; otherwise, the entire 
section is accepted. From past experience, the State Highway engineer knows that 85 percent of all 
sections constructed by the contractor comply with specifications. However, the reliability of ultrasonic 
thickness testing is only 75 percent, so that there is a 25 percent chance of erroneous conclusions based 
on the determination of thickness with ultrasonics. 
(1) What is the probability that a poorly constructed section is accepted on the basis of the 

ultrasonics test? 
(2) What is the probability that if a section is well constructed, it will be rejected on the basis of the 

ultrasonics test? 
 
Solution. 
Let 1B  represent a well constructed section and 2B  represent a poorly constructed 
section 
Prior probabilities: Pr[ 1B ] = 0.85: Pr[ 2B ] = 0.15. 
Likelihoods: 
                                                                     True State jB → 
    Measured state iB ↓              j=1: good construction   j=2: poor construction 
i=1: good construction                             0.75                             0.25 
i=2: poor construction                              0.25                             0.75 
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2.24. Remote sensing of inundated areas. Two independent satellite-borne sensors are used to 
determine the extension of inundated areas after a flood. Sensor A has a reliability of 70 percent, that is, 
the probability of detecting a pixel (picture element) whose characteristics reflect inundation is .7, 
whereas sensor B has a reliability of 90 percent. Also, the probability of both sensors detecting a pixel 
is .65. 
(a) Find the probability that a pixel reflecting inundation is detected, that is, it is detected by at least 

one of the two sensors. 
(b) Determine the probability that a pixel reflecting flooding is detected by only one sensor. 
 
Solution. 
|←----------A--------------→| 
_________ __________________________  
|  0.05 |     0.65 = AB           |         0.25          | 
|_____|________________ |_____________| 
           |←----------B---------------               →| 
(a)  Pr[A+B] = Pr[A] + Pr[B] - Pr[AB] = 0.7 + 0.9 - 0.65 = 0.95. 
(b) Pr[only one sensor detection] = 

= {Pr[A] - Pr[AB]} + { Pr[B] - Pr[AB]}=  0.05+0.25=0.30. 
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2.25. Runoff production. Characterization of the soils of a small catchment includes 40 percent  of 
well-drained sand and gravel (type A hydrologic soil group), 35 percent of fine-textured soils (type C 
hydrologic soil group), and 25 percent of clay soils (type D hydrologic soil group). Type A and Type D 
terrains have been contoured and are covered with small grains in poor condition, 60 percent of type C 
terrains are covered by pasture in fair condition, and the remaining type C terrain is sparsely forested 
land without forest litter. The engineer evaluates runoff production using the Soil Conservation Service 
procedure (see: Soil Conservation Service, “Section 4: Hydrology”, 1985). This procedure gives 
surface runoff R as 
                                          R  =  (P - 0.2 S)2 / (P + 0.8 S), 
where P is the rainfall depth of the design storm, and S is the maximum soil potential retention, which 
is given by 
                                           S  =  25⋅4(1000 / CN - 10), 
where CN is a dimensionless parameter known as the “Curve Number”. The values of CN range from 0 
to 100 depending on the joint categories of “hydrologic soil group”, and “land use” according to the 
table below. R, P, and S are measured in millimeters per unit area. 
 

Values of CN obtained by matching hydrologic soil group with land use. 

 Hydrologic Soil Group 
 A B C D 

Land use     
Straight row crops in poor condition 72 81 88 91 
Contoured row crops in poor condition 70 79 84 88 
Contoured row crops in good condition 65 75 82 86 

... ... ... ... ... 
Contoured small grain in poor condition 63 74 82 85 

... ... ... ... ... 
Pasture in fair condition 49 69 79 84 

... ... ... ... ... 
Wood and forest land with thin stand, poor cover, no mulch 45 66 77 83 
Woods protected from grazing with adequate brush coverage 30 55 70 77 

... ... ... ... ... 
Commercial and business areas (85 percent inpervious) 89 92 94 95 

... ... ... ... ... 

 
(a) Determine the expected surface runoff caused by a heavy storm resulting in 120 mm of rainfall 

per unit area. 
           A new commercial and business area is planned (85 percent impervious). The site includes 40 
percent of type A terrains but 60 percent of this is pasture land. The engineer has two alternatives: 
(1) designing a large culvert to carry runoff excess due to urbanization, or (2) improving the hydrologic 
conditions of the surrounding forest land (for example, by protecting woods from grazing and 
providing adequate brush coverage) so that the expected runoff from the catchment does not change. 
The design storm is 120 mm. 
(b) Determine the expected excess runoff due to urbanization. 
(c) Evaluate the feasibility of the second alternative under (a). 
 
Solution. 
Design storm =120mm 
(a)      Terrain                  A (40%)                    C (35%)                       D (25%) 
                                         CN=63       CN=79×0.6+77×0.4=78.2        CN=85 
  Mean CN= 63×0.4+78.2×0.35 +85×0.25 =73.82 
S = 25.4[(1000/73.82)-10] = 90.08 mm:  mm15.5406.192/)02.18120( 2 =−=R  
 
 (b) New CN = (49×0.6 +89×0.4) ×0.4+94×0.35+95×0.25=82.65 
   S = 25.4[(1000/82.65)-10] = 53.32 mm:  mm50.7366.162/)66.10120( 2 =−=R  
Therefore, expected runoff due to urbanization = 73.50-54.15=19.35. 
 
(c) Do not increase expected runoff under (b) if possible. 
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Keep the pasture land same under Type A group. But the remaining 40% of Type A group 
change to woods protected with CN = 30. New CN is  
 (49×0.6 +30×0.4) ×0.4 + 94×0.35 + 95×0.25 = 73.21. 
Hence  S =92.95 mm and R = 52.9 mm. 
Yes. 
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2.26. Universal soil loss equation. In the United States the prediction of upland erosion amounts is 
frequently made by the universal soil loss equation (USLE) developed by the U.S.D.A. Agricultural 
Research Service in cooperation with U.S.D.A. Soil Conservation Service and certain experimental 
stations (see: Soil Conservation Service, “National Engineering Handbook, Section 3, Sedimentation”, 
1983). The USLE gives the annual soil loss due to erosion in kilograms per square meter per year, say, 
A, as 
                                       A  =  c R × K × L × S × C × P, 
where c is a constant, R denotes the rainfall factor, K the soil erodibility factor, L the slope length 
factor, S the slope gradient factor, C the crop-management factor, and P the erosion control practice 
factor. The engineer must analyze the effects of crop management on the annual soil loss in a small 
forested catchment. From previous computations c = 1, R = 185, K = 0.38, LS = 1.4, and P = 1. The 
values of C vary from 0.0005 to 0.009 depending on the joint variation of the percentage of area 
covered by the canopy of trees and undergrowth C1 and of the percentage of area covered by litter, C2, 
as shown in the table below. 

Values of the crop management factor, C 
 C1= 100 to 90⋅1 % 90 to 70⋅1 % 70 to 40 % 

C2= 100 to 70⋅1 %  0.0005 0.0008 0.0010 
 70 to 40 1%  0.0020 0.0030 0.0040 
    40 to 20 %  0.0030 0.0060 0.0090 

 
(a) Assuming that all the foregoing categories of crop management are equally likely, compute the 

probability that A exceeds 0.3 kg/m2 per year. 
(b) Assuming that the catchment is partitioned as in the foregoing table into nine subcatchments 

equal in area, each having a different crop management, compute the expected annual soil loss 
from the catchment. 

(d) What is the minimum number of subcatchments where crop management must be improved in 
order to reduce the expected annual soil loss from the catchment to a value lower than 0.2? 

 
Solution. 
(a)  R = 185,  K = 0.38,  LS = 1.40,  P = 1.0, C= 1 
C as given : 9 values → 0.0005 to 0.009 
A  =  c R × K × L × S × C × P = 98.42 C. 
For A > 0.3 0.3 kg/m2 per year  
C > 0.3/98.42 = 0.003048 
Probability = 3/9 
 
(b) Mean C  = 0.0293/9 = 0.00326 
 Mean A  = 98.42× 0.00326 = 0.32 kg/m2 

 
(c) Expected annual soil loss < 0.2 kg/m2 

C  = 0.002032. 
Before, the sum of C from 9 sub catchments = 0.0293. 
Now it should be 0.002032 ×9 = 0.0183. 
Reduction = 0.0293 – 0.0183 = 0.0110. 
Maximum number of sub catchments where crop management must be improved = 2 
(the last two on the bottom row of the table of 9 subcatchments). 
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Applied Statistics for Civil and Environmental Engineers  
Problem Solution Manual 
by N.T. Kottegoda and R. Rosso 

Chapter 3 - Random Variables and their Properties 
 
 
 
 
3.1. Sea waves. The pmf of the number of days per month of high-amplitude waves, X, acting on a sea 
pier is given below. 

X= 0 1 2 3 4 5 6 ≥ 7 
pX(x)= 0.38 0.22 0.18 0.13 0.09 0.06 0.03 0.01 

Determine the expected value and variance of X. 
 
Solution.  
     X     =   0         1       2       3         4         5        6        7        >7 

)(p xX   =  0.28   0.22   0.18   0.13    0.09    0.06   0.03  0.01    0.0 
E[X] = 0 × 0.28 + 1 × 0.22 + 2 × 0.18 + 3 × 0.13 + 4 × 0.09 + 5 × 0.06 + 6 × 0.03 
 + 7 × 0.01 = 1.88. 
[ ]2XE  = 0 × 0.28 + 1 × 0.22 + 2 × 2 × 0.18 + 3 × 3 × 0.13 + 4 × 4 × 0.09 + 5 × 5 × 

0.06 + 6 × 6 × 0.03 + 7 ×7× 0.01 = 6.66. 
Var[X] = [ ]2E X  - [ ]2]E[X  = 6.66 – 1.88 × 1.88 = 3.13 
 
 
 
3.2. Tensile strength. The tensile strength of a structural material is found to be highly variable, 
although tests showed that there is an increasing number of specimens of high strengths with a possible 
limit of 20 N/mm2 in strength. Based on observations and as a first approximation, the pdf of tensile 
strength X is represented by the function fX(x) = ax2, 0 ≤ x ≤ 20 N/mm2. 
(a) Determine the constant a in the function. 
(b) What is the probability of X >10  N/mm2? 
 
Solution. Find constant a 

dxxf X )(
20

0
∫  = dxax∫

20

0

2  = [ ]20
0

3 3/xa  = 1. 

 Hence a = 3/8000 

Pr[X >10] = dxx∫
20

10

2)8000/3(  = (3/8000) × (1/3) (8000-1000) = 7/8 = 0.875. 
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3.3. Wind load. A tower is subject to a horizontal force caused by high winds. An important factor 
which should be taken into account when strengthening the tower is the duration of the winds. The 
duration T of winds in the area is a random variable with a maximum of 18 hours. From observations of 
wind data, the pdf of T can be approximated to the form fT(t) = ct1.5, with a maximum ordinate of k. 
(a) Evaluate c and k. 
(b) Find the mean and coefficient of variation of T. 
(c) What is the probability of a wind lasting more than nine hours? 
 
Solution.  

(a)    dttfT )(
..18

0
∫  = dttc 5.1

..18

0
∫ = [ ] .18

0
2/5 )2/5/(tc  = 1 

Hence c = 2/518/)2/5(  =0.00182   and    
5.12/5 )18/1)(2/5()( ttfT =  

k = Max 5.12/5 18)18/1)(2/5()( =tfT  = (5/2) × (1/18) =5/36 = 0.138 

(b)   857.127/5185.3/18)182/(5][ 5.3
18

0

2/55.2
18

0

5.1 =×=×==== ∫∫ dttcdttctTE Tμ  

9/5185.4/18)182/(5][ 25.4
18

0

2/55.3
18

0

5.122 ×=×=== ∫∫ dttcdtcttTE  

Var[T] = 18 ×18(5/9-25/49) = 18 ×18 ×25× 4/(45×49) 
83.37/512 5.0 =×=Tσ  

298.5/3/2)518/(7)7/512(/ 5.05.0 ==×××== TTTV μσ  

Pr[T > 9] = 823.02/11)2/5182/(5)918( 5.22/52/52/5
18

9

5.1 =−=××−=∫ dttc  

 
 
 
 
 
3.4. Flood exceedance. A flow of magnitude 40 m3/sec is exceeded at a particular site on a river once 
in three months on average. What is the probability of having at least one such high flow in a year? 
State assumptions made. 
 
Solution. Assume that the time T between exceedances of 40 sec/m3  are 
exponentially distributed. 
The mean time interval E[T] = 1/λ = 1/4 year. Hence λ = 4. 
Pr[T > t] = 1 – exp(-λt ).       For t = 1 (year), 
Pr[T > 1] = 1 – exp( - 4×1 ) = 0.982   
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3.5. Compressive strength of concrete. The expected value of the compressive strength of a particular 
concrete is 60 N/mm2 and the coefficient of variation is 10 percent. Assuming that the theoretical 
probability distribution is symmetrical but is unknown, calculate the probability that the compressive 
strength will be greater than 50 N/mm2. 
 
Solution. The distribution is symmetrical but is unknown. Use the Chebyshev 
inequality. Given that the mean μ = 60 3m/N , the standard deviation σ = 6 3m/N  and 
let 
σ k = 10; then k = 10/6. 
Pr[μ- σ k < X < μ + σ k] ≥ 1- 1/ 2k  = 1 - 36/100 = 0.64. Then 
Pr[50 < X < 70] ≥ 0.64.  Also because the distribution is symmetrical, 
Pr[ X ≥70] = Pr[X ≤ 50] < 0.18 
Pr[X  > 50 ] ≥ 0.82.   
 
 
 
3.6. Highway accidents. Highway accidents along a busy highway leading away from a city have the 
following pmf (see Example 3.18 for this Poisson pmf): 

         
!

)(
x

exp x
X

ν

ν
−

= ,       for x = 0, 1, 2, .... 

Originally ν  has been estimated as 0.9. Subsequently the exit road was widened and the parameter was 
estimated as 0.5. Plot the pmf in each case and determine the probabilities of Pr[X > 0]. 
 
Solution. 
(1) !/9.0)( 9.0 xexp x

X
−=           (2) !/5.0)( 5.0 xexp x

X
−=     

      
    X =           0           1         2          3         4          5           6 
(1)          0.407   0.366   0.165   0.049   0.011   0.002    0.0003 
 
(2)          0.607   0.303   0.076   0.013   0.002   0.0016  0.000013 
 
 
 
3.7. Earthquake occurrence. During a period of 125 years, 16 major earthquakes have occurred in the 
San Francisco area. Assuming these are Poisson events (see problem 3.6 and Example 3.18), determine 
(a) the probability of more than one such earthquake during a five-year period, and 
(b) the mean time between such earthquakes. 
 
Solution. 
          !/)( xexp x

X λλ−=      
(a) Mean number of occurrences per year  λ = 16/25.    Hence 25/16)0( −= epX  
and 25/16)1( 25/16 ×= −epX . 
Therefore Pr[ X > 1]  = 1- )1(Xp - )0(Xp  
= 1- )25/161(25/16 +×−e  = 0.135.  Also 
(b)Mean time between such earthquakes = 125/16= 7.81 years 
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3.8. Computer system failure. The times to failure in months of several identical computer systems 
are observed as follows: 21, 53, 43, 56, 18, 17, 40, 14, 13. Assuming these are distributed as FT(t) = 1- 

e-λt, estimate the parameter λ  by the method of maximum likelihood. Repeat the procedure using the 
method of moments. 
 
Solution. 

t
X exf λλ −=)(       

Mean number of occurrences nxx
n

i
i /

1
∑
=

=  = 275/9. Hence, 

275/9ˆ =λ , by the method of moments. 
 

Maximum likelihood    λλ λλ 2759
9

1

−

=

− ==∏ eeL
i

ti  

Log likelihood, LL = 9 ln λ - 275  λ  

257/9 −=
∂
∂ λ
λ

LL  

Hence by equating the derivative to zero, we also obtain 
275/9ˆ =λ , by the method of maximum likelihood. 

 
 
 
 
3.9. Maximum flows. In some applications the exponential distribution of Problem 3.8 is written with 
a lower bound ε and this takes FT(t) = 1 - exp[- )( ελ −t ]. Show how the parameters may be estimated 
using the probability-weighted moments procedure. 
 
Solution. 

)](exp[1)( txxF −−−= λ  
)1ln()/1()( FFx −−= λε , 

where F ≡ F(x). 

dFFFdFFFXM kk
k ∫∫ −−−−==

1

0

1

0

k
10 )1)(1ln()/1()1( ])-(1E[ λε . 

Let z = 1 - F.  Hence, dz= -dF; for  F= 0, z=1;  for F= 1, z = 0. 

dzzzdzzM kk
k ∫∫ −=

1

0

1

0
10 )(ln)/1( λε  

[ ] 21
0

1 )1/()1)(/1()1/( +−−+= + kkz k λε  
])1/(1)[/1()1/( 2+++= kk λε  

)/1(100 λε +=M ;  )]2/(1)[2/1(101 λε +=M . Hence  
]2/(1)[2/1( 101100 MM −=λ     and   1001014 MM −=ε  

Proceed by equating moments to plotting positions, as in Example 3.21, but inserting  
k

ip )1( −  
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3.10. Occurrence of volcanic eruptions. There are frequent volcanic eruptions at a particular site. The 
times of the occurrences are unpredictable. From past observations, the pmf of occurrences X over 
periods of ten years is as follows: 

X= 0 1 2 3 
pX(x)= 0.1 0.3 0.4 0.2 

What entropy does this distribution represent? What is the maximum possible entropy for possible four 
values of probability? 
 
Solution. 
X                     0        1        2       3 

)(xpX             0.1     0.3     0.4    0.2  
 
From Eq. (3.2.27) entropy is given by 
 
-∑(0.1ln0.1+0.3ln0.3+0.4 ln0.4+0.2ln0.2) 
= + 0.2303 + 0.3612 + 0.3665 + 0.3219 = 1.2799. 
Maximum =- ln0.25 = 1.3863      (for uniform distribution) 
 
 
 
 
3.11. Pipe settlement. Three subcontractors laid water pipes running through a flat part of a city. 
Excavations made at 3-meter intervals along the pipelines after a period of five years showed that 
settlements had taken place from the original levels. The following table gives the settlements in 
millimeters at each excavation: 

Sub-Contractor 1 181 190 71 55 105 
Sub-Contractor 2 99 78 25 50 198 
Sub-Contractor 3 23 23 197 75 189 

If in a particular case, the settlements have been the same at each point of observation along the 
pipeline, no problem will arise with regard to the system. On the basis of entropy, determine the 
relative settlement of the pipes laid by each subcontractor. Which system has the least relative 
settlement? What is the entropy of a particular system with no relative settlement? 
 
Solution. 
                   1st  subcontractor                   2nd  subcontractor                   3rd  
subcontractor 
Sum 
of settlements:                 502                                          450                                           
507 
Entropy calculations; 
(-181/502)ln(181/502)=.3678  (-99/450)ln(99/450)=   .3331     (-23/507)ln(23/507)=.1403 
(-190/502)ln(190/502)=.3677  (-78/450)ln(78/450)=   .3038     (-23/507)ln(23/507)=.1403 
(-71/502)ln(71/502)=    .2766  (-25/450)ln(25/450)=   .1606 (-197/507)ln(197/507)=.3673 
(-55/502)ln(55/502)=    .2443  (-50/450)ln(50/450)=   .2441     (-75/507)ln(75/507)=.2827 
(-105/502)ln(105/502)=.3273 (-198/450)ln(198/450)=.3612 (-189/507)ln(189/507)=.3678 
Sums                           1.5817                                      1.4028                                     1.2984 
On the basis of entropy ,pipes laid by 1st contractor has the least relative settlement. 
Maximum entropy = ∑-0.2×ln(0.2) = ln(5) = 1.61 
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3.12. Project scheduling. In a building project, the construction of the foundations takes time T1 and 
the construction of the superstructure takes time T2. On account of inclement weather, labor problems 
and other factors, T1 and T2 behave like random variables with empirical pmf’s as follows: 

Time, in weeks  1 2 3 4 5 6 7 
pT1(t1) = 0.1 0.3 0.4 0.2 0.0 0.0 0.0 
pT2(t2) = 0.0 0.0 0.0 0.1 0.5 0.4 0.0 

(a) Calculate the mean times taken for the foundations and the superstructure. 
(b) Evaluate the pmf of the total time spent on the foundations and superstructure. 
(c) What is the probability that the total work will be completed in less than seven weeks? 
 
Solution. Consider all possibilities for time in weeks: F, foundations: S, 
Superstructure. 
     F   S                           F   S                                F   S                                         F   S 
     1   4                            2   4                                  3   4                                         4    4 
          5                                 5                                       5                                               5 
          6                                 6                                       6                                               6 
(a) Mean T1 foundations = 1×0.1 + 2×0.3+ 3×0.4+ 4×0.2 = .1 +.6 +1.2 +.8=  2.7 weeks 
     Mean T1 Superstructure = 4×0.1 + 5×0.5+ 6×0.4   =   0.4     +2.5     +2.4= 5.3 weeks 
(b) Pmf of total time spent on foundations and superstructure T = T1+ T2   

                        F         S                      F         S                     F         S                    sum 
5 weeks      1 × 0.1 + 4 × 0.1                                                                                 =0.5 
6weeks       1 × 0.1 + 5 × 0.5     + 2 × 0.3 + 4 × 0.1                                              =3.6 
7weeks       1 × 0.1 + 6 × 0.4     + 2 × 0.3  + 5 × 0.5     + 3 × 0.4 + 4 × 0.1          =7.2 
8weeks       2 × 0.3 + 6× 0.4      + 3 × 0.4  + 5 × 0.5     + 4 × 0.2 + 4 × 0.1          =7.9 
9weeks       3 × 0.4 + 6 × 0.4     + 4 × 0.2 + 5 × 0.1                                              =6.9 
10 weeks   4 × 0.2 +6 × 0.4                                                                                   =3.2 
 
Total time T in weeks      5             6              7                8                 9               10 
Sum from above right   0.5          3.6            7.2            7.9               6.9              3.2 = 29.3 
P(T)                           0.017      0.123        0.246        0.270           0.235          0.109 = 1.00 
 
(c)  Pr[T < 7] = 0.017 + 0.123 = 0.140 
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3.13. Sea pier construction. With reference to the data given in Problem 3.1, a contractor is assigned 
to work on an extension to the sea pier. The contractor finds that the profits Y of the job are directly 
decreased by the number of days per month X of high-amplitude waves acting on the sea front. It is 
estimated that Y = 10000(10 - X). Determine the pmf of Y and the mean and variance of Y. 
 
Solution. 
Y            =      100,000    90,000    80,000    70,000    60,000    50,000    40,000    30,000 
X           =            0             1             2             3             4             5              6             7 

)(xpX    =        0.28        0.22        0.18       0.13        0.09          0.06         0.03        0.01 
 
Y = 10,000(10-X) 
E[Y]= 100,000-10,000 E[X] = 100,000 -10,000 × 1.88 = 81,200 
Var[Y] = 210000  Var[X] = 210000 × 3.14 = 314,000,000 
 
 
3.14. Head loss in a pipe. The head loss H in a pipe is related to the mean velocity of flow V as 
H = k V2, where k is a constant depending on pipe length, diameter and roughness. In a particular case, 
V varies randomly between limits 1ν  and 2ν . Assuming a symmetrical triangular pdf for V, derive the 
pdf of H. 
 
Solution. 
Case [a]. Head loss in a pipe, symmetrical pdf for flow V 
Sketch of pdf with ∗−= vv1  and  ∗+= vv2  
             vf↑       ____________ 
            /⏐\                                  ↑  
           / ⏐  \                                ⏐   
         /   ⏐   \ 
        /    ⏐    \                            1/ ∗v  
       /     ⏐     \ 
      /      ⏐      \                            ⏐ 
     /_ __⏐_ __ \       →v  _____↓  
  - ∗v       0       + ∗v   
 

)/1(1)( ∗
∗ −= vv

v
vfV     for 0 ≤ v≤ ∗v  

          )/1(1 ∗
∗ += vv

v
    for - ∗v  ≤ v ≤ 0 

)/1(11)(1)(2
∗∗ −=⎥

⎦

⎤
⎢
⎣

⎡
=⇒=

v
kh

vkhk
hf

kh
hfkVH vH .  

 
Case [b]. This is simply a translation of the previous case, because physically 1v  ≥ 0. 
Let 

2/)( 21 vvVY ++=
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yf↑ _____________________________ 

⏐                        /⏐\                                 ↑  
⏐                       / ⏐ \                                 ⏐     
⏐                     /   ⏐   \                               ⏐   
⏐                    /    ⏐    \                      )/(2 12 vv −  
⏐                  /      ⏐      \                             ⏐   
⏐                 /       ⏐       \                            ⏐ 
⏐_______ /____ ⏐___ _\_____→v____↓  

0              1v    
2

21 vv +    2v         

)(
)(

4)( 22
12

yv
vv

yfY −
−

=             for  2
21

2
vyvv

≤≤
+          

)(
)(

4)( 12
12

vy
vv

yfY −
−

=             for 
2

21
1

vvyv +
≤≤  

⇒⎥
⎦

⎤
⎢
⎣

⎡
=⇒= )(

2
1)(2

k
hf

kh
hfkYH yH  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
= )(

)(
4

2
1)( 22

12 k
hv

vvkh
hf H   for  2

21

2
v

k
hvv
≤≤

+          

 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
= )(

)(
4

2
1)( 12

12

v
k
h

vvkh
hf H  for 

2
21

1
vv

k
hv +
≤≤  

 
 
 
 
3.15. Joint wind measurements. For the joint pdf of the number of days of occurrences of high winds 
recorded by two instruments and given in Table 3.3.1, evaluate the probability that the differences 
between the readings of the two instruments are not greater than 1. 
 
Solution. 
                                 y = 0      y = 1      y = 2       y = 3           Sum 
Diff. 0                   0.2910    0.3580    0.1135    0.0505         0.8130 
Diff. 1                   0.0400    0.0600    0.0100    0.0300         0.1750 
                                             0.0250    0.0100    0.0000 
Diff. 2                   0.0100    0.0015    0.0000    0.0000         0.0115 
Diff. 3                   0.0005    0.0000    0.0000    0.0000         0.0005 
Sum                                                                                       1.0000 
 
Hence Pr[Diff.< 2] = 0.988. 
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3.16. Contract analysis. A contractor's financial outlay X and labor force Y are random variables with 
bivariate pdf given by: 
             fX,Y(x, y) = kxy,          for 10,000 < x <100,000   and    10 < y < 20, 
             and         = 0,              elsewhere. 
(a) Evaluate constant k. 
(b) Determine the marginal pdf’s of X and Y. 
 
Solution. 

∫∫ ∫ ∫∫ ∫ ==
20

10

000,100

000,10
, ),( ydydxxkkxyyxf YX  

1
2

10000100000
2

1020 2222

=⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡ −k . 

Hence k = 4/(300×90,000×110,000)     for   10,000 < x < 100,000. 

)1099/(2)
2

1020()( 8
2220

0

×=
−

== ∫ xkxkxydyxf X  

Similarly   yyfY 150
1)( =                     for 10 <y< 20 

 

 

 

 
3.17. Welding legs. The joint pdf of the lengths of horizontal and vertical legs, X and Y, of welding 
joints (similar to the ones referred to in Problem1.4) is given by 

                xyyxf YX 16
1),(, = ,            for 4.0 < x, y < 8.0 

              and             = 0,                    elsewhere. 
          Determine the probability Pr[5.5 < X < 6.5; 5.5 < Y < 6.5]. 
 
Solution. 

Verify xydydxdydxyxf YX ∫ ∫∫ ∫ ×
=

8

4

8

4
, 3616

1),(  

= 1
43616

)48)(48( 2222

=
××
−− . 

Pr[5.5 < x< 6.5; 5.5 < y< 6.5] = ∫ ∫ ×

5.6

5.5

5.6

5.5 3616
ydydxx  

= 
16
1

43616
112112
=

××
××× . 
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3.18. Density and compressive strength of concrete. Estimate the correlation in the case of the 
simplified joint distribution of concrete density and compressive strength  given in Example 3.37 and 
shown in Fig. 3.3.5 from the data of Table E.1.2. 
 
Solution. 

20
40

2000
1),(,

−
=

yyxf YX              for  40 ≤ y ≤ 60; 2400 ≤ x ≤ 2,500 

                ⎥⎦
⎤

⎢⎣
⎡ −
−=

20
601

2000
1 y     for  60 ≤ y ≤ 80; 2400 ≤ x ≤ 2,500 

Verify     
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−=∫ ∫

80

60

260

40

2

, 40
42

4020
1),( yyyydydxyxf

x y
yx  

 = ⎥
⎦

⎤
⎢
⎣

⎡
+−×+×+−×−

40
60

40
80204402

40
40602

40
60

20
1 2222

 = 1 

100
1)( =xf X    for 2400 ≤ x ≤ 2,500 

2450
2100

1)(][
2500

2400

22500

2400

=⎥
⎦

⎤
⎢
⎣

⎡
== ∫

xdxxxfXE X , 

which is simply the mid-range. 

20
405.0)( −

=
yyfY                       for 40 ≤ y ≤ 60 

          )
20

601(5.0 −
−=

y                for 60 ≤ y ≤ 80 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×−−×++−−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−== ∫

60
60602

60
8080240

60
4060

60
60

20
1

60
2

60
05.0)(][

3
2

3
22

3
2

3

80

60

3
2

60

40

2
3 yyyydyyyfYE Y

 

= 60. 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−

×
×

=

⎥
⎦

⎤
⎢
⎣

⎡ −
−+

−
== ∫∫∫∫ ∫

80

60

3
2

60

40

2
3

80

60

60

40

2500

2400
,

60
2

6022000
1004900

]
20

601[
20

40
2000

),(][

yyyy

dxdyyydyyyxdxdyyxfxyXYE YX

 

=147,000. 
Cov[XY] = E[XY] - E[X] E[Y] = 147,000  2450 × 60 = 0 
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3.19. Contractor's profits, financial outlay, and labor force. For the pdf given in Problem 3.16, the 
contractor's profits P may be assumed to be related to his financial outlay X and labor force Y as 
follows: 
   (a) P = 1.3 X + 15,000 
   (b) P = 1.2X + 1000Y +10,000 
Determine the pdf of P in each case. 
 
Solution. 

(a) 
dx
dP  = 1.3 

98 103655.8
15000

1099
2

3.1
15000)()(

×
−

=
×

−
==

pp
dp
dxxfpf XP  

Check: for x = 10,000, p = 28,000; also x = 100,000, p = 145,000 

115000
2103655.8

1)(
145000

28000

2

9

145000

28000

=⎥
⎦

⎤
⎢
⎣

⎡
−

×
=∫ ppdppf P . 

(b)             fX,Y(x, y) = kxy    for 10 < y < 20. 

Also      
2.1

100001000 −−
=

YPX  

⎥⎦
⎤

⎢⎣
⎡

×
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
=−−= ∫

2.13
11500000125

3
1000)1000(

22.1
)100001000(

2.1
)(

20

10

320

10

220

10

pk

ypykdyypykpf P

 

From Problem 3.16, 
11000090000300

4
××

=k . Hence 

78.232434
1

1094.5
)( 9 −×
=

ppf P  
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3.20. Rivet production. Two machines produce rivets for a factory job. The numbers of sub-standard 
rivets per hour by the two machines are random variables denoted by X1 and X2. The bivariate pmf of 
X1 and X2 is given by the following table: 

 X2=0 X2= 1 X2 = 2 X2 = 3 pX1(x1) 
X1 = 0 .07 .05 .02 .01 .15 
X1 = 1 .05 .16 .12 .02 .35 
X1 = 2 .02 .12 .17 .05 .36 
X1 = 3 .01 .01 .05 .07 .14 

pX2(x2) .15 .34 .36 .15 ∑ = 1.00 

(a) Determine the probability that the number of substandard rivets produced do not differ by more 
than 1 between one machine and the other. 

(b) Determine the conditional distribution of PX2|X1(x2 , x1). 

(c) The factory manager estimated that an older machine, which was replaced, produced X1 + 
X2substandard rivets per hour. Estimate its marginal pmf. 

 
Solution. 
(a) Pr[-1≤ X1 - X2≤ +1]  
     = (0.07 + 0.05) + (0.05 + 0.16 + 0.12) + (0.12 + 0.17 + 0.05) + (0.05 + 0.07) = 

0.91. 
(b) Conditional distributions 
                    02 =X             12 =X              22 =X             32 =X                   Sum 

1X = 0           47.0
15.0
07.0

=      033
15.0
05.0

=      13.0
15.0
02.0

=      07.0
15.0
01.0

=           1.00 

1X = 0           14.0
35.0
05.0

=     46.0
35.0
16.0

=     34.0
35.0
12.0

=      06.0
35.0
02.0

=            1.00 

1X = 0          06.0
36.0
02.0

=      33.0
36.0
12.0

=     47.0
36.0
17.0

=      14.0
36.0
05.0

=            1.00 

1X = 0          07.0
14.0
01.0

=      07.0
14.0
01.0

=     36.0
14.0
05.0

=      50.0
14.0
07.0

=            1.00 

 
(c)                                   X1                     X2                                                   )(ypY   
Y = 0                               0                 0                         0.07     0.07 
Y = 1                               0                 1                         0.05 
                                       1                 0                         0.05     0.10 
Y = 2                               0                 2                         0.02 
                                       1                 1                         0.16 
                                       2                 0                         0.02     0.20 
Y = 3                               0                 3                         0.01 
                                       1                 2                         0.12 
                                       2                 1                         0.12 
                                       3                 0                         0.01     0.26 
Y = 4                               1                 3                         0.02 
                                       2                 2                         0.17 
                                       3                 1                         0.01     0.20 
Y = 5                               2                 3                         0.05 
                                       3                 2                         0.05     0.10 
Y = 6                               3                 3                         0.07     0.07 
                                                                                      Sum    1.00 

78



Applied Statistics for Civil and Environmental Engineers 
BY N.T. KOTTEGODA AND R. ROSSO © 

PROBLEM SOLUTION MANUAL FOR CHAPTER 3 - PAGE 13 (OUT OF 16) 

3.21. Earthquake hazard. Two adjoining regions are subject to earthquakes at irregular intervals. The 
first region experiences X1 earthquakes over a period of time, and X2 earthquakes occur in the second 
region over the same period, where X1 and X2 are random variables. It is estimated that the joint 
distribution of earthquakes over the two regions is as follows: 

                      p x x x x
X X1 2 1 2

1 2

21, ( , ) = +
,         for  x1 = 0, 1, 2    and     x2 = 2, 3, 

and                                        = 0,                  elsewhere. 
 Determine the probabilities pX1|X2(x1 | x2) and the expected values E[X1 | X2]. 

 
Solution. 
                                    X2  = 2                  X2 =3 

X1= 0                             
21
2                         

21
3  

X1= 1                             
21
3                         

21
4  

X2= 2                             
21
4                         

21
5  

Sum of marginals         21
9

                        
21
12  

 
Conditional probabilities    pX1|X2

(x1 | x2) 
 
                                    X2  = 2                  X2 =3 

X1= 0                             
9
2                         

12
3  

X1= 1                             
9
3                         

12
4  

X2= 2                             
9
4                         

12
5  

Conditional expectations 

9
112

9
41

9
30

9
2]2[ 21 =×+×+×==| XXE  

12
142

12
51

12
40

12
3]3[ 21 =×+×+×==| XXE  
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3.22. Water treatment plant. A water treatment plant has two units which are designed to perform 
with identical characteristics. The consequenses of both units failing simultaneously are severe on the 
community. The times to failure in days are denoted by X1 and X2 and their bivariate pdf is given by 

                          f x x aeX X
b x x

1 2
1 2

1 2,
( )( , ) = − +  ,            or x1,x2 ≥ 0 

(1) What is the relationship between the constants a and b? 
(2) How may they be estimated in practice? 
(3) What is the chance that both units will fail within a year? 
 
Solution. 
In general byax

YX abeyxf −−=),(,  
But the two plants have identical characteristics and it is given by 
f x x aeX X

b x x
1 2

1 2
1 2,

( )( , ) = − +  
Therefore, 2ba =  

21

21

2
21, ),( bxbx

XX eebxxf −−=  
)(

21,
2121

21
1),( xxbbxbx

XX eeexxF +−−− +−−=  
3652365365

,
2

21
1)365,365( ×−×−×− +−−= bbb

XX eeeF  
 
 
 
 
3.23. Water treatment plant. In Problem 3.22 a change in design is made so that only one of the units 
needs to operate at a time. The second will be brought into operation only on failure of the first, 
whenever that happens. What is the probability that the plant will be inoperative within a year? 
 
Solution. 
Let X = time to failure of first unit in days 
Let Y = time to failure of first unit in days 
S = X + Y is the time to failure of the plant 
The required probability is Pr[S = X + Y ≤ 365 days]. 
The pdf of S is simply the convolution of X,Y, where 

byax
YX abeyxf −−=),(,     , for x, y > 0. 

dxxsxfsf
s

YXS ),()(
0

, −= ∫    , for s > 0. 

bs
s

xsxb asedxea −−+− == ∫
0

)( . 

Then Pr[S = X + Y ≤ 365 days]= dsase bs∫ −
365

0

 = ]3651[ 365365
2

bb ebe
b
a −− −−  

(integration by parts). 
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3.24. Sewerage pollution discharge. Two sewage plants serving different communities discharge a 
pollutant into a stream. The concentrations of the respective discharges are measured as X and Y parts 
per million. Suppose the bivariate distribution is given by 
                                        f x y x yX Y, ( , ) = − −2 , 
for 0 ≤ x, y ≤ 1, and 0 elsewhere. 
(a) Determine the joint probability Pr[X < 0.5, Y <0.6] , 
(b) If x ≤ 0.5, determine the distribution of Y. 
(c) Determine the coefficient of linear correlation between X and Y. 
 
Solution. 

(a) check ∫ 1)2/3()2(
1

0

1.

0

1

0
=−=−−∫ ∫ dxxdydxyx . 

[ ] dxyyxdydxyx
6.0

0

5.0

0

6.0

0

5.0

0

2 2/)2()2(∫ ∫ ∫ −−=−−  

[ ] 435.02/7.16.0)3.02(6.0 5.0
0

2
5.0

0

=−=−−∫ xxdxx . 

(b) ∫ ∫∫ −−−−=≤|

5.0

0

1

0

5.0

0
5.0 )2(/])2([),( dydxyxdxyxxyf XY  

yy 8.04.1
625.0

5.0875.0
−=

−
= . 

check ∫ =−
1

0

0.1)8.04.1( dyy . 

(c) yxyxf YX −−= 2),(, ; 
2
23)( xxf X

−
= ; 

2
23)( yyfY

−
= . 

12/5
2
23][

1

0

=
−

= ∫ dxxxXE . 

Hence E[Y]=5/12 

4/1
2
23][

1

0

22 =
−

= ∫ dxxxXE . 

( ) 144/11][][][Var 22 =−= xEXEX . 
12/11== YX σσ . 

dxdyyxyyxdxdyyxxyXYE ])2([)2(][ 22
1

0

1

0

1

0

1

0

−−=−−= ∫∫∫∫  

[ ] 6/16/2/)3/(]3/2/)2[(
1

0

1

0

2322 =−−=−−= ∫ yyydyyyy . 

11/1
144/11

)12/5(6/1][][][],[Cor
2

−=
−

=
−

=
YX

YEXEXYEYX
σσ

. 
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3.25. Dam construction. The times spent in months by a contractor, engaged in the construction of 
small earthen dams, on the substructure and conduit on the one hand and the dam itself on the other are 
random variables (on account of frequent interruptions by weather and other unpredictable factors) 
denoted by X1 and X2, respectively. These times have common expectations, and past experience 
suggests that the bivariate pdf can be approximated by 
                     )(

2121,
21

21
),( xxb

XX exaxxxf +−= ,       for x1, x2 > 0. 
Determine the probability that the time spent on the earthwork is greater than or equal to 1.5 times that 
on the earthwork. 
 
Solution. 

)((
2121,

21

21
),( xxb

XX exaxxxf +−=      for 21 , xx  > 0 
])3/2(Pr[])2/3(Pr[ 1221 XXXX <=>  

= 12

3/2

0
2

0
1

0

3/2

0
1221,

1

21

1

21
),( dxdxexexadxdxxxf

x
bxbx

x

XX ∫∫∫ ∫ −
∞

−
∞

=  4125
44

b
a

= . 

 
 
3.26. Maximum annual flood. Flood flows at a given river site are assumed to be independent 
identically distributed variables. The peak flow X for each flood exceeding a level of a is assumed to 
have a distribution with cdf 
                                                     ( )θxaxFX −=1)(  
with x > a (Pareto with parameters a and θ ). Since flood events occur randomly, the number N of 
flood flows exceeding a in a year is assumed to be distributed as 

                                                     ( )
!n

enp
n

N

νν −

=  

for n = 0,1,2,... , (Poisson with parameter ν ). Show that the probability distribution of the annual 
maximum peak flow, Y is 

                                           
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

β

x
xyFY

0exp)( , 

[Extreme value Type II (Fréchet) with parameters x0 and β ]. Find the relationships linking parameters 
x0 and β  with ν , θ  and a. 
 
Solution. 

( )θxaxXxFX −=≤= 1]Pr[)( ,  !/)( nenp n
N νν−=  

For fixed n, [ ] [ ]xX
x
axFxF n

n

n
XX n

≤=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−== )(Pr1)()(

)(

θ

 

[ ] [ ]nNnNxX
n

n ==|≤= ∑
∞

=

PrPr
0

)(  

!/])(1[/)(1
00

n
x
aene

x
a n

n

n
n

n
∑∑
∞

=

−−
∞

=
⎥⎦
⎤

⎢⎣
⎡ −=⎥⎦

⎤
⎢⎣
⎡ −= θννθ νν  ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

−=

θ

ν
ν x

a

ee
1 ν⎟

⎠
⎞

⎜
⎝
⎛−

= x
a

e . 

Since this should equal 
β

⎟
⎠

⎞
⎜
⎝

⎛−
x
x

e
0

 we get θ = β. 
Also, θθν 0xa = . 
Hence θν /1

0 ax =  
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Chapter 4 - Probability distributions 
 
 

4.1. Protective sea embankment. To counteract the effects of erosion and damage caused by sea 
waves, an embankment wall is built alongside a railway line. From recorded data, the annual maximum 
wave height exceeds that of the embankment, on average, once in eight years. What is the probability 
that the embankment will be over- topped at least once during the next 10 years? Assume that the 
events are independent and identically distributed. 

 

Solution. Pr[H > h] = 1/8 = p (say). 

( ) xnxn
xX pppnxXxp −−=== )1(],;Pr[)( . 

263.0)8/1()8/1(
8
1)0( 100 =⎟
⎠
⎞

⎜
⎝
⎛=xp , for n = 10 

.737.0263.01)0( =−=>xpX  

 

 
4.2. Dam design. Determine the return period that should be used in a design for a small dam so that 
the design flood is exceeded with a probability of not more than .05 during a 50-year economic time 
horizon. Assume that the events are independent and identically distributed. 

 

Solution.  95.0)1( 50 =− p . 

Hence  1 – p = 0.99897; p = 0.00103 

T = 1/p = 975 ≈1000.  

 
4.3. Bridge design. A bridge is to be constructed over a river. The design criterion is that a flood 
should rise above the high-level marks on the piers in not more than once in 25 years with a probability 
not exceeding .1. What return period should be used in the flood design? Assume that the events are 
independent and identically distributed. 

 

Solution.    

( ) ( )
)251()1()1(25)1(

90.0)1()1(
242425

125
1

25025
0

pppppp

pppp

+−−=−+−=

=−+−
 

Hence 24/1)]241/(90.0[)1( pp +=− . 

By numerical solution p = 0.0216.   Hence T = 1/0.0216= 46.3 ≈ 50. 
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4.4. Revision of dam design. In a situation similar to that of Problem 4.3, supposing the engineer 
adopts a 100-year design period, determine (a) the probability that the design flood level is not 
exceeded during a 100-year period (b) the probability that the design flood is exceeded just after the 
tenth year but not during the first10 years. 

 

Solution.     (a) p = 0.01; ( ) 366.0)1()( 1000100
0 =−= ppxpX  

(b) The required probability is 00904.001.099.0 10 =× . 

 

 
4.5. Frequent flooding. Calculate the probability of having two 10-year flows in a 5- year period 
assuming that the events are independent and identically distributed. 

 

Solution. ( ) .0729.09.01.010)1()1.0,5;2( 32325
2 =××=−== ppxpx  

 

 
4.6. Storm sewer design. For a storm sewer design, an engineer uses the annual maximum one-hour 
rainfall with a five-year return period as a design criterion. As shown on the city plan, sewer A drains 
one area of the city and sewer B drains the remaining area. However, there is no correlation in the 
intensive rainfalls which occur in the two parts of the city, although the storm characteristics are the 
same. What is the probability that there will not be more than two design events in the city during a 
five- year period? 

 
Solution. n=5 + 5 = 10; p = 0.2. 

( ) 1010010
0 )1()1()0( ppppX −=−=        = 0.10737 

( ) 99110
1 )1(10)1()1( pppppX −=−=     = 0.26844 

( ) 30199.0)1(45)1()2( 828210
2 =−=−= pppppX  

)2()1()0( xxx ppp ++                             =0.678 
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4.7. Vehicle count. The following count is made on the number of vehicles that pass an observation 
point every 10 minutes for one hour. What counts are expected theoretically if the distribution is 
Poisson? 

Count i 0 1 2 3 4 5 6 
Frequency f 220 94 23 11 4 2 1 

 

Solution. 
                i =         0          1          2           3          4        5         6           Sum 

                f =     220        94         23         11         4        2         1           355 = fΣ = n 

                if =         0        94          46         33       16      10        6           205 = ifΣ      

5775.0355/205/ˆ ==ΣΣ= fifλ  

Poisson counts = 

!
5775.355

5775.

x
enp

x

X

−

=  

                              =    199      115       33            6         1        0         0 

 

 
4.8. Machine failure. The probability that a certain make of piling machine breaks down is 0.00002 
per 100 m of piles made. What is the probability of having one breakdown after 1000 m and before 
1010 m of piles? 

 

Solution. 

)1();( pppxXpX −==      for x = 1,2,3,…   

                       = 0                 otherwise 

p = 0.00002; x = 11 

000019996.0)99998.0(00002.0)00002.0;11( 10 ===XpX  
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4.9. First-time failure. Taking the probability given in problem 4.8 as the probability of failure during 
a week’s work and an average weekly production of 1000 m of piles, determine the probability of 
failure for the first time after three months. How does the first-time probability of failure vary with 
time? 

 

Solution. 

3 months +1 week; x = 13 + 1=14 weeks 

Just after 3 months, 00002.0)99998.0(00002.0)00002.0;14( 13 ===XpX  

Just after  1year     0000200.0)99998.0(00002.0)00002.0;53( 53 ===XpX  

Just after  5years 0000199.0)99998.0(00002.0)00002.0;261( 261 ===XpX  

Just after 10years 0000198.0)99998.0(00002.0)00002.0;521( 521 ===XpX  

For very low values of the probability of failure p ,the probability of first time failure 
shows insignificant decreases as time increases. 

 
 
4.10. Transportation. An operator runs a small bus which conveys people from a town centre to a 
large shopping complex. The bus leaves as soon as 12 people have arrived. If we assume that the 
passenger arrivals are independent and are at a mean rate of nine per hour, what is the probability that 
the time between two consecutive departures is more than 60 minutes? Assume that there are no delays 
caused by the nonarrival of the bus because standby buses are available. 

 

Solution. 
              Nine people arrive every 60 minutes on average. 

Therefore, 12 people arrive every 80 minutes on average 

Mean time between departures of the bus = 80 minutes; i.e., λ = 1/80 1min − . 

Assume exponential distribution. Hence 80/60)60( −=> eXFX =0.472 

 
4.11. Traffic: number of cars waiting to turn. For the control of vehicles at a traffic light one needs 
to determine the length of the left-turn lane (right-turn lane in countries where vehicles are driven on 
the left). The occurrences of left (right)-turns are assumed to have a Poisson distribution in time. The 
mean uninterrupted rate of left (right) turns is 160 per hour and the red light is on for 50 seconds. What 
is the expected number of vehicles awaiting a left (right) turn? 

 

Solution. 
Mean uninterrupted rate of left turns = 160/60 per minute 

For the number of vehicles awaiting a turn, the estimated parameter ν = 
(160/60)×(50/60) =20/9 per cycle of 50 seconds . The mean number is close to 2. 
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4.12. Traffic: length of lane. In Problem 4.11 the design criterion for the length of the left (right) lane 
is that it should be sufficient for 95 percent of the time. What should be the minimum length of the lane 
as a multiple of the average length of a vehicle? 

 

Solution. 

9/20

0 9
20

!
1]Pr[ −

=
⎟
⎠
⎞

⎜
⎝
⎛=≤ ∑ e

x
iX

xi

x
 

For i = 0   Pr[X=0] = 9/20
0

9
20

!0
1 −⎟

⎠
⎞

⎜
⎝
⎛ e =0.1084 

Similarly, 

For i = 1, Pr[X≤1]=Pr[X=0] + Pr[X=1] = 0.1084 

+ 9/20
1

9
20

!1
1 −⎟

⎠
⎞

⎜
⎝
⎛ e =0.1084+0.2408=0.3492. 

For i = 2, Pr[X≤2]= Pr[X≤1] + Pr[X=2] = 0.3492 + 0.2676 = 0.6168 

For i = 3, Pr[X≤3]= Pr[X≤2] + Pr[X=3] = 0.6168 + 0.1982 = 0.8150 

For i = 4, Pr[X≤4]= Pr[X≤3] + Pr[X=4] = 0.8150 + 0.1101 = 0.9251 

For i = 5, Pr[X≤5]= Pr[X≤4] + Pr[X=5] = 0.9251 + 0.0489 = 0.9740 

The required minimum length of lane = 5 vehicle lengths. 
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4.13. Wet spells The following distribution of wet spells was observed at the Dharamjaigarh rainfall 
station in central India during the monsoon season: 

i, length of wet spell in days 1 2 3 4 5 6 7 8 
Oi, observed number of spells 161 52 32 17 8 6 4 1 

What is the maximum length of wet spell which is exceeded with probability less than .05 assuming a 
geometric distribution?  

 

Solution. 
  i        =     1         2          

  i        =     1         2         3         4         5         6        7         8         Sum 

iO       = 161        52      5         6        7         8         Sum 

iO       = 161        52      32       17         8         6         4        1           271 

iiO      = 161      104      96       68       40       36        28       8           541 

p̂ =271/541 = 0.5009 ≈ 0.5.                                            Cumulative sum 

Find minimum n so that 

05.05.05.0)5.0;( 1 ≤×== −n
X nXp

 

Minimum n = 4.32, Nearest minimum integer =5. In detail: 

5.05.05.0)5.0;1( 0 =×==XpX                                              0.5000 

25.05.05.0)5.0;2( 1 =×==XpX                                            0.7500 

125.05.05.0)5.0;3( 2 =×==XpX                                          0.8750 

0625.05.05.0)5.0;4( 3 =×==XpX                                        0.9375 

03125.05.05.0)5.0;5( 4 =×==XpX                                      0.9688 

Required length in days = 5  

05.05.05.0)5.0;( 1 ≤×== −n
X nXp
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4.14. Stream pollution. Traces of toxic wastes from an unknown source are found in a stream. From 
tests made on the water the mean concentration is found to be 1 mg/L. What is the probability that the 
concentration of the pollutant will be in the range 0.5 to 2 mg/L assuming the distribution is (a) 
exponential (b) normal? 

 

Solution. 

(a)Exponential. 1/21)2( −−= eFX = 1 - 0.13533;              1/5.01)5.0( −−= eFX = 1 – 
0.60653;` 

Hence )2(XF  - )5.0(XF  = 0.4712 

(b) Normal is not an appropriate distribution here. Assume the standard deviation is 
also 1 mg/L 

Standard normal variates 11/)12(1 =−=z                 5.01/)15.0(2 −=−=z  

84134.0)1( =Φ  and 30854.0)5.0( =−Φ . Hence )1(Φ - )5.0(−Φ =0.53280. 

 

 
4.15. Failure of pumps installed in parallel. A pumped storage power supply scheme has five pumps 
of identical specification installed in parallel. The mean life span of a pump is estimated as 10 years 
from previous experience. What is the minimum number of pumps required in parallel so that the 
probability of not having a failure of the system during a three-year period is more than .95? 

 

Solution. Assuming an exponential distribution, the probability of failure of a single 
unit in a parallel system is 10/31 −− e  Hence for n units, we find minimum n such that 

[ ]ne 10/3105.0 −−≤  

[ ] 218.21ln/)5.0ln( 10/3 =−≥ −en  

Hence n = 3 

 

 
4.16. Failure of pumps in a compound system. Suppose that in the scheme described in 
Problem 4.15, two pumps are placed in parallel, one of which must work. This subsystem is combined 
in series with another identical pump. Determine the probability of not having a failure of the system in 
any year. 

 

Solution. The reliability of a single unit is 10/3−e . The reliability of a parallel system 
of 2 units is [ ]210/311 −−− e . Hence the required probability  is 

[ ]( ) 691.011 10/3210/3 =−− −− ee . 
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4.17. Traffic accidents. From experience it is found that there are about three accidents per year at an 
intersection. If the occurrences are Poisson-distributed, what is the pdf of the time till the fourth 
accident? 

Solution. The Poisson parameter λ is estimated as 1/3. We apply the Erlang 
distribution (Eq. 4.2.7), with X denoting the time to the rth arrival of the Poisson 
process, and r = 4. 

486/
33

1
32

1
)!1(

)()( 3/33/
31

xx
xr

X exex
r

exxf −−
−−

=⎟
⎠
⎞

⎜
⎝
⎛×

×
=

−
=

λλλ . 

 

 
4.18. Defective valves. A manufacturer supplies nine valves for a pumping scheme. Two faulty valves 
were included in the consignment. However, the scheme had been completed using three of the nine 
valves. What is the probability that no faulty valves were used? 

Solution. Use multinomial distribution. 

( )( )
( ) 12/5

23
789/

23
567

!6!3
!9/

!4!3
!7]0Pr[ 9

3

7
3

2
0 =⎟

⎠
⎞

⎜
⎝
⎛

×
××

⎟
⎠
⎞

⎜
⎝
⎛

×
××

=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛===X . 

 

 
4.19. Gamma-distributed annual runoff. The annual runoff in the Cave Creek, near Fort Spring, 
Kentucky, U.S.A. are given as follows in millimeters over an 18-year period:  

                         337  84  385  394  361  538  196  448  582  480  326  294  385  264 

                         458  413  299  455. 

Assuming independence and a gamma distribution for the annual runoff, determine the probability that 
the runoff will be greater than 100 mm in a given year. Data from Haan (1977); used with permission, 
copyright 1977, The Iowa State University Press. 

 

Solution. Cave Creek flows. Mean x = 372.17; variance 2ŝ =14,490.74. 

02567.0
74.14490

167.372ˆ/ˆ 2 === sxλ . 

.558.917.37202567.0ˆˆ =×== xr λ  

For x = 100 mm in a given year, the chi-squared variate is  

134.502567.01002ˆ2 =××=λx . 

The degrees of freedom ν = 2 r= 2×9.558 ≈ 19 

Pr[X>100] ≈ 1 - 0.001 = 0.999. 
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4.20. Low river flows in a tropical region. The following annual minimum mean daily flows, given in 
m3/s, were recorded at the proposed Bango diversion site in the Hasdo subcatchment of the Mahanadi 
basin in India over a 22-year period: 

                       2.78  2.47  1.64  3.91  1.95  1.61  2.72  3.48  0.85  2.29  1.72 

                       2.41  1.84  2.52  4.45  1.93  5.32  2.55  1.36  1.47  1.02  1.73 

Assuming a two-parameter Weibull distribution, determine the probability that the annual minimum 
low flow will be less than 2 m3/s over a two-year period.  

 

Solution. 

We follow the least squares procedure of Eqs. (4.2.18). The ranked flows x preceded 
by the y and z values are as follows: 
y     -3.51    -2.55    -2.05    -1.71    -1.44    -1.21    -1.02    -0.85    -0.69    -0.55    -0.41 

z    -0.16      0.02      0.31      0.39      0.48     0.49     0.54      0.55     0.61      0.66     0.67 

x     0.85      1.02      1.36      1.47      1.61     1.64     1.72      1.73     1.84      1.93     1.95 

 

y     -0.28    -0.16    -0.03      0.09      0.22      0.35    0.48      0.63     0.80      1.03     1.42 

z       0.83     0.88      0.90      0.92      0.94     1.00     1.02      1.25     1.36      1.49     1.67 

x      2.29      2.41      2.47      2.52      2.55     2.72     2.78      3.48     3.91      4.45     5.32 

Hence 7644.0=z ;    591.2=y ;    7728.2ˆ =β ;    591.2ˆ =λ . 

386.01
591.2
2exp1)2( 488.0

7728.2

=−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−= −eFX . 

Assuming that the low flows are independent, the probability that the annual 
minimum low flow will be less than 2 m3/s over a two-year period is [ ] 15.0)( 2 ≈xFX . 
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4.21. Low river flows in a temperate region. Ten years of annual minimum daily mean low-flow data 
from the River Pang at Pangbourne in hydrometric area 39 in England are ranked and given here in 
cubic meters per second: 

                    11.5    23.6    29.1    32.7    34.5    37.0    39.8    49.0    54.6    53.5. 

Fit a Weibull distribution to the data, estimating the parameters using Eqs. (4.2.17) and Tables C.5 and 
C.6 in Appendix C, noting that Γ(r+1) = Γ(r). If it is not permissible to pump water from the river 
when the daily mean low flow is less than 20 m3/s, estimate the return period of such an event. Data are 
used by permission from Institute of Hydrology(1980), “Low flow studies report”, Institute of 
Hydrology, Wallingford.  

Solution. 

For the given data, mean x = 36.53; variance 2ŝ =2183.178. 

Square of the coefficient of variation is 22 53.36/178.183ˆ =v . 

From Eq.(4.2.17c), 8793.0
153.36/178.183

1
)ˆ/21(
]ˆ/11([

1ˆ
1

2

2

2 =
+

=
+Γ
+Γ

=
+ β

β
v

. 

From Table C.6      359.0ˆ/1 =β  and hence 786.2ˆ =β . 

From Eq.(4.2.17a), and from Table C.5 with some interpolation, 

98.40
483.2359.0

53.36
)359.0(359.0

53.36
)359.01(

ˆ =
×

=
Γ

=
+Γ

=
xλ . Hence, 

1267.08733.01
98.40

20exp1)20(
786.2

=−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−=XF . 

)20(/1 XFT =  ≈ 7.9 years. 

 
4.22. Ferry transport schedule. A ferry boat is designed to carry 35 passengers across a lagoon from 
station A during the busy hours of the day. If the passengers arrive at an average rate of two per five 
minutes and ferries leave every 70 minutes, what is the probability that there will be more than the 
stipulated number of passengers waiting to take the boat? How often should a ferry be scheduled to 
leave station A if the chance of an excess is to be less than 5 percent? Assume that the arrivals of the 
passengers constitute a Poisson process. 

 

Solution. 
On average, two passengers arrive per 5 minutes. 

Ferries leave every 70 minutes. 

That is, 28 passengers arrive in 70 minute, on average. Hence, 

2865.0]35Pr[ 28/35 ==> −eX . 

For the next question, we condition 05.035 =− λe . 

λ = 0.08559. That is, 1/ λ = 11.68 passengers. 

With two passengers arriving at the ferry terminal every 5 minutes, on average, the 
minimum time required to get the full capacity of the ferry boat of  35 passengers = 
11.68×5/2 ≈ 29 minutes. 
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4.23. Distribution of concrete strengths. The compressive strengths of concrete in Table 1.2.2 have 
an estimated mean of 60.14 N/mm2 and a standard deviation of 5.02 N/mm2 and are assumed to be 
normally distributed. What is the probability that in ten random tests the compressive strength will be 
in the range 45 to 75 N/mm2? 

 

Solution. 

99094.0)363.2(
02.5

14.6072
=Φ=⎟

⎠
⎞

⎜
⎝
⎛ −

Φ  

99220.01)418.2(
02.5

14.6048
−=−Φ=⎟

⎠
⎞

⎜
⎝
⎛ −

Φ . 

The required probability is [ ]10)99220.01(99094.0 −− ≈ 0.844. 

 

 
4.24. Ferry transport: weight restriction. Suppose there is a weight restriction of 2,900 kg for a 
ferryboat. Random tests carried out on a large number of incoming passengers establish a mean weight 
of 75 kg per person and a standard deviation of 25 kg. What is the probability that the total weight of an 
incoming batch of 35 passengers will exceed the limit? 

 

Solution. 

E[T]= 35 × 75 = 2625; 22 2535]Var[ ×=T . 

)31429.0(1
2535
262529001]2900Pr[ Φ−=⎟

⎠
⎞

⎜
⎝
⎛

×
−

Φ−=>T  

=1 - 0.62235 ≈ 0.378. 

 
4.25. Monthly rainfalls. Monthly rainfalls in a locality are independent and identically distributed 
normal variates with mean 20 cm. and variance 12 cm2. Determine the probability that 220 cm. of 
rainfall occurs over a period of 6 months. What is the probability of having less than 18 cm rainfall 
each month for a period of 6 months? 

 
Solution. Let R represent monthly rainfall and T represent total rainfall over 6 
months. 

E[T] = 6 × 20; Var[T] = 6 × 12 

0000.0)8113.4(1
126
1202201]220Pr[ =Φ−=⎟

⎠

⎞
⎜
⎝

⎛ −
Φ−=>T . 

For the second question we assume that monthly rainfalls are independent. 

[ ] 66
6

6 )56618.01()]16667.0([
12

2018]18Pr[ −=−Φ=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=<R  

= 0.0067. 
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4.26. Relationship between rainfall and runoff. Annual rainfall is usually normally distributed over 
many river basins around the world. In a particular catchment, annual rainfall X has a mean of 1000 
mm and a standard deviation of 200 mm. The annual runoff Y is related to the rainfall as follows: 

                                                   Y = 100+0.4X 

Specify the complete distribution of Y. What is the probability that Y will be less than 350 mm in a 
year? 

 

Solution. 

E[X] = 1000 mm; Var[X] = 2200 2mm . Also 

Y=100 + 0.4X 

E[Y] =100 + 0.4E[X] =500 mm 
222 2000.4]Var[0.4]Var[ ×== XY 2mm  

Y~N[500, 280 ]. 

Pr[Y<350]= )875.1(
2004.0
500350

−Φ=⎟
⎠
⎞

⎜
⎝
⎛

×
−

Φ  

=1-0.96961≈ 0.03. 
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4.27. River diversion. A river with annual flows X ∼ N(300, 50) is joined by a major tributary with 
annual flows Y ∼ N(150, 75) at point P. At point Q on the river below P there is a diversion with annual 
flows Z ∼ N(100, 25). The units are in 1000 m3. Below Q, suppose the annual flows are denoted by R. 
If X, Y and Z are independent, determine the following: 

(a)the distribution of R . 

(b)Pr(R > 300). 

 Recalculate (a) and (b) if there are miscellaneous withdrawals and net losses affecting X and Y which 
total 15 percent in each case. 

 

Solution. 
Sketch of flow system 

↓ X 

P←Y 

1X↓  

Q→Z 

↓ R 

(a) YXX +=1 ~N( 22, YXYX σσμμ ++ ) 

ZYXZXR −+=−= 1  

~N( 222, YYXZYX σσσμμμ ++−+ ) 

~N(300+150-100,50+75+25) ~N(350,150), 

(see mgf of normal distribution). 

(b) ⎥
⎦

⎤
⎢
⎣

⎡ −
>

−

R

R

R

RR
σ

μ
σ
μ 300Pr  = ⎥

⎦

⎤
⎢
⎣

⎡ −
>

150
350300(0,1)~Pr NZ  

=1- [ ]150/50Pr −<Z  = 1 - Pr[Z<-4.0825] = 1.000. 

(c) XX μμ 85.0~ =     and    YY μμ 85.0~ =  

R~  ~N(282.5,150);   = 1 - 0.9235 ≈ 0.08 
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4.28. Lognormal distribution of annual river flows. The annual flows, in cubic meters per second, at 
the Weldon River at Mill Grove, Missouri for the period 1930 to 1960 are averaged as follows: 

            3.06     1.52    16.60   2.78     1.15   13.39    2.74     6.16    1.21     5.90  

            4.06     2.66    11.29   8.46     7.04   12.51   10.91  16.09    3.46     4.28 

            6.92   11.35      6.95   3.23   18.70     3.75     1.25    2.06    3.83    18.02   14.41. 

Fit the lognormal distribution to this data. What is the probability that the annual river flow is in the 
range 2 to 15 m3/s? These data are from Markovic (1965) and are used with permission of Colorado 
State University. 

 

Solution. Mean x =7.282; Var 2σ̂ =30.079. We substitute these values in the 
theoretical equations for the lognormal distribution. 

[ ]
2/1

2

2/12
)ln( 1

282.7
079.30ln)1ln( ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=+= XX Vσ = 0.6703 

7607.1
1

282.7
079.30

282.7ln
)1(

ln 2/1

2

2/12)ln( =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ +

=⎥
⎦

⎤
⎢
⎣

⎡

+
=

X

X
X V

μ
μ  

Ln(15)=2.70821; ln(2)=0.6931 

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=<<
6703.0

7607.16931.0
6703.0

7607.17081.2]152Pr[ X  

= ( ) ( )5927.14134.21 −Φ−Φ = 0.92123 - (1 - 0.94438) = 0.866. 
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4.29. Lognormal distribution of low flows in the Po River, Italy. Low flows in the Po River basin in 
northern Italy are affected by irrigation releases and return flows. The following are the annual 
minimum low flows in cubic meters per second occurring at Pontelagoscuro during the period 1 
October to 14 April, a period that is outside the irrigation season. There are 18 occurrences during the 
period 1920 to 1991: 

                735     429     742     828     554     855     787     668     655 

                830     732     577   1030     650     620     561     588     635 

The low flows in the lower reaches of the Po river have a two-component lognormal distribution on 
account of the intervention caused by irrigation (from Kottegoda and Natale, 1994). For the data given, 
which represents one component, determine the probability that an annual minimum of 400 m3/sec can 
be maintained in the Po at Pontelagoscuro over a three-year period? 

 

Solution  Mean x =693.111; Var 2σ̂ =19697.8. We substitute these values in the 
theoretical equations for the lognormal distribution. 

521.6
1

11.693
8.19697
11.693ln

)1(
ln 2/1

2

2/12)ln( =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ +

=⎥
⎦

⎤
⎢
⎣

⎡

+
=

X

X
X V

μ
μ  

[ ]
2/1

2

2/12
)ln( 1

11.693
8.19697ln)1ln( ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=+= XX Vσ =0.20046 

Ln(400) = 5.9915.  

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−=>=>
20046.0

5211.69915.51]9915.5Pr[]400Pr[ YX  

= ( )6419.21[1 Φ−− = 0.99587 . 

The required probability is 988.099587.0 3 =  
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4.30. Ratios of densities of concrete. Densities of concrete (such as those given in Table 1.2.1) can be 
approximated by a uniform distribution. Taking data from two similar mixes of concrete, determine the 
distribution of the ratios of the densities, after transformation to U(0, 1). 

 

Solution. 
),U(~ byaxX  

),U(~ byayY  

||
10

||/ wzwJ
wy
zyx

YW
YXZ

=
−

=⇒
⎩
⎨
⎧

=
=

⇒
⎩
⎨
⎧

=
=  

dwwwzwfdwwzfzfwzwfwwzf
IR YXIR WZZYXWZ ||),(),()(),(||),( ,,,, ∫∫ ==⇒=  

Assume X and Y are independent. 

∫=⇒=
IR YXZYXYX dwwwfzwfzfyfxfyxf ||)()()()()(),(,  

⎩
⎨
⎧

<<
<<

⇒∫ byway
bxzwaxdwwwzw

IR babax ||)(I)(I y)y,(x),( . 

Note: if we could normalize X, Y into U(0, 1). )(Iz
2
1)(I

2
1~)( )(1,

2-
(0,1) zzzf Z ∞+⇒  

           ↑ 

    1/2  |------- |\  )(zf Z  

       0  |___________|_____→ 

           0                    1         z 
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4.31. Relationship between strengths of construction materials. The strength of a construction 
material X, in newtons per square millimeter, is found to be normally distributed. It is claimed that a 
new material Y can be produced that is proportional in strength to the square of the strength of X. 
Derive the distribution of Y assuming that X is standardized to zero mean and unit variance 

 

Solution. 

X~N(0,1) 

Y = 2X  

)}()({
2

1)( yfyf
y

yf XXY ++−= , Y ≥ 0. 

X~N(0,1) Xf⇒  even function (symmetrical w.r.t. 0) 

i.e., )()( tftf XX −=  

)(1)](2[
2

1)( yf
y

yf
y

yf XXY ==  

2/

2
11 ye

y
−=

π
~ )2/1,2/1(Γ ~ 1

2χ  (chi-squared variable with 1 d.f.) 

)/(
||

1)(2 azf
a

zfaYaXZ YZ =⇒==    00{ >⇒> Za . 

)2/(

2
1

/
11)( az

Z e
aza

zf −=
π

 

),(
2

1
2
11 )2/( λα

π
Γ⇒= − aze

a
; α = ½, λ=1/2 

)(/1 αλ λαα Γ= −− zez  
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Applied Statistics for Civil and Environmental Engineers  
Problem Solution Manual 
by N.T. Kottegoda and R. Rosso 

Chapter 5 - Model Estimation and Testing 
 
5.1. Piling failures. A contractor involved in driving piles for foundations in a region has a good record 
of success. Nevertheless, some piles have been unsuccessful. The following failures have been 
recorded from 50 driven piles in each set. 

 
Set number, i Number unsuccessful 

1 2 
2 3 
3 1 
4 2 
5 4 
6 0 
7 1 
8 3 
9 0 
10 2 

Assume the probability of failure is a constant and the trials are independent. 

(a) What type of statistical process generates the numbers given in the second column? 

(b) What is the distribution of the average failure rate, for various i, when based on large sizes of 
sets? 

(c) What is the estimated fraction of failures p from all the sets? 

(d) Provide 95 percent confidence limits on the true value of p, stating the assumptions made. 

(e) Draw a line diagram of the observed and theoretical distributions based on the above table and 
state whether the data are compatible with it. 

  
Solution. (a) Bernoulli (0,1) process 

(b)   2/50, 3/50, 1/50, 2/50, 4/50, 0/50, 1/50, 3/50, 0/50, 2/50, 

(c) 18/500 =0.036, 

(d) 008331.0
500

1
500
482

500
18)1(ˆ =××=

−
=

n
pp

pσ . 

We substitute the sample value of p in this equation because the true value is 
unknown. 

Assuming asymptotic normality in the sampling distribution, the 95 % confidence 
limits of the true value of p are  

008331.096.1036.0 ×± = 0.020, 0.052 

(e)The theoretical distribution of the proportions of failures and expected failures in 
10 sets: 

160.0)1(],50;0Pr[)0( 50 =−=== ppXpX ,1.60 
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299.0)1(50],50;1Pr[)1( 49 =−=== pppXpX ,2.99 

( ) 273.0)1(],50;2Pr[)2( 48250
2 =−=== pppXpX ,2.73 

( ) 163.0)1(],50;3Pr[)3( 47350
3 =−=== pppXpX ,1.63 

( ) 072.0)1(],50;4Pr[)4( 46450
4 =−=== pppXpX ,0.72 

 

Sketch of line diagram: frequency (observed and non-integer theoretical) of failures 
vs. number of failures in 10 sets, each with 50 occurrences. 

3.0              3      3 

            (2.99)   (2.73) 

                  ⏐      ⏐       

                  ⏐      ⏐            

2.0     2      ⏐      ⏐      2 

     (1.60)   ⏐       ⏐   (1.63)       

         ⏐      ⏐       ⏐     ⏐       

         ⏐      ⏐       ⏐     ⏐       

1.0    ⏐      ⏐      ⏐      ⏐      1 

         ⏐      ⏐      ⏐      ⏐   (0.72) 

         ⏐      ⏐      ⏐      ⏐      ⏐ 

         ⏐___⏐___⏐___⏐___⏐ 

         0       1      2       3      4 
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5.2. Confidence limits for concrete densities. Suppose that only the top 20 of the concrete densities 
listed in Table E.1.2 are available. 

(a) Assuming a normal population, provide 95 percent confidence limits for the mean density of 
concrete. 

(b) Revise the confidence limits for the mean density if the population standard deviation is 16 
kg/m3. 

 

Solution. The data are:   

2437     2437     2425     2427     2428     2448     2456     2436     2435     2446 

2441     2456     2444     2447     2433     2429     2435     2471     2472     2445 

n = 20; mean 4.2442=x ; standard deviation 31.13ˆ =s ;  

significance level α = 1 - 0.95 = 0.05 

093.22/,192/,1 ==− αα ttn . 

(a) Confidence limits for μ: nstxnstx nn /ˆ/ˆ 2/,12/,1 αα μ −− +≤≤− , 

i.e., 2442.4 - 6.2 ≤ μ ≤ 2442.4 + 6.2, i.e., (2436.2, 2448.6). 

(b) known variance =16 3mg/m . Use normal distribution with 2/αz =1.96. 

Confidence limits for μ: nszxnszx // 2/2/ αα μ +≤≤− ; 

i.e., 2442.4-7.0 ≤ μ ≤ 2442.4 + 7.0, i.e., (2435.4, 2449.4). 

Although the standard deviation is known, it is higher than in case (a), hence the 
confidence limits are wider. 

 
5.3. Minimum sample size for estimating mean dissolved oxygen (DO) concentration. Monitoring 
of pollution levels of similar streams in a region indicates that the standard deviation of DO is 1.95 
mg/L over a long period of time. 

(a) What is the minimum number of observations required to estimate the mean DO within ± 0.5 
mg/L with 95 percent confidence? 

(b) If only 30 observations are taken, what should be the percentage level in the confidence limits 
for the same difference in means? 

 

Solution. 

(a) 5.095.196.1 =×
n

. Hence n = 58.43. Minimum sample size = 59 

(b) 5.095.1
2/ =×

n
zα .     For n = 30, 

95.1
305.0

2/
×

=αz  = 1.404. 

α/2 = 0.08; 1- α = 0.84. 

Hence 84% confidence limits are applicable in this case. 
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5.4. Yield strength of steel rods. Tests done on a new make of steel rods indicated that, on average, 
loads up to 1990 kg can be withstood before exceeding the yield strength. This value is based on 
estimates from 50 specimens chosen at random. The standard deviation of the load is 183 kg. If a more 
stringent design is based on a 99.9 lower confidence limit, determine the mean yield strength to meet 
this specification. 

 

Solution. 

α = 0.001; αz =3.09. 

50/18309.3/ ×=nszα  ≈ 80 kg. 

The required mean yield strength = 1990 – 80 = 1910 kg. 

 
5.5. Confidence intervals on the variance of concrete densities. For the data of Problem 5.2a, 
provide 95 percent confidence limits on the population variance. 

 

Solution. 

For α = 0.05 and n = 20, from Eq. 5.3.14b, 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
≤≤

−

−−−
2

2/1,1

2
2

2
2/,1

2 ˆ)1(ˆ)1(Pr
αα χ

σ
χ nn

SnSn  = 1 - α 

⎥
⎦

⎤
⎢
⎣

⎡ ×
≤≤

×
91.8

31.1319
9.32
31.1319Pr

2
2

2

σ  = 0.95 

[ ]8.3773.102Pr 2 ≤≤ σ  =0.95, 

i.e., confidence limits for the population variance are 102.3 and 377.8 

 

 
5.6. Confidence limits on proportions of wet days. A building contractor who works in a relatively 
dry area is planning to acquire additional work in a newly developing area but is somewhat doubtful of 
progress because of the adverse effects of rainfall in many months of the year. However, the contractor 
knows that March is a month of low rainfall with independently distributed daily rainfalls and no 
apparent relationship between the weather on successive days. Therefore, the thought is that this may 
be a suitable month to work on the foundations. The proportion of wet days in March is 0.10 from data 
of the past three years. Suppose it is possible to put off the decision for some time in order to make 
further observations of daily rainfalls in March. Determine the total number of years of data necessary 
before one can be 95 percent confident of estimating the true proportion of wet days to within 0.05. 

 

Solution. 

nnppp /9.01.0/)1(ˆ ×=−=σ . 

Confidence limits: n/9.01.096.110.0 ×± . 

05.0/9.01.096.1 =× n . Hence n = 138.3 days. 

March has 31 days, hence number of years required = 138.3/31= 4.46, i.e. 5 years. 
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5.7. Significance of change in temperature. A water supply engineer is concerned that possible 
climatic change with respect to temperature may have an effect on forecasts for future demands for 
water to a city. The long-period mean and standard deviation of the annual average temperature 
measured at mid-day are 33°C and 0.75°C. The alarm is caused by the mean temperature of 34.3°C 
observed for the previous year. Does this suggest that there is an increase in the mean annual 
temperature at a 5 percent level of significance. 

 

Solution.  NH: 1μ  = 0μ = 33;  AH: 1μ  > 0μ  = 33. 

z = (34.3-33)/0.75 = 1.733. 

αz = 1.645  for α = 0.05. 

There is a significant increase in temperature. Reject NH. 

 

 
5.8. Time intervals between passing vehicles. In Example 4.21 the parameter of the fitted exponential 
distribution was estimated as 1.81 min-1 for the time gaps between vehicles in traffic from 204 
observations. By probability plotting methods, this is estimated in Example 5.41 as 1.75 min-1. If these 
were field estimates over different time periods, do they constitute a significant difference in the mean 
time intervals, using α =  .05? 

Solution. 

81.1/1ˆ/1 1 =λ  min-1         75.1/1ˆ/1 2 =λ  min-1 

Mean estimate = (1/1.81 + 1/1.75)/2  = 0.562 min-1 

Mean λ = 1/0.562= 1.78 min-1 

NH: 1λ  = 2λ ;  AH: 1λ  ≠ 2λ . 

For the exponential distribution, x
X exF λ−−= 1)( . 

Mean = 1/λ   and variance = 2/1 λ . 

For large sample sizes, the mean rate is distributed approximately as N[1/λ, )/(1 2λn ]. 

Under the NH, z = 
)ˆ/(1

0ˆ
1

ˆ
1

21

nλ

λλ
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

= 48.0
)20478.1/(1

75.1
1

81.1
1

−=
⎟
⎠
⎞

⎜
⎝
⎛ −

 

Because 96.12/ =αz , for α = .05, the difference is not significant; do not reject NH 

105



Applied Statistics for Civil and Environmental Engineers 

by N.T. Kottegoda and R. Rosso © 

Problem Solution Manual for Chapter 5 - Page 6 (out of 38) 

5.9. Comparing outputs of waste water plants. Two treatment plants are built in an area to treat 
waste-water from a city. Their relative performances are compared from the results of BOD tests made 
on the outputs. Eight preliminary results are listed below as differences in BOD between plant 1 and 2. 

 

Test 1 2 3 4 5 6 7 8 

Difference 
in BOD, 
mg/L 

+1.2 +0.2 -1.6 +0.7 +1.3 -0.9 -0.1 -1.9 

Test the difference in the outputs at the 5 percent level of significance. 

 

Solution. 
Test 1 2 3 4 5 6 7 8 

x = Diff 
in BOD  
 

+1.2 +0.2 -1.6 +0.7 +1.3 -0.9 -0.1 -1.9 

2x                   1.44        0.04          2.56         0.49         1.69         0.81          0.01         3.61 

From the above table the mean of x = -1.1/8; mean of 2x  = 10.65/8. 

.225.1
8

1.1
8
65.10

7
8

1
ˆ

2/122/1
2

2
2 =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

Σ
−

= x
n
x

n
nS  

NH: 1μ  = 2μ ;  AH: 1μ  ≠ 2μ  

Test statistic 317.0
8/225.1

8/1.1
/ˆ

)()( 2121 −=
−

=
−−−

nS
xx μμ

. 

Degrees of freedom ν = n -1=7 

365.2025.0,7 =t . 

The difference is not significant; do not reject NH. 
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5.10. Change in the mean and variance of flood flows. Annual maximum flows of the Tevere (Tiber) 
River recorded at Ripetta in Rome are given in Table E.5.8 for the period 1921 to 1974. The 
observation of numerous low maximum flows during the last 20 years led to a suspicion that the flow 
regime or climatic conditions had changed. Divide the record into two halves. Determine if the mean 
annual maximum flow in the second half is lower than those in the first half at a level of significance α 
= .01 under the following conditions: 

(a) If the standard deviation is 450 m3/sec. 

(b) If the standard deviation is estimated from the data but is assumed to be constant. 

(c) If the standard deviations are estimated separately for the two halves and are assumed to be 
different. 

Using the estimated variances in part c, above, determine whether the change in the variance is 
significant for α = .01? 

 

Solution. 
Flows in the first half are  
1092  1099  1440  1083  1621  1132   935  1540  1966   775  1166   843  1508  1876 
1696  1690  2730  1440   985  1346  1553  1370   743  1340   896  1600  2189 

Flows in the second half are  
1600   714   794   1460   1240   1230   1270   861  1355   612   822  1370  1380   510 
  810    735  259   1290   1325     528    622    355    468   472   664   717   950 

1x  = 1395;   2x  = 904;  1̂s = 457.9;  2ŝ =385.5. 

(a) For this one-tailed test, 01.4
27

450
27

450/)9041395(
2/122

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=z  

αz = 2.325  for α = 0.01. Highly significant. Reject NH 

(b) From Eq. 5.4.9, 
54

2727)254(
5.385269.45726(

9041395
22

××−
×−×

−
=t =10.32 

Degrees of freedom ν= 27+27-2=52; 01.0,52t 4.201.0,52 =t 2.4 
The test result is highly significant, reject NH. 

(c) Under the NH and using a one-tailed test, 

26.4

27
5.385

27
9.457

91.4

ˆˆ
2

2

1

2

2

2
2

1

2
1

21 =

+

=

+

−
=

n
s

n
s

xxt  

Degrees of freedom are: ν  
[ ]

[ ] 5.50
26/)27/5.385(26/)27/9.457(

7.13269
)1/(]/ˆ)1/(]/ˆ[

/ˆ/ˆ
2222

2

2
2

2
2

21
2

1
2

1

2

2
2

21
2

1 =
+

=
−+−

+
nnsnns

nsns

01.0,5.50t ≈2.4 The test result is highly significant, reject NH.  

(d) 41.1
5.385
9.457 2

=⎟
⎠
⎞

⎜
⎝
⎛=F ;  05.0,26,26F ≈1.96 

The test result is not significant, do not reject NH. 
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5.11. Control chart for quality control of concrete. Control charts were introduced in 1924 by Walter 
A. Shewhart [see Shewhart, W. A. (1931), Economic Control of Quality of Manufactured Products, 
D.Van Nostrand, New York] in order to detect and control any unwanted deviations in a process so that 
quality can be maintained.  

 Suppose tests based on compressive strengths have been made on concrete cubes to determine 
the ultimate loads that can be carried by concrete being used at a construction site. From past data the 
mean and standard deviation are estimated as 61.1 and 4.9 N/mm2, respectively, and each day 5 test 
cubes are tested at random and the mean is computed. The following results are obtained from the tests 
of 12 working days: 

 
Batch 
number, i 

Mean compressive 
strength, N/mm2 

1 58.1 
2 60.9 
3 62.5 
4 59.9 
5 56.1 
6 58.7 
7 61.5 
8 61.9 
9 63.5 
10 58.1 
11 67.1 
12 60.1 

 

Draw control charts using bands that are two standard errors from the mean. (Three standard errors are 
commonly used.) 

(a) Do any of the above results suggest that corrective action is necessary? 

(b) What is the probability that a Type I error is made, that is, action as in (a) is taken without any 
need for it? 

(c) What is the probability of making one or more of such errors during a six-day working week? 

(d) What is the probability of making a Type II error, if the use of aggregates of lower quality have 
reduced the mean strength to 57.5 N/mm2? 

(e) How does one reduce the foregoing errors? 
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Solution. 
Sketch of control bands 

 68  ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐                                                               

 67  ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐●  ⏐                                                               

  66 ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐  __________ 65.5  upper control band 

  65 ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐                                                              

  64 ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐●  ⏐    ⏐    ⏐                                                               

  63 ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐                                                               

  62 ⏐    ⏐    ⏐●  ⏐    ⏐    ⏐    ⏐●  ⏐● ⏐    ⏐    ⏐    ⏐                                                               

  61 ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐__________61.1  (mean)   

  60 ⏐    ⏐●  ⏐    ⏐● ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐●                                                               

  59 ⏐    ⏐    ⏐    ⏐    ⏐    ⏐● ⏐    ⏐    ⏐    ⏐    ⏐    ⏐                                                               

  58 ⏐●  ⏐    ⏐    ⏐    ⏐    ⏐   ⏐    ⏐    ⏐    ⏐●  ⏐    ⏐                                                               

  57 ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐  __________ 56.7  lower control band 

  56 ⏐    ⏐    ⏐    ⏐    ⏐●  ⏐    ⏐    ⏐    ⏐    ⏐    ⏐    ⏐                                                            

       1     2    3     4    5     6    7     8    9    10   11  12   Batch number i 

The two control bands are set at distances 5/9.42×  = 4.38 N/mm2 above and below 
the mean of 61.1 N/mm2 

(a) 5 and 11 

(b) 0455.0)97725.01(2)]2(1[2 =−=Φ−=α  

(c) ( ) xnxn
xX pppnxXxp −−=== )1(],;Pr[)(  

247.0)0455.01(]0455.0,30;0Pr[ 30 =−==X  

752.0247.01)0455.01(]0455.0,30;0Pr[ 30 =−=−=>X  

(d) ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
19.2

5.577.56
19.2

5.575.65β =1-(1-0.642)= 0.642 

(e) To reduce the Type I error, increase distance from mean to control band from 2 to 
3 standard errors. To reduce the Type II error, increase n 
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5.12. Power curve for concrete strengths. In Example 5.9, 95 percent confidence limits of 58.54 and 
61.76 N/mm2 were provided for the 40 concrete strengths with mean and standard deviation 60.14 and 
5.02 N/mm2 listed in Table 1.2.2. Determine the Type II errors made if the population values are equal 
to each of the following values, all in newtons per square millimeter: 

      60.5           61.5           62.0           62.5           63.5. 

Draw the power curve for the corresponding points. 

 

Solution. 
Population mean                      β                                                                    Power = 1-β 

(a) 60.5              ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
7937.0

5.6054.58
7937.0

5.6076.61β  

                        = 937.0007.0944.0)47.2()5875.1( =−=−Φ−Φ                     0.063 

(b) 61.5              ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
7937.0

5.6154.58
7937.0

5.6176.61β  

                        = 628.0)729.3()3275.0( =−Φ−Φ                                            0.372 

(c) 62.0              ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
7937.0

0.6254.58
7937.0

0.6276.61β  

                        = 382.0)359.4()3024.0( =−Φ−−Φ                                          0.618  

(d) 62.5              ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
7937.0

5.6254.58
7937.0

5.6276.61β  

                        = 175.0)9892.4()9323.00( =−Φ−−Φ                                     0.825    

(e) 63.5              ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ−⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
7937.0

5.6354.58
7937.0

5.6376.61β  

                        = 014.0.0)2492,6()1923.2( =−Φ−−Φ                                      0.986     

Sketch of power curve: Power vs. Mean  
1.0_______________________________________________.986__________ 
0.9                                                                                    ▫ 
0.8                                                                      .825 
0.7                                                                   ▫ 
0.6                                                          .618 
0.5                                                        ▫ 
0.4                                                .372 
0.3                                              ▫ 
0.2                                         ▫ 
0.1                                   ▫ 
0.0  ______________.063___________________________________________ 
       59                60                61                62                 63                   64 N/mm2 
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5.13. Irrigation and rain. Irrigation usually commences on 15th April in the Po River basin, Italy. An 
engineer is interested in the probability of rain during the seven days from April 15 to 21. From rainfall 
data of the past 100 years in a particular area, the following distribution of rainy days is obtained for 
the period. 

 
Rainy days 0 1 2 3 4 5,6,7 Total 
Frequency 57 30 9 3 1 0 100 

 

The binomial model B(M = m ⏐ 7, 0.1) is postulated. Can this be justified at the 5 percent level of 
significance on the basis of a chi-squared test? 

 

Solution.   Rainy days,              i =           0           1            2            3            4           5,6,7 

                   Observed number, iO  =         57         30            9            3            1              0 

                      Expected number, iE  =     47.8     37.2        12.4          2.3          0.3           0 

                 ( ) inin
ii ppE −−= )1(100   for n = 7, p = 0.1. 

( ) 2.37/2.78.47/2.9/ 22
27

0

2 +=−= ∑
=

i
i

ii EEOX + 4.12/4.3 2 + 3.2/7.0 2 + 3.0/7.0 2  

       = 1.77 + 1.39 + 0.93 + 0.21 + 1.63 = 5.93. 

81.705.0,3
2 =χ . Do not reject the NH of binomial model B(M = m ⏐ 7, 0.1). 

 

 
5.14. One-sample sign test on flows. The following is a sample from the recorded annual flows in the 
St Lawrence River which runs out from the Great Lakes of North America. The data are in 
standardized units obtained by dividing the original observations by the annual mean. Test the null 
hypothesis that the median is 1.006 against the alternative hypothesis that it is greater or less than this 
value, at the 5 percent level of significance. 

        0.942   0.947    1.005    0.988    1.001    1.013    1.013    1.088    1.000    0.959. 

 

Solution. 
For the stated median of 1.006 the signs are as follows:                    - - - - -. + + + - -  

n = 10, k = 3, i.e., k < n/2,    95.0
2/10
55.3

2/
2/)2/1(

−=
−

=
−+

=
n

nkz  

Because 96.12/ =αz , for α = .05, the difference is not significant; do not reject NH 
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5.15. Sign test applied to paired observations. We reexamine the concrete densities listed in Table 
E.1.2. Divide the record into two samples of equal length and apply the sign test to correspondingly 
paired observations from the two halves. Test the hypothesis that the mean density is unchanged at the 
5 percent level of significance. 

 

Solution. The number of non-zero differences n = 20 – 1 = 19. 

The number of positive differences k = 9. 

0
2/19

0
2/

2/)2/1(
==

−+
=

n
nkz  

Because 96.12/ =αz , for α = .05, the difference is not significant; do not reject NH 

 

 
5.16. Wilcoxon signed-rank test on flows. Use the Wilcoxon signed-rank test to ascertain whether the 
mean of the annual maximum flows of the Tevere River has changed from the first half to the second 
half of the period given in Table E.5.8. Test the null hypothesis that the means are the same against the 
alternative hypothesis that the mean flow is less in the second half at the 1 percent level of significance. 

 

Solution. NH    BAH μμ =:0  

               AH     BAH μμ >:1  

For n = 27, differences BA μμ −  and ranks commencing with lowest absolute value:  

-508   385   646   -377   381    -98   -335   679   611   163   344   -527   128   1366 

   13     12     16       10     11        1        7     17     15       4       9      14        2       26 

 

 886   955  2471    150  -340    818   931  1015  275   868    232    883   1240 

   21     23      27        3       8      18     22      24       6    19        5       20       25  

The total sum of ranks = n(n + 1)/2 = 27 × 28/2 = 378. 

Sum of ranks of negative differences = −T           =   53. 

Sum of ranks of positive differences = +T           = 325. 

1894/)1( =+= nnTμ          5.173224/55282724/)12)(1(2 =××=++= nnnTσ  

27.35.1732/)189325(/)( =−=−= +
TTTz σμ  

Because 325.2=αz , for α = .01, the test result is highly significant; reject NH. 
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5.17. Runs test on the Wolfer sunspot numbers. Wolfer sunspot numbers are an index of activity on 
the solar surface. They have been investigated for their impact on terrestrial climate and for the 
resulting environmental effects. Twenty annual observations are listed below for the period 1770-1789. 

 

101 82 66 35 31 7 20 92 154 125 

85 68 38 23 10 24 83 132 131 118 

 

Apply a runs test for randomness. Do these represent a random series at the 5 percent level of 
significance? 

 

Solution. We underline the runs above the median, 70,  as follows: 

101  82  66  35  31  7  20  92  154  125  85  68  38  23  10  24  83  132  131  118 

The total number of runs = 5. 

n = 10;  m = 10;  11
1010

10102121ˆ =
+
××

+=
+

+=
mn

nm
Rμ  

737.4
38

180
1920

)20200(10102
)1()(
)2(2]Var[ 22 ==

×
−××

=
−++
−−

=
mnmn

mnnmnmR . 

99.2
737.4

)115.4(
Var

]ˆ)2/1[(
=

−
=

−−
=

R
rz Rμ  

Because 96.12/ =αz , for α = .05, the test result is highly significant; reject NH that 
the sunspots represent a random series. 
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5.18. Spearmen rank correlation test on the DO-BOD relationship. With reference to the data in 
Table E.1.3 determine the rank correlation coefficient for the relationship between DO and BOD. 
Compare with the result in Example 1.30.  

 
Solution. The following table gives a summary of the calculations. 

 
Item  
number 

DO, 
x 

BOD, 
y 

DO 
ranked 

BOD 
ranked 

Rank 
of x 

Rank 
of y 

Diff in 
ranks, 
d 

2d  Cumulative 
Sum of 2d  

5 3.4 6.2 6.2 2.7 35 12 23 529 4272.3 
10 3.9 6.7 6.7 2.9 30 5 25 625 7409.6 
15 3.2 7.2 7.2 3.0 19 21 -2 4 8827.6 
20 3.2 7.6 7.6 3.2 22.5 17 -1 1 9330.9 
25 3.0 8.0 8.0 3.3 15 24 -9 81 9507.5 
30 2.9 8.4 8.4 3.7 9 29 -20 400 10777.5 
35 2.7 8.8 8.8 4.0 4 34 -30 900 14197.5 
38 2.5 9.4 9.4 4.4 1 37 -36 1296 17673.5 

 

The sample rank correlation coefficient is  

934.0
)138(38
5.1767361

)1(

6
1 22

1

2

−=
−

×
−=

−
−=
∑
=

nn

d
r

n

i
i

. 

In Example 1.30, the sample product-moment correlation coefficient =-0.9. 
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5.19. Poisson distribution of numbers of days of high waves. High waves in a coastal area where 
further development is planned cause property damage and erosional problems but measurements of 
wave heights are scanty. A researcher has obtained the following information of the number of days of 
high waves in a year from local chronicles and residents.  

 

Number of days of high waves 0 1 2 3 4 5 

Frequency 26 13 6 3 2 0 

 

Sketch a histogram of the number of days of high waves recorded in the area during a 50-year period. 

 Test the hypothesis that the occurrence of high waves is Poisson distributed at the 5 percent 
level of significance using the chi-squared test. What is the probability that the mean rate will be more 
than one day per year? 

 

Solution.   Number of days 

                 of high wind, i,            =           0           1            2            3            4            5 

 

                 Observed number, iO  =         26         13            6            3            2            0 

                                            i iO  =           0         13          12            9            8            0 

                  Expected number, iE  =     21.5       18.1        7.6          2.1         0.5        0.1 

The sum of the i iO  = 42. Therefore, the parameter 84.050/42ˆ ==ν . The Poisson 

distributed expected numbers, iE , are calculated as 
!

];Pr[
i
eniIn

i ννν
−

==×  

( ) 1.18/1.55.21/5.4/ 22
27

0

2 +=−= ∑
=

i
i

ii EEOX + 6.7/6.1 2 + 1.2/9.0 2 + 5.0/5.1 2 +

1.0/2.0 2  

       = 0.94 + 1.44 + 0.34 + 0.39 + 4.50 + 0.2 = 7.81. 

1.1105.0,5
2 =χ . Do not reject the NH of the Poisson model. 
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5.20. All-red phase of traffic lights. At 12 four-way junctions in London, England, brief “all red” 
phases were introduced. The numbers of accidents causing injuries were recorded for 2 years before 
and after the installation as given here: 

 
Site 1 2 3 4 5 6 7 8 9 10 11 12 
Before 27 4 18 20 17 12 18 24 18 19 3 8 
After 20 9 14 14 16 3 13 4 9 11 3 6 

(With the kind courtesy of the Transport and Road Research Laboratory, England.) 

Test the reduction in the number of accidents at the 1 percent level of significance. It is thought that 
sites with high rates of accidents are highly weighted. At a given site the variance is expected to be 
proportional to the mean over consecutive time periods. Taking the square roots of the numbers will 
reduce the differences in variances. Repeat the test at the 5 percent and 1 percent levels of significance 
for the variance-adjusted data. 

 

Solution. Denote After data as A and the Before data as B. Then 
Site                1       2       3       4       5       6      7        8      9       10       11       12       Sum 
A-B         =  -7       5      -4     -6      -1     -9     -5    -20     -9       -8         0        -2         -66 

2)BA( −  = 49     25      16     36       1     81    25   400     81      64         0          4        782 

Mean x  =-66/12 = -5.5; standard deviation 11/12)5.512/782(ˆ 2 ×−=s  = 6.17. 

The null hypothesis is        0BA:0 =−H , i.e., the “all red” phase has no effect. 

The alternate hypothesis is 0BA:1 <−H . 

nSXT BABABA −−− −= /)( μ . 

Under NH .09.317.6/125.5)/ˆ/( −=×−== nsxt  

For the one-tailed test with d.f. = 11 and α = 0.01, 718.201.0,11 =t . 

Because the test result is highly significant reject the null hypothesis that the “all red” 
phase has no effect. 

For the variance reduction techniques, we take the square roots of A and B. 
Site               1      2       3       4      5       6      7        8       9       10       11       12       Sum 
A             = 4.47  3  3.74   3.74     4   1.73  3.61       2       3    3.32    1.73    2.45 
B             = 5.20  2  4.24   4.47  4.12  3.46  4.24   4.90  4.24   4.36    1.73   2.83 
A-B         =-0.73 1 -0.50 -0.73 -0.12 -1.73 -0.63 -2.90 -1.24 -1.04      0    -0.39     -9.01 

2)BA( − =0.53   1  0.25   0.53  0.01  2.99  0.40   8.41  1.54  1.08      0      0.15     16.89   

Mean x  =-9.01/12 = -0.75; standard deviation 
96.011/12)75.012/89.16(ˆ 2 =×−=s  = 6.17. 

The null hypothesis is        0BA:0 =−H , i.e., the “all red” phase has no effect. 

The alternate hypothesis is 0BA:1 <−H . 

nSXT BABABA −−− −= /)( μ . 

Under NH .706.296.0/1275.)/ˆ/( −=×−== nsxt  
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For the one-tailed test with d.f. = 11 and for α = 0.05, 796.105.0,11 =t ; also for α = 
0.01, 718.201.0,11 =t . The test result is significant at the α = 0.05 level, but it is not 
significant at the α = 0.01 level, just marginally. Reject NH. 
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5.21. Speed limit: USA. Speeds of cars were estimated on rural interstate roads in the United States 
during 1973 and 1975. The numbers of cars within certain categories of speeds are listed here. 

 

 Less than 45 mph 45 to 55 mph 55 to 70 mph 70 to85 mph Total

Upper limits kph 72.5 88.5 112.6 137  

1973 0 7 63 30 100 

1975 1 28 69 2 100 

 

Determine whether there is a significant decrease, at the 1 percent level, of the proportion of cars 
exceeding the speed limit of 55 mph (88.5 kph) between the two years. Data from Transportation 
Research, Vol. 17, D.B. Kamerud, “The 55 mph speed limit: Costs benefits, and implied trade-offs”, 
pp. 51-64, Copyright (1983) with the kind permission from Elsevier Science Ltd., The Boulevard, 
Langford Lane, Kidlington, OX5 1GB, England. 

 

Solution. 

Proportion of cars exceeding the speed limit in 1973, 100/93ˆ 73 =p  and in 1975, 
100/71ˆ 75 =p . The average proportion 82.0200/)7193(ˆ =+=p  

The null hypothesis is        pppH == 73750 : , i.e., there is no decrease in the 
proportions 

The alternate hypothesis is 73751 : ppH < . 

Difference in proportions 22.0ˆˆ 7375 −=− pp  

Variance of difference between observed proportions, 

003432.0
100

78.022.02)1()1(
]p̂Var[]p̂Var[]p̂p̂Var[

73

7373

75

7575
73757375 =

××
=

−
+

−
=+=−

n
pp

n
pp

 

because 1007575 == nn  and also, under the NH, 22.07375 === ppp . 

Under the NH, [ 7375 ˆˆ pp − ]~N(0,0.003432) approximately. 

Normal score 76.3
003432.0

022.0
−=

−−
=z . 

For the one-tailed test with α = 0.01, 326.201.0 =z . 

Because the test result is highly significant reject the null hypothesis that there is no 
decrease in the proportions 
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5.22 Speed limit: England. To test the effect of a 65 kilometers per hour (40 miles per hour) speed 
limit on the A 4123 road in England, speeds of vehicles were calculated from observations taken at 
sites during one day before and one day after the introduction of the limit. The following results were 
obtained: 

 
       Day and Site  Mean speed in kph. of private cars. 
             Before            After 

Monday 
1 

Northbound 
Southbound 

68.3 (42.4) 
61.4 (38.1) 

63.4 (39.4) 
58.9 (36.6) 

Tuesday 
2 

Northbound 
Southbound 

72.8 (45.2) 
69.9 (43.4) 

64.1 (39.8) 
64.6 (40.1) 

Wednesday 
3 

Northbound 
Southbound 

61.4 (38.1) 
59.1 (36.7) 

56.8 (35.3) 
55.1 (34.2) 

(With the kind courtesy of the Transport and Road Research Laboratory, England.) 

Note: Values in parentheses are in mph. as originally calculated. 

 In considering that there may be other factors, such as weather, that could have caused the 
differences, observations were also made on the same days over a similar part of the road where no 
speed limit was imposed. The following changes in mean speeds, [Before-After] were recorded in the 
same units: 

Monday 
Tuesday 
Wednesday 

-2.42 
-0.16 
-1.29 

(-1.5) 
(-0.1) 
(-0.8) 

Test the change at the 5 percent level of significance.  

 

Solution. As in Problem 5.20 we calculate the differences [After – Before] and then 
add the changes caused by other factors with the sign reversed 

                      Site 1                                    Site 2                                        Site 3 

N-Bound  -4.9 + 2.4 =  -2.5               -8.7 + 0.2 = -8.5                              -4.6 + 1.3 = -
3.3 

S-Bound   -2.5 + 2.4 = - 0.1              -5.3 + 0.2 = -5.1                               -4.0 + 1.3 = -
2.7 

Mean x  =-22.2/6 =-3.77; standard deviation 5/6)77.36/6.122(ˆ 2 ×−=s  = 2.75. 

Under NH 6)75.2/77.3(−=t  = -3.36 

For the one-tailed test with d.f. = 5 and for α = 0.05, 015.205.0,5 −=t ; Reject NH. That 
there is no change in speeds after the introduction of the speed limits. 

 

119



Applied Statistics for Civil and Environmental Engineers 

by N.T. Kottegoda and R. Rosso © 

Problem Solution Manual for Chapter 5 - Page 20 (out of 38) 

5.23 Machine failures. The following are intervals in hours between failures of the air conditioning 
system of a Boeing 720 jet airplane: 

    23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11,  

    14, 11, 16, 90, 1, 16, 52, 95 

Test whether the data are exponentially distributed at the 5 percent level of significance. Draw a 
probability plot.  

Data with the kind courtesy of the publishers from F. Proshan (1963), “Theoretical explanation of 
observed decreasing failure rate”, Technometrics, Vol. 5, pp. 375-383.  

 

Solution. 
Ranked failures of the air conditioning system of a Boeing 720 jet airplane: 

1   3   5   7   11   11   11   12   14   14   14   16   16   20             21   23             42   47   
52 

62   71   71               87   90   95                120   120                  225   246   261 

n = 30;  ∑x =1788;  30/1788=x = 59.6. 

Exponential model: 1788/301)( xexF −−= . 

        x ≤ 20   20 < x ≤ 40   40 < x ≤ 60   60 < x ≤ 80   80 < x ≤ 100   100 < x ≤ 120   
x>120 

iO          14               2                  3                  3                     3                       2                 
3 

limiting 
F(x)    0.285      0.489           0.635            0.739             0.813                0.866 

1- F(x) .715        .511             .365              .261               .187                  .134 

Ln[1- F(x)] 

         -0.335      -.671           -1.008         -1.343             -1.677              -2.010 

n F(x) 8.552     14.666        19.037          22.163           24.397               25.994 

iE =    8.552      6.114           4.371            3.126             2.234                1.597         4.006 

i

ii

E
EO 2)( −

  

  =     3.471       2.768           0.430            0.005            0.262                 0.102         0.252 

∑
i

ii

E
EO 2)( −

= 7.29. The degrees of freedom ν =7-1-1= 5. 1.1105.0,5
2 =χ . Do not 

reject the NH of the exponential model. See sketch of probability plot below. 
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Partial sketch of  failure hours vs. ln[1-F(x)] 

260⏐                  ▪ 

240⏐                            ▪ 

220⏐                                  ▪ 

200⏐                             

180⏐                                                                                                  

160⏐                                                                       ▪ 

140⏐                                                            ▪ 

120⏐                                                                              ▪ 

100⏐                                                                                     ▪ 

  80⏐                                                                                              ▪ 

  60⏐                                                                                                     ▪ 

  40⏐                               

  20⏐                                                                                                                      ▪ 

 

-5.0       -4.5       -4.       -3.5       -3.0      -2.5       -2.0       -1.5     -1.0     -0.5       0.0 
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5.24 Bacterials counts. The following are counts of the number of fields of bacteria reported by Bliss, 
C. and R.A. Fisher (1953): “Fitting the negative Binomial Distribution to Biological Data”, Biometrics, 
Vol. 9, pp. 176-196. 

Bacteria for field 0 1 2 3 4 5 6 7 8 9 10 11 12 and more

Number of fields 11 17 31 24 29 18 19 16 13 17 6 8 31 

As a preliminary step fit the geometric distribution to these data. Apply a chi-squared goodness-of-fit 
test at a level of significance α = .05, combining the counts for fields 0 and 1. (Data used with the kind 
courtesy of the International Biometric Society, 808  17th Street NW, Suite 200, Washington D.C., 
20006-3910 USA.). 

 

Solution. 
  i =   0       1       2       3       4       5       6       7       8       9      10       11       ≥12    Sum 

iO = 11    17     31     24     29     18     19     16     13     17        6        8        31        240 

i iO =  0    17     62     72   116      90   114  112   104   153      60       88      434     1422 

iE =       40.5  33.7  28.0  23.3  19.3  16.1  13.4  11.1   9.2      7.7      6.4    31.3 

(For the column ≥12 we take an average count of 14.)  n = 240 240/1422=x  = 
5.925. 

xp /1= = 0.1668. 
1)1( −−= i

i pnpE  

( )

3.23/)3.2329(0.28/)0.2824(7.33/)7.3331(5.40/)5.4028(

/

2222

27

0

2

−+−+−+−=

=−= ∑
=

i
i

ii EEOX

1.11/)1.1113(4.13/)4.1316(1.16/)1.1619(3.19/)3.1918( 2222 −+−+−+−+i  

3.31/)3.3131(4.6/)4.68(7.7/)7.76(2.9/)2.917( 2222 −+−+−+−+  

= 3.86 + 0.22 + 0.57 + 1.39 + 0.09 + 0.52 + 0.50 + 0.33 + 6.61 + 0.38 + 0.40 + 0.00 
=14.87. 

The degrees of freedom ν = 12-1-1= 10. 3.1805.0,10
2 =χ . Do not reject the NH of the 

geometric model 
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5.25. Pump failures. Two manufacturers, A and B, supply pumps to the same specification of 500 
hours on average to failure. Twenty pumps of each manufacturer have been installed and the times to 
failure for each pump are as follows: 

A 510 450 478 512 506 485 501 481 452 494 

 514 507 487 467 502 508 503 492 502 499 

B 510 513 497 506 493 501 547 514 487 490 

 495 497 508 493 522 502 527 486 531 497 

 (a) Test whether the mean time of failure for A is less than that for B. 

 (b) Test whether the proportion of pumps not reaching specification is less for B than for A. 

Use α = .01 and an appropriate test in each case. 

 

Solution. (a) 
NH BA μμ =  
AH BA μμ <  
Sample sizes are 20== BA nn .The sample means are 5.492=Ax  and 8.505=Bx  
The sample standard deviations are 

( ) 80.18
19
205.492242892ˆ

2/1
2 =⎥⎦

⎤
⎢⎣
⎡ ×−=As ;   ( ) 05.16

19
208.505256078ˆ

2/1
2 =⎥⎦

⎤
⎢⎣
⎡ ×−=Bs . 

The sample t value is 

[ ]
2/1

2/122 )(
)2(

ˆ)1(ˆ)1(

)()(
⎥
⎦

⎤
⎢
⎣

⎡
+
−+

−+−

−−−
=

BA

BABA

BBAA

BABA

nn
nnnn

snsn

xxt μμ  

[ ] [ ] 406.2380
05.16198.1819
)8.5055.492( 2/1

2/122
=

×+×

−
= , under the NH. 

For the one-tailed test with d.f. = 2n -2 =38 and α = 0.01, 43.201.0,38 =t . 
The difference is not significant. Do not reject NH. 
 (b) NH BA pp =  
AH AB pp <  

20/10ˆ =Ap  and 20/9ˆ =Bp . The average proportion 40/19)2020/()910(ˆ =++=p  
Difference in proportions 05.020/1ˆˆ −=−=− AB pp  
Under the NH, the variance of difference between observed proportions is 

0249.0)40/21()40/19(2)ˆ1(ˆ
2]ˆVar[]ˆVar[]ˆˆVar[ =××=

−
=+=−

B
ABAB n

pppppp  

because 20== AB nn  and also, under the NH, ppp AB == . 
Under the NH, [ AB pp ˆˆ − ]~N(0, 2/1)0249.0( ) approximately. 

Normal score 3169.0
0249.0

005.0
−=

−−
=z . 

For the one-tailed test with α = 0.01, 326.201.0 =z . 
Because the test result is not significant do not reject the null hypothesis  
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5.26. Groundwater quality. The following are measurements of concentrations of chloride in 
milligrams per liter in a shallow unconfined aquifer taken at intervals of three months [from J. Harris, 
J.C. Loftis, and R.H. Montgomery (1987). “Statistical models for characterizing ground-water quality”, 
Groundwater, Vol. 25, pp. 185-193]: 

38 40 35 37 32 37 37 32 45 38 

33.8 14 39 46 48 41 35 49 64 73 

 67 67 59 73 92.5 45.5 40.4 33.9 28.1 

Compute the coefficients of skewness and kurtosis and make an approximate test for normality, using 
α = .05. (Data used with the kind courtesy of the publishers).  

 

Solution. 

For groundwater quality, sample size n= 29; sample coefficient of skewness 1g = 
0.9660 and sample coefficient of kurtosis = 3.737. 

187.0
323027
28296

)3)(1)(2(
)1(6]Var[g1 =

××
××

=
++−

−
=

nnn
nn  

 

For the population coefficient of skewness 1γ , the 95% confidence limits 
are±1.96× 187.0  = ± 0.85 

For the population coefficient of skewness 1γ , the approximate 95% confidence limits 
are (from the text, for the given sample size) are 4.60, 1.85. 

Reject NH of normality in distribution. 

 

 
5.27. Kolmogorov-Smirnov two sample test on flows. Annual rainfall from 1918 to 1978 in the Po 
River basin of northern Italy are given in the penultimate column of Table E.7.2. Divide the record into 
two parts of 30 and 31 years. Determine whether the rainfall regime has changed by testing whether the 
two parts belong to the same population at the 5 percent level of significance using the Kolmogorov- 
Smirnov two-sample test. 

 

Solution. Po annual rainfall from Table E7.2 
First half of data  m = 30:-  1133   999  1501  807  1051     969    997   1090   1356   1133 

                                             1171  876  1159  993   1112   1128  1345   1290   1259  1529 

                                              940  1196  1046 1218   948     896    950     846   1011   1096 

Second half of data n =31:-1100  922    978  1496   913    1046  1100     886   1028  1215 

                                            1142  1422  1654  987   909    1362  1026   1015   1228    885  

                                   1264   995   986  1017  1349  1029    959  1323   1318   1564   1197 

The (critical) nmd ,  occurs after the 24th item of the ranked data of the first part with m 
= 30, and the 19th item of the ranked data of the second part with n = 31. 
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1871.0, =nmd  and        7305.01871
61

3130 2/1

,

2/1

=×⎥⎦
⎤

⎢⎣
⎡ ×

=×⎥⎦
⎤

⎢⎣
⎡

+ nmd
nm

mn . 

This is low when compared with the critical value in Table C.7. Therefore do not 
reject the NH that the two parts belong to the same population. 

 

 
5.28. Lilliefor’s test. The following are the ranked annual inflows in 106, for the period 1950 to 1974, 
to the Warragamba reservoir, which supplies water to the city of Sydney, Australia: 

724 1,505 3,310 6,551 6,915 7,114 7,811 8,962 9,219 9,664 

9,840 10,134 10,299 10,824 11,953 12,566 13,969 14,941 15,449 16,800 

17,601 18,250 18,483 19,081 20,242      

(By kind courtesy of the University of New South Wales, Sydney) 

Test whether the distribution is normal using Table C.8 of Appendix C, which is Lilliefors’ test for 
normality corrected by Dallal and Wilkinson (1986) for the purpose. 

 

Solution. 

 
Ranked 
data 

724           10134

k 1 2 3 4 5 6 7 8 9 10 11 12 

)(xFn  .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 .44 .48 

)(0 xF  .026 .036 .071 .192 .211 .221 .261 .334 .352 .383 .395 .416 

 
Ranked 
data 

 10824 11953           

k 13 14 15 16 17 18 19 20 21 22 23 24 25 

)(xFn  .52 .56 .60 .64 .68 .72 .76 .80 .84 .88 .92 .96 1.00

)(0 xF  .428 .466 .549 .593 .689 .75 .78 .84 .88 .90 .91 .92 .95 

The critical value nd = 0.094, which occurs at k = 14. From Table C.8, the limiting 
value 05.0,nD =0.173. Therefore do not reject the NH that the distribution is normal 
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5.29. Chi-squared test. We transformed the Warragamba annual flows (introduced in Problem 5.28 
but extended over a 103-year period) to natural logarithms. The data were ranked and sorted into 10 
classes with equal class intervals as follows: 

Class 
boundary 

11.61 12.07 12.52 12.98 13.44 13.89 14.35 14.81 15.26 ∞

Number of 
class 

2 6 8 14 19 16 17 11 8 2

The total is n = 103, the estimated mean is13.50, and the variance is 0.874. 

Using the chi-squared goodness-of-fit procedure, test the hypothesis that the log-transformed flows are 
normally distributed with α = .05. 

 

Solution. 

As given, the mean x  = 13.50 and the standard deviation 935.0874.0ˆ ==s  

 

x sxxz ˆ/)( −=  )(zΦ  iE  iO  iii EOE /)( 2−

11.61 -2.022 0.0216 2.26 2 0.020 

12.67 -1.530 0.0630 4.30 6 0.672 

12.52 -1.048 0.1473 8.71 8 0.058 

12.98 -0.556 0.2891 14.65 14 0.029 

13.44 -0.064 0.4737 19.12 19 0.001 

13.89 0.417 0.6617 19.26 16 0.552 

14.35 0.909 0.8183 10.10 17 0.050 

14.81 1.401 0.9194 10.36 11 0.040 

15.26 1.883 0.9702 5.19 8 1.521 

   3.02 2 0.361 

SUM   103.0 103 3.314 

Thus from the last entry of the above table, 2X = 3.314. The degrees of freedom ν 
=10-1-2= 7. 1.1405.0,7

2 =χ . Do not reject the NH of the lognormal model. 
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5.30. Anderson-Darling test. Reconsider the data of Problem 5.28. Test the hypothesis of normality 
using the Anderson-Darling test at the 5 percent level of significance.  

 

Solution. 
Rank  data First F term Sec (1-F) term Sum term 
1 724 .02608 .04989 -6.64 
2 1505 .03606 .07600 -24.34 
3 3310 .07124 .09299 -49.43 
4 6551 .19193 .10032 -77.08 
5 6915 .21073 .12293 -109.96 
6 7114 .22145 .15548 -147.01 
7 7811 .26136 .22219 -184.01 
8 8962 .33448 .25098 -221.18 
9 9219 .35184 .31110 -258.78 
                                                                                                                             -258.78 
Rank  data First F term Sec (1-F) term Sum term 
10 9664 .38263 .40715 -294.11 
11 9840 .39503 .45136 -330.32 
12 10134 .41598 .53402 -364.92 
13 10299 .42784 .57216 -400.11 
14 10824 .46598 .58402 -435.24 
15 11953 .54864 .60497 -467.23 
16 12566 .59285 .61737 -498.39 
17 13969 .68890 .64816 -524.99 
                                                                                                                            -524.99 
Rank  data First F term Sec (1-F) term Sum term 
18 14941 0.74902 0.66552 -549.360 
19 15449 0.77781 0.73864 -569.87 
20 16800 0.84452 0.77855 -586.22 
21 17601 0.87707 0.78927 -601.30 
22 18250 0.89968 0.80807 -615.01 
23 18483 0.90701 0.92876 -622.73 
24 19081 0.92400 0.96394 -628.17 
25 20242 0.95011 0.97392 -631.97 

 

The estimated 2A  value is -25 - (-631.9708)/25 = 0.27883. This is less than the 
limiting value, as given in the text, at the 5 percent level of significance. Do not reject 
the NH of the normal model. 
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5.31. Harmonic coefficients. Monthly inflows into Warragamba reservoir in New South Wales, 
Australia were computed over the period 1881-1983 in units of 1000 m3. 

It is proposed to fit the following harmonic model to the periodicity in the means: 

( ) ( )6/2cos6/2
6

1

6

1
τπβτπαμμτ iisin

i
i

i
i ∑∑

==

++=  

where μτ is the harmonic mean in month τ, τ = 1, 2, ..., 12; 1 denotes January and so on; μ is the annual 
mean; αi, βi, i = 1, 2, ..., 6 are harmonic coefficients. The following harmonic coefficients have been 
computed in m3. 

 

Harmonic i 1 2 3 4 5 6 

αi 6,066 8,568 -12,629 -2,135 8,954 0 

βi -39,393 7,062 -16,877 6,586 -5,204 875 

SS 9,817 762 2,746 296 663 5 

              Note: The last row gives the sum of squares associated with each harmonic in units 108(m3)2. 

 Determine by an analysis of variance how many of the harmonics are significant using α = .05. 
There are 1,236 items of data and the total sum of squares is 457, 175×108(m3)2.  

Calculate the fitted means using the significant harmonics. 

 

Solution. 
_______________________________________________________________________ 

 Variables             Sum of squares      Degrees of freedom          Mean square         F 

_______________________________________________________________________ 

ii βα ,  n                            4,472                           9                        4,472/9 = 4,969      1.37 

i = 2, 3, 4, 5 6 

11 ,βα                               9,817                            2                        9,817/2 = 4,908.5   13.6 

Residuals                     442,886                     1,224              44,886/1,224 = 361.8 

Total                           457,175                      1,235 

From Table C.4, .63.405.0,,2 =∞F  

Only 11 ,βα  (which represent the first harmonic) are significant. The fitted means are 
obtained as follows: 

)6/2cos(639393)6/2sin(6066 πτπτμμτ −+=  
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5.32. Analysis of variance of road data. Using the data from Table 5.7.5 for the road rutting 
experiment of Example 5.34 test whether the base thickness has a significant effect on the depth of the 
rutting. For this test combine the results from the two types of base material. 

 
Solution. 

From Eq. 5.7.5a      2
.

1 1

2 1 T
kn

xSS
k

i

n

j
ijT −= ∑∑

= =

= 194.37 - 1446.33/10 = 49.73 

2
.

1

2 11 T
kn

T
n

SS
k

i
iTr −= ∑

=

 = 148.08 - 144.63 = 3.45 

Source                    Degrees of freedom       SS         mean SS         F 
_________________________________________________________ 
Base thickness                    2                       3.45           3.45/2       1.725 
Error                                  27                     46.28        46.28/27     1.714 
Total                                  29                     49.73 

05.0,27,2F ≈ 3.35 
Do not reject the NH that all treatments are the same. 
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5.33 Analysis of variance of dynamic effect of vehicles. We return again to the road rutting 
experiment of Example 5.34. From Fig. 5.7.2 and other data sets in Tables E.5.1 to E.5.6, it is 
suggested that the movement of heavy vehicles can have a dynamic effect (that is, time-dependent) on 
the road surface. This can change with road material and thickness. Analyze the variance of this effect 

by using the estimated error sum of squares (xi - 0β̂ - 1β̂ ui)2 to represent it. Hence determine whether it 
is significant with α = .05. Assume (a) that the intercepts and gradients for the 30 series studied 
in Example 5.34 are variable; (b) Assume a constant intercept and gradient. 

 

Solution. 
(a) Analysis of variance for a two way classification: Dynamic effects. Intercepts 
and gradients are variable in the series studied 
Source             Degrees of freedom       SS         mean SS         F 
_________________________________________________________ 
Treatment                     1                       76.3             76.3         1.67 
Blocks                          2                     167.6             83.8         1.84 
Interaction                    2                     131.8             65.9         1.4 
Error                           24                  1094.9             45.6      
Total                           29                      

05.0,25,2F ≈ 3.39 

Therefore do not reject the NH that the dynamic effect of vehicles has no influence on 
the variances considered, assuming variable intercepts and gradients in the series 
studied. 

 

 

(b) Analysis of variance for a two way classification: Dynamic effects. Intercepts 
and gradients are constant in the series studied 
 
Source             Degrees of freedom       SS         mean SS         F 
_________________________________________________________ 
Treatment                     1                  0.00264         0.00264      0.25 
Blocks                          2                  0.0296           0.0148      1.408 
Interaction                    2                  0.048             0.024        2.33 
Error                           24                  0.25            0.0104 
Total                           29                      

05.0,25,2F ≈ 3.39 

Therefore do not reject the NH that the dynamic effect of vehicles has no influence on 
the variances considered, assuming constant intercepts and gradients in the series 
studied. 
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5.34. Normal plots. In Table E.1.2 and Problems 1.6 and 1.14 of Chapter 1 there are lists of 
compressive strengths of concrete in newtons per square millimeter obtained by testing three lots of test 
cubes. Make comparative normal probability plots of these three sets of test results. Comment on the 
results. 

 

Solution. For the Douglas data (Table E.1.2) and Ash2data (Problem 1.14) ranked 
below, we use the following plotting position: )25.0/()375.0( +−= nipi  where n = 
40 

 
i = 1 2 3 4 5 6 7 8 9 10 
Douglas 49.9 50.7 52.5 53.2 53.4 54.4 54.6 55.8 56.3 56.7 
Ash2data 43.3 45.7 45.8 47.3 47.3 47.7 47.2 48.1 48.5 48.5 

ip  =  .016 .04 .065 .090 .0925 .14 .165 .189 .214 .239 

Z = -2.16 -1.75 -1.52 -1.34 -1.35 -1.08 -0.98 -0.88 -0.79 -0.71 
 
i = 11 12 13 14 15 16 17 18 19 20 
Douglas 56.9 57.8 57.9 58.8 58.9 59.0 59.6 59.8 59.8 60.0 
Ash2data 48.8 49.1 49.3 49.4 49.5 49.5 49.6 50.2 50.5 51.0 

ip  =  .264 .289 .314 .339 .363 .388 .413 . 453 . 463 . 488 

Z = -0.63 -0.56 -0.49 -0.42 -0.35 -0.30 -0.22 -0.12 -0.10 -0.02 
 
i = 21 22 23 24 25 26 27 28 29 30 
Douglas 60.2 60.5 60.5 60.5 60.9 60.9 61.1 61.5 61.9 63.3 
Ash2data 51.0 51.1 52.0 52.2 52.5 52.7 52.8 52.9 53.1 53.1 

ip  =  .512 .537 .562 .587 .612 .637 .662 . 686 . 711 . 736 

z= 0.03 0.095 0.16 0. 22 0.28 0.35 0.42 0.485 0.56 0.635 
 
i = 31 32 33 34 35 36 37 38 39 40 
Douglas 63.4 63.9 63.9 65.7 67.2 67.3 68.1 68.3 68.9 69.5 
Ash2data 53.4 53.4 53.8 54.0 54.1 54.2 55.2 55.2 56.5 58.6 

ip  =  .761 .786 .811 .835 .866 .885 .910 . 935 . 960 . 985 

z = 0.71 0.79 0.88 0.99 1.11 1.20 1.34 1.52 1.75 2.17 

 

For the smaller sample of Ash1data (Problem 1.16) ranked below we use the 
following plotting position: nipi /)35.0( −= , where n = 16. 
i = 1 2 3 4 5 6 7 8 
Ash1data 28.75 33.5 36.75 38.0 39.25 40.25 41.75 41.75 

ip  .038 .100 .162 .223 .285 .346 .408 .469 

z -1.78 -1.78 -0.99 -0.76 -0.57 -0.40 -0.24 -0.75 
 
i = 9 10 11 12 13 14 15 16 
Ash1data 42.0 42.25 42.50 42.75 43.25 43.50 44.25 44.25 

ip  .531 .592 .654 .715 .777 .839 .902 .962 

z .095 .235 .395 .570 .765 .990 1.29 1.77 

 

131



Applied Statistics for Civil and Environmental Engineers 

by N.T. Kottegoda and R. Rosso © 

Problem Solution Manual for Chapter 5 - Page 32 (out of 38) 

Sketch of normal probability plot for Douglas data (Table E.1.2) 
70⏐                                                                                                                      ▪   
68⏐                                                                                                     ▪ 
66⏐                                                                                            ▪ 
64⏐                                                                                       ▪ 
62⏐                                                                                  ▪ 
60⏐                                                                  ▪ 
58⏐                                                        ▪ 
56⏐                                               ▪ 
54⏐                                          ▪ 
52⏐                            ▪ 
50⏐              ▪ 
 
z =   -2.5       -2.0       -1.5       -1.0       -0.5       0.0       0.5       1.0       1.5       2.0       2.5 

Sketch of normal probability plot for ASH 2data (Problem 1.14) 
58⏐                                                                                                                       ▪ 
56⏐                                                                                                              ▪ 
54⏐                                                                                         ▪ 
52⏐                                                                         ▪ 
50⏐                                                                 ▪ 
48⏐                                             ▪ 
46⏐                              ▪ 
44⏐              ▪ 
 
z =   -2.5       -2.0       -1.5       -1.0       -0.5       0.0       0.5       1.0       1.5       2.0       2.5 

 

Sketch of normal probability plot for ASH1data (Problem 1.6) 
44⏐                                                                                                 ▪ 
42⏐                                                                       ▪ 
40⏐                                                            ▪ 
38⏐                                                  ▪ 
36⏐                                           ▪ 
34⏐                            ▪ 
32⏐                                              
30⏐                               
28⏐                      ▪ 
 
z =   -2.5       -2.0       -1.5       -1.0       -0.5       0.0       0.5       1.0       1.5       2.0       2.5 
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Comments: For the concrete compressive strengths of the  Douglas data (Table E.1.2) 
and ASH2 data (Problem 1.16) indicate that the normal distribution is a good fit. 
However, the normal fit is less satisfactory for ASH1 data (Problem 1.4). The small 
sample size is a likely cause. 

 
5.35. Lognormal probability plotting of sunspot data. Make normal and lognormal 
probability plots the Wolfer sunspot data of Problem 5.17. Comment on the results. 

 

Solution. 
The lognormal distribution provides a better fit compared to the normal as shown in 
the 3 following graphs. 

INSERT 3 GRAPHS FOR PROBLEM 5.35 
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5.36. Number of vehicles passing using a Poisson probability plot. Draw curves to represent for 
each Poisson occurrence, say from 0 to 6, the relationship between the probability of occurrence and 
the value of the parameter from say 0.1 to 1.0. Plot the probabilities of the following observer counts of 
the number of vehicles passing a point of observation: 

Count 0 1 2 3 4 5 6 

Frequency 221 95 24 12 5 2 1 

Is the Poisson a reasonable model? What is the estimated parameter from the plot? 

 

Solution. Calculate probabilities obtained from the data 
Count      0     1     2    3     4    5    6 Sum 
Frequency 221 95 24 12 5 2 1 360 

)(xpX  0.613 0.263 0.067 0.013     

 

Calculate Poisson probabilities for counts 0,1,2,  
Count/Poisson parameter             0              1              2 
     0.2      0.818        0.164       0.016 
     0.3      0.741        0.222        0.033 
     0.4      0.670             0.268        0.054 
     0.5      0.607        0.303        0.076 
     0.6      0.549        0.329        0.099 
     0.7      0.497        0.348         0.122 

 

Sketch of Poisson probability vs. parameter for counts  

▪  zero      ●  one              ■    two        

From given data ○ 
.8⏐ ▪ 

.7⏐                             

.6⏐                                                               zero ○▪ 

.5⏐                                                                        |                                                    ▪ 

 .4⏐                                                                       |                                                              ● 

.3⏐                                                                 one○●   

.2⏐                  ●                                                   |                                                               ■ 

.1⏐●                                                                     |                            ■ 
                                                                      two ○ 
    0.2     0.25     0.30     0.35     0.40     0.45     0.50     0.55     0.60     0.65     0.70 

Estimated parameter ≈ 0.5 (see vertical line). 

The vertical straight line suggests that the Poisson provides a good approximation. 
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5.37. Tensile strengths on Weibull probability paper. The original work of Weibull (1951) on the 
strengths of materials suggests that the breaking tensile stress of concrete has a Weibull distribution. 
The following results of tensile strengths, in newtons per square millimeter, were obtained from 12 
tests conducted in a laboratory. 

                 14.8  15.7  15.1  13.8  14.3  16.6  14.1  16.4  16.1  13.7  13.9  14.6 

Plot these results on Weibull probability paper. Fit a straight line by eye and comment on the results. 

 

Solution. 
See plot on Weibull paper. There is much scatter. A larger sample may have provided 
a better fit. 

INSERT  GRAPH FOR PROBLEM 5.37 

 

135



Applied Statistics for Civil and Environmental Engineers 

by N.T. Kottegoda and R. Rosso © 

Problem Solution Manual for Chapter 5 - Page 36 (out of 38) 

5.38. Hanging histogram of the Tevere flood flows. For the annual maximum flows of the Tevere 
River of Problem 5.16, draw a hanging histogram using the lognormal distribution. Comment on the 
results. 

 
Solution.   Sketch of hanging histogram: Frequency vs. Flow 
 
---------lognormal fit 
 14|                                    --14-- 
 13|                                   |          |__13__ 
 12|                        --12---|           |            | 
 11|                       |_11_   |           |            | 
 10|                       |           |           |---10---| 
   9|                       |           |__9___|           |__9___  
   8|                       |                                    |             | 
   7|                       |                                    |              | 
   6|                       |                                    |----6-----| 
   5|           ___5__|                                                   | 
   4|          |            |                                                   | 
   3|          |----3---|                                                    |__3__ 
   2|          |                                                                              |___2__ 
   1|__1__|                                                                              |-- -1---- |             ___1___ 
   0|---0-- |______________________________________________ |___0__ |----0-----| 

sm /3     280      560      840      1120      1400      1680      1960      2240      2520     2800 
     0         1          2          3            4            5            6            7           8            9          10   

 

 

Sketch of hanging histogram for lognormal 
    0         1          2           3            4            5            6            7           8            9          10   
+3|                                                  _____________ 
+2|          ______                           |                          | 
+1|          |          |                           |                          |             _______              _______ 
  0|_____|          |                           |                           |______|             | ______|             | 
-1|                      |______               | 
-2|                                   |              | 
-3|                                   |              | 
-4|                                   |              | 
-5|                                   |_______| 
   0         1          2           3            4            5            6            7           8            9          10   

There is indication of some misfit at the mode. 
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5.39. Accommodation of outliers. Consider the annual maximum flows in the North Fork Sun River 
listed in Table E.5.7, series 1. It is noted that there is one suspected outlier in the series of 25 annual 
maximum flows.  

(a) Plot the data on normal probability paper 

(b) Fit a straight line by eye without considering the outlier 

(c) Excluding the outlier, calculate the mean x  and unbiased variance $s 2 . 

For incorporating outliers, the procedure adopted by W.R.C.(1981) is to empirically increase the data 
base using historical evidence, if available, and then revise the mean and variance. Suppose l outliers 
are identified in a record of nR years; and from past information, such as marks on bridge piers, it is 
found that the highest recorded flood level has not been exceeded in nT years. Then the revised mean 
~x  and revised variance ~s 2  of the extended data base, are calculated as follows: 

                             ~ ( ) /( )x n l x x nT i
i n l

i n

T
R

R

= − +
⎡

⎣
⎢

⎤

⎦
⎥

= − +

=

∑
1

 

                      ( )~ $ ( ) ( )( ~) ( ~)( )n s s n l n l x x x xT T T i
i n l

i n

R

R

− = − + − − + −
⎡

⎣
⎢

⎤

⎦
⎥

= − +

=

∑1 2 2 2 2

1

. 

[The first equation is a direct adjustment of the mean and the second equation follows from the 
ANOVA methods of Section 5.7.] 

 If the magnitude of the outlier has not been exceeded for 500 years, calculate the annual 

maximum flow with a return period of 500 years assuming a normal distribution. 

 

Solution. 

Mean x  = 3127.9 s/f 3 ; standard deviation =ŝ  = 785.9 s/f 3 . 

51100)25( =x s/f 3 .    Also, 04.61
9.785

9.312751100
)25( =

−
=z  

Clearly, the value of 51100 is an outlier 

[ ] 500/511009.3127499~ +×=x = 3223.9 s/f 3 . 

[ ]2222 )9.322351100()9.32239.3127(4994999.785~499 −+−+×=s  

2.1042~ =s s/f 3 . 

998.0)( )500( =Φ z   and  88.2)500( =z  

62259.32232.104288.2)500( =+×=x s/f 3 . 

Compared to the outlier of 51,100 s/f 3  this is an under estimate. It may be because 
500 years of past observations are insufficient for this type of application, considering 
the magnitude of the given outlier. The alternative reason is that, outliers, such as the 
value of 51100, have a different probability distribution from that of the other values 
(see Eq. 5.9.1. in text) 

INSERT GRAPH FOR PROBLEM 5.39 
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Blank page 
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Applied Statistics for Civil and Environmental Engineers  
Problem Solution Manual 
by N.T. Kottegoda and R. Rosso 

Chapter 6 - Methods of Regression and Multivariate Analysis 
 
6.1. Dissolved oxygen The following observations of dissolved oxygen (DO) were made with respect to 
time of travel downstream from a point of regulation in a river. 
 
Time of travel, days 0 0.6 1.1 1.7 1.9 2.4 2.8 3.3 3.7 
DO, ppm 0.39 0.37 0.31 0.28 0.27 0.25 0.20 0.17 0.16 
 
Fit a linear regression and estimate the parameters. Calculate the coefficient of determination. Does a 
straight line provide a reasonable fit? 
 
Solution. 

944.1=x       267.0=y      22.12=xxS       05.0=yyS    05.0=xyS  

394.0ˆ
0 =β    0656.0ˆ

1 −=β    r =-0.992   985.02 =r  
For t = 4 days   DO = 0.1491 ppm 
95% confidence limits: 0.1391, 0.1146. 
Sample t value for slope = 21.2 and for intercept = 56.2. Obviously very high. 
Straight line: good fit to the data. 
 
6.2. Population growth. A small city has doubled in population in 9 years. The following approximate 
counts have been made during the period. 
Year 1 2 3 4 5 
Population in 1000’s 100 107 115 124 135 
Year 6 7 8 9 10 
Population in 1000’s 146 158 171 185 200 
 
Plot the data. Determine the sample correlation coefficient. Decide whether a linear model provides a 
good fit or whether there should be a transformation of the response variable (population). Give 95 
percent confidence limits for the mean or expected  population in year 15 if growth patterns do not 
change. 
 
Solution. 
Sketch of population growth in time: population in 1000’s years vs. year number 
200⏐                                                                                                                 ▪   
190⏐ 
180⏐                                                                                                 ▪ 
170⏐                                                                                        ▪ 
160⏐                                                                              ▪ 
150⏐                                                                    ▪ 
140⏐                                                        ▪ 
130⏐                                           ▪ 
120⏐                               ▪ 
110⏐                  ▪ 
100⏐   ▪ 
 
Year    1          2          3          4           5           6          7          8          9           10 

80.82ˆ
0 =β    145.11ˆ

1 =β    r =-0.994   988.02 =r  
5.5=x       5819.15ˆ 2 =σ      5.82=xxS  
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The straight line 
P = 11.145Y + 82.8       provides a good approximation 

025.0,8t  = 2.306. 
Confidence limits for y =15:- 

260,240
5.82

)5.515(
10
115819.15306.28.8215145.11

2/12

⇒⎥
⎦

⎤
⎢
⎣

⎡ −
++±+×  

 
 
6.3. Water quality For the water quality measurements on the River Ouse at Clapham, England, data 
given in Problem 1.15 (Chapter 1) determine the linear regression equation by least squares using 
phosphate as the explanatory variable. Comment on the model and the results. 
 
Solution. 
The linear regression model (see Eqs. 6.1 to 6.7) takes the form 
CHL =0.454 phos +64.4 + ε 
With r = 0.03, this serves no purpose for prediction purposes. 
 
 
6.4. Correlation of low flows. The lowest annual flows measured, in cubic meters per second, at stations 
X and Y on the Jackson and Cowpasture rivers, respectively, in the United States are to be correlated in 
order to extend the shorter record at station Y. A simple linear regression model is to be used. The 
following summary statistics have been computed over a 12-year period: 
Sum X = 28.77; Sum Y = 28.23; Sum XX = 73.14; Sum YY = 71.20; Sum XY = 71.53. 

(1) Find least squares estimates of the parameters. 

(2) What is the standard error of the residuals? 

(3) Estimate the coefficient of correlation. 

(4) Find approximate 95 percent confidence limits for the population correlation coefficient. 
 
Solution.  

(a) 924.0
12/77.2814.73

12/23.2877.2853.71
/)(
/)(ˆ

2221 =
−

×−
=

Σ−Σ
ΣΣ−Σ

==
nxx
nyxxy

S
S

xx

xyβ . 

137.0
12

77.28924.0
12

23.28ˆˆ
10 =×−=−= xy ββ  

The regression model takes the form 
Y = 0.924x+ 0.137 + ε 

(b) 123.0

12
)(

12
12

)(
10
1)(

2
1ˆ

2
2

2

2
2

2
2 =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Σ
−Σ

⎟
⎠
⎞

⎜
⎝
⎛ ΣΣ

−Σ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Σ
−Σ=−

−
=

xx

yxxy
yy

S
S

S
n xx

xy
yyσ  

352.0ˆ =σ  

(c) [ ] 2/1
yyxx

xy

SS

S
r =  = 0.862 

(d) 0.572, 0.961 
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6.5. Extension of steel wires Ten steel wires of diameter 0.5 mm and length 2.5 m were extended in a 
laboratory by applying vertical forces of varying magnitudes. Results are as follows 
Force, kg 15 19 25 35 42 48 53 56 62 65 
Increase in length, mm 1.7 2.1 2.5 3.4 3.9 4.9 5.4 5.7 6.6 7.2 

(1) Estimate the parameters of a simple linear regression model with force as the explanatory variable 

(2) Find 95 percent confidence limits for the two parameters 

(3) Test the hypothesis that the intercept is zero 

(4) What are the conclusions? 
 
Solution. Sketch of increase in length, mm vs. force, kg 
7⏐                                                                                                             ▪ 
6⏐                                                                                                   ▪ 
5⏐                                                                                    ▪ 
4⏐                                                                         ▪ 
3⏐                                                      ▪ 
2⏐                               ▪ 
Force, kg    10     15     20     25     30     35     40      45     50      55     60     65     70 
(a) The parameters are 1212.0ˆ

0 −=β  and 1062.0ˆ
1 =β       The regression model takes 

the form 
INC = 0.1062 force - 0.1212 + ε 
(b) The 95% confidence limits for 1β  are 0.095 and 0.118 and for  

0β  are -0.633 and 0.391 
(c) Do not reject the NH that the intercept is zero 
(d) The fit is good.  
 
 
 
6.6. Rainfall-runoff relationship. Table E7.2 gives 61 years of rainfall and runoff (see columns 6 and 7) 
at Pontelagoscuro, on the Po river, in northeast Italy. Fit a simple regression model. Test the hypothesis 
that the slope is zero. Comment on the results. Suggest methods of forming a multiple regression model 
and the inclusion of other measurements that can enhance the relationship. 
 
Solution.  
The parameters are 475ˆ

0 =β  and 943.0ˆ
1 =β       The regression model takes the form 

RUNOFF = 0.943 rainfall  +475 + ε 
The r value is 0.911 
The sample t value for the slope is 17.015 
Clearly, the NH of zero slope is rejected 
The 95% confidence limits for 1β  are 0.7077 and 0.9752  
To improve the regression model, include antecedent rainfall, allow for evaporation 
losses, consider the inclusion of ground ware contributions 
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6.7. Asbestos concentrations. Keifer, M.J., R.M. Buchan, T.J. Keefe and K.D. Blehm (1987) (“A 
predictive model for determining asbestos concentrations for fibres less than five millimeters in length,” 
Environmental Research, Vol. 43, pp. 31-38) give the following data for PCM (phase contrast 
microscopy) and SEM (scanning electron microscopy) concentrations: 

Filter PCM SEM  Filter PCM SEM 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

3.14 
2.61 
3.03 
4.03 
7.82 
5.61 
4.23 
0.62 
1.09 
0.73 
0.70 
7.92 
2.50 
1.91 
4.98 

7.79 
6.85 
7.60 
9.29 
14.8 

11.72 
9.61 
2.49 
3.71 
2.79 
2.71 

14.94 
6.64 
5.50 

10.78 

 16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.41 
0.77 
1.63 
3.99 
2.94 
1.02 
1.67 
6.33 
2.38 
1.93 
6.29 
3.77 
4.50 
4.54 
0.48 

1.86 
2.90 
4.92 
9.22 
7.44 
3.54 
5.00 

12.76 
6.42 
5.34 

12.70 
8.86 

10.04 
12.10 
2.08 

 
Plot the data with PCM as the explanatory variable. Estimate the parameters of a simple linear regression 
model and show the straight line and the 95 percent confidence limits. Comment on the model. For a 
future value of PCM = 8.5 give the predicted value of SEM and the 95 percent prediction interval. (Data 
used with permission from the Academic Press Inc., Orlando, Florida 32887-6777 and the authors.) 
 
Solution. PCM is the explanatory variable, X; SEM is the response variable Y 

052.3=x       413.7=y      5.141=xxS       4.438=yyS    25.242=xyS  

188.2ˆ
0 =β    712.1ˆ

1 =β    r = 0.9721     The regression model takes the form 
SEM = 1.712 pcm + 2.188 + ε 
For pcm = 8.5, SEM = 16.74 
95% confidence limits for SEM: 14.64 and 18.84 
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6.8. Alternative Least Squares. Rewrite the multiple regression model with two explanatory variables 
subtracting the sample means from each of the variables. Hence write equations for the matrix and 
parameters. 
 
Solution. The model takes the form 

iiii xxxxYY εββ +−+−=− )()( 222111 , for i = 1,2, …, n 

Let ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211T XX
SS
SS

   where 

( )( )kik

n

i
jijjk xxxxS −−= ∑

=1

    for j, k = 1, 2. Thus 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

−
−

⎥
⎦

⎤
⎢
⎣

⎡
−
−

−−
−−

=

22

222

212

11

121

111

22

11

222212

121111T

......
....

XX

xx

xx
xx

xx

xx
xx

xx
xx

xxxx
xxxx

nn

n

n  and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

⎥
⎦

⎤
⎢
⎣
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−
−
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=

yy

yy
yy

xx
xx

xxxx
xxxx

n

n

n

.....
....

yX 2

1

22

11

222212

121111T . 

The determinant d = 2
122211 SSS − . Then 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−

dSdS
dSdS

//
//

XX
1112

12221T  and parameters are estimated as 

[ ] yXXXβ̂ T1T −
= . 
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6.9. Road rutting. The rate of cutting of road ruts was measured with properties of asphalt and road 
materials in 31 experiments by Gorman, J.W. and R.J. Toman [(1966), “Selection of variables for fitting 
variables to data,” Technometrics, Vol. 8, pp. 27-51]. The following is a modified and reduced form of 
the equation with specified variables and residual sums of squares (RSS) 

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε 
where  y = log (change of rut depth per million wheel 
passes) 
  x1 = log (viscosity of asphalt) 
 x2 = percent asphalt in surface course 
 x3 = percent asphalt in base course 
  x4 = percent fines in surface course 

Explanatory variables used in equation RSS 
0 
1 
2 
3 
4 

11.058 
0.607 
0.499 
0.498 
0.475 

 
Determine the “best” form of equation to use. (Many more variables are used in the original work.)  
 
Solution. For n = 31 
 For one explanatory variable: 
                                                             Degrees of freedom 
Sum of squares due to regression                       2                           10.451 
Error sum of squares                                       n – 3 = 28                  0.607 
Total sum of squares                                        n – 1 = 30               11.058 
For two explanatory variables: 
                                                             Degrees of freedom 
Sum of squares due to regression                       2                           10.559 
Error sum of squares                                       n – 4 = 27                  0.499 
Total sum of squares                                        n – 1 = 30               11.058 
From Eq. 6.2.19, the sample F value corresponding to the increase from one to two 
explanatory values: 

06.6
499.0

108.028
)3/(499.0

451.10559.10
=

×
=

−
−

=
n

F  

05.0,28,1F  ≈ 4.2. This is significant. 
Further increases of the number of explanatory variables are not of significant. 
For example, increase from three to four variables, gives the corresponding F value:- 

26.1
475.0

023.026
)5/(475.0

475.0498.0
=

×
=

−
−

=
n

F  

Therefore, use a model with the first two explanatory variables. 
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6.10. Weighted least squares. The simple linear regression model 
Y = β0 + β1x + ε 

is modified so that the variance of Y depends in the magnitude of the x as 
σ2 ( ) 2

iii
xY σ= , i = 1, 2,..., n 

Rewrite the least squares equations. 
 
Solution. 
The estimated error variance is found as 

∑∑
==

−−
−

=
−

=
n

i
ii

n

i
i xy

nn 1

2
10

1

22 )ˆˆ(
2

1ˆ
2

1ˆ ββεσ . 

In the case of weighted least squares, the variances of the iY  are 

[ ] iii kYV /22 σσ ==  for i = 1, 2,…, n, where the ik  are the weights. 

But, as stated, [ ] iii cxYV ==2σ  
Hence, ii cxk /2σ=                                               (1) 
The sum of squared errors, 

∑∑
==

−−==
n

i
iii

n

i
ii xykkS

1

2
10

1

2 )ˆˆ(ˆ ββε . 

Taking partial derivatives 

0ˆˆ
1

1
1

0
10

=−−=
∂
∂ ∑∑∑

===

n

i
ii

n

i
ii

n

i
i xkkykS ββ

β
             (2) 

0ˆˆ
1

2
1

1
1

11

=−−=
∂
∂ ∑∑∑

===

n

i
ii

n

i
iiii

n

i
i xkxkyxkS ββ

β
      (3) 

Hence, the parameters are estimated. 
 
 
 
6.11. Trend in precipitation. Annual precipitation in millimeters at Saracay in the Puyango Basin, 
Ecuador are given in the last column of Tables E.10.1. By using an appropriate regression equation, test 
the hypothesis that there is a trend in the precipitation. 
 
Solution.  n = 23 
y series:-   1097.4        71.0   1110.1    576.2    705.0    192.6     1130.7   906.0    1111.8  
                 1500.0    2272.9     636.1  1645.5  2327.2     846.0    1818.0    201.3     191.5     
                 194.7        252.2     272.4   221.3    818.8 
x series   1.0    2.0   3.0…………..23.0 

12)2/()1( =+= nnnx       5.837=y      1012=xxS       10018140=yyS     

94.15ˆ
1 −=β 5.1023ˆ

0 =β       r =-0.16   0256.02 =r 464813]Var[ˆ 2 == εσ . 
The 95% confidence limits for 1β  are (-60.5, 28.6). 
The sample t statistic for the slope parameter =-0.743. 
Therefore, the slope is not significant and there is no trend. 
Reject NH of a trend in the precipitation 
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6.12. Extending flow records. The River Oba in western Nigeria has been gauged near Imo and a five 
year record is available. Also, sixty-year records are available for monthly rainfalls measured in the cities 
of Illorin and Ibadan with estimates of evaporation losses during the same period. It is proposed to extend 
the Imo flow record Q by correlating with the Illorin (current R, antecedent RA) and the Ibadan (current S) 
residual rainfalls over the five-year period of flow observations. A multiple regression model is to be 
used. The following statistics are provided for the 4 monthly variables (in Imperial units): 

Variable Mean Standard Deviation 
R 1.58 2.73 

RA 1.58 2.73 
S 1.45 2.40 
Q 55.75 111.68 

The following are the sums of squares and cross-products of deviations from the mean: 
 R RA S Q 
R 441.49 160.04 197.80 9426.61 
RA 160.041 441.49 176.21 13005.22 
S 197.80 176.21 340.16 10642.07 
Q 9426.61 13005.22 10642.07 735890.35 
 
1.  Write the four normal equations from which the parameters are estimated. 

2. If the variable RA is not taken into account,  

(a) estimate the parameters, 

(b) estimate the standard error of estimate of Q from R and S, and 

(c) estimate the coefficient of determination. 
 
Solution. The regression equation for three explanatory variables is written as: 

iiiii xxxY εββββ ++++= 3322110  
In application we may use the following equation which includes the sample means of 
the three explanatory variables: 

iiiii xxbxxbxxbay ε+−+−+−+= )()()( 333222111 , 

that is nxx
n

i
i /

1
11 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

; nxx
n

i
i /

1
22 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

 and nxx
n

i
i /

1
33 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

. 

We can relate the constants as follows: 
iib β=   for i = 1, 2, 3; 3322110 xxxa ββββ −−−= .                                                     

(1a) 
The sum of squared errors is given by 

[ ]
2

1
331222111

1

22 )()()(∑∑
==

−−−−−−−==
n

i
iiii

n

i
i xxxxxxayS βββε  

Solving 0
2

=
∂
∂

a
S , 0

1

2

=
∂
∂
β
S , 0

2

2

=
∂
∂
β
S  and 0

3

2

=
∂
∂
β
S  and if ∑ represents ∑

=

n

i 1

, we have 

)(ˆ)(ˆ)(ˆˆ 332211 iiiiiii xxxxxxnay −Σ−−Σ−−Σ−−Σ βββ = 0. That is, 

yy
n

a i =Σ=
1ˆ                                                                                                            (1b)  

))((ˆ))((ˆ)(ˆ))(( 1133311222
2

1111 xxxxxxxxxxxxyy iiiiiiii −−Σ+−−Σ+−Σ=−−Σ βββ        (2) 

))((ˆ)(ˆ))((ˆ))(( 22333
2

2222211122 xxxxxxxxxxxxyy iiiiiii −−Σ+−Σ+−−Σ=−−Σ βββ  (3) 

))((ˆ)(ˆ))((ˆ))(( 22332
2

3333311133 xxxxxxxxxxxxyy iiiiiii −−Σ+−Σ+−−Σ=−−Σ βββ   (4) 
In the tables R ≡ 1x ; RA ≡ 2x ; S ≡ 3x ;  Q ≡ y 

We delete Eq.(3) and the terms involving 2x , and also 2β̂ , from Eqs.(2) and (4).  
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(a). Hence from Eqs.(2) and (4),  1̂β  = 9.92 and 3β̂ = 25.51. Also from Eq.(1b) 

75.55ˆ == ya  and, from Eq.(1a), 0β̂  = 3.09. 
(b). For the total sum of squares 2)( yySS iyy −Σ=  = 735,890.35. Also, 

))(( 11
yyxxSS iiiyx −−Σ=  and ))(( 33

yyxxSS iiiyx −−Σ= .  

Also the residual sum of squares ]ˆˆ[
31 31 yxyxyyRyy SSSSSSSSSSSS ββε +−=−=  

17.37089918.36499135.735890]07.1064251.2561.942692.9[35.735890 =−=×+×−=εSS
 
Hence 67.80]57/17.370899[ˆ ==σ  

(c) 50.0
35.735890
18.3649912 ===

yy

R

SS
SSR  
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6.13. Salinity data The following are part of the salinity data reported by Rupport and Carroll (1980) for 
water during the spring season in Pamlico Sound, North Carolina, U.S.A.: 

Index 1 2 3 4 5 6 7 8 9 
Salinity 7.6 7.7 4.3 5.9 5.0 6.5 8.3 8.2 13.2 

Lagged Salinity 8.2 7.6 4.6 4.3 5.9 5.0 6.5 8.3 10.1 
Discharge 23.01 23.87 26.42 24.89 29.90 24.20 23.22 21.86 22.27 

Trend 4 5 0 1 2 3 4 5 0 
 

Index 10 11 12 13 14 15 16 17 18 
Salinity 12.6 10.4 10.8 13.1 12.3 10.4 10.5 7.7 9.5 

Lagged Salinity 13.2 12.6 10.4 10.8 13.1 13.3 10.4 10.5 7.7 
Discharge 23.83 25.14 22.43 21.79 22.38 23.93 33.49 24.86 22.69 

Trend 1 2 3 4 5 0 1 2 3 
 
 

Index 19 20 21 22 23 24 25 26 27 28 
Salinity 12. 12.6 13.6 14.1 13.5 11.5 12.0 13.0 14.1 15.1 

Lagged Salinity 10.0 12.0 12.1 13.6 15.0 13.5 11.5 12.0 13.0 14.4 
Discharge 21.79 22.04 21.03 21.01 25.87 26.29 22.93 21.31. 20.77 21.39 

Trend 0 1 4 4 0 1 2 3 4 5 
 
The biweekly average salinity is given in milligrams per liter with salinity lagged two weeks, discharge in 
cubic millimeters per second, and trend as a dummy variable for the time period. 

(1) Estimate the parameters for a linear model with salinity as the response variable. 

(2) Determine the ‘best’ form of model. 

(3) Determine Cook’s distances and leverage measures 

(4) Test for any outliers. 

(5) Comment on the foregoing results (3 and 4). 
Data used with permission from the Journal of the American Statistical Association, Copyright (1980) by 
the American Statistical Association. All rights reserved. 
 
Solution. 
(a)The estimated salinity by the least squares method using the full data: 

tdss l 295.00256.0777.0595.9ˆ −−+= , 
 where ŝ  denotes estimated salinity, ls  denotes lagged salinity, d denotes discharge and 
t denotes trend. 
(b), (c) and (d): Item 16 is an influential observation and an outlier as shown by 
 
_________________________________________________________________ 
                    Residual        Stud residual     Leverage ih .    ih /(1- ih )    Cook’s id  
Item 16            2.72                3.03                 0.546                1.204          3.70 
_________________________________________________________________ 
We revise the model by deleting item 16, This is given by 

tdss l 6303.0157.0697.049.18ˆ −−+=  
For which 2r = 0.8934. 
_________________________________________________________ 
                                SS          Degrees of freedom      Mean SS        F 
_________________________________________________________ 
Regression             218.56                    3                       72.85        64.23 
Residual                   26.09                  23                         1.13 
Total                      244.65                  26 
The F value is clearly highly significant. Also, yXβ̂ TT  = 3226.89 
In addition, if we delete the trend component, we have the new model: 
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dss l 5587.0713.024.16ˆ −+=  
For which 2r = 0.8865. 
_________________________________________________________ 
                                SS          Degrees of freedom      Mean SS        F 
_________________________________________________________ 
Regression             216.87                    3                       108.44        93.7 
Residual                   27.77                  24                         1.16 
Total                      244.65                  26 
The F value is again highly significant. Also, yXβ̂ TT  = 3225.21 
Note that the difference in the above yXβ̂ TT  values is not significant. 
Suppose we adopt simple regression models, firstly, using only lagged salinity and then  
trend as the single explanatory variable 
                                                        0β̂             1̂β             yXβ̂ TT  
Simple regression: lss,ˆ              1.809         0.842             3194.1 
Simple regression: ds,ˆ              32.63       -0.944             3110.6 
(b), (c), (d) and(e), The difference between the first two yXβ̂ TT  values, which are 
almost equal and those for the simple regression models are not insignificant. Therefore 
adopt a multiple regression model using the two explanatory variables: lagged salinity 
and trend Also Item 16 is deleted from the data. The ‘best model’ is given by 

dss l 5587.0713.024.16ˆ −+=  
Final check on other observations 
_________________________________________________________________ 
                    Residual        Stud residual     Leverage ih .    ih /(1- ih )    Cook’s id  
_________________________________________________________________ 
Item 5            1.246                1.511               0.412              0.7006       0.5330 
Item 9            2.192                2.091              0.0507             0.0534       0.0779 
_________________________________________________________________ 
There are no problem items. 
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6.14. Hald cement data. The following is a part of the data reported by Hald (1952, p. 647) for the heat 
generated H in calories per gram, during hardening, for a type of cement as a function of four additives. 
The table gives H and four additives A1, A2, A3, and A4. 

Item H A1 A2 A3 A4 
    1 78.5 7 26 6 60 

2 74.3 1 29 15 52 
3 104.3 11 56 8 20 
4 87.6 11 31 8  47 
5 95.9 7 52 6 33 
6 109.2 11 55 9 22 
7 102.7 3 71 17 6 
8 72.5 1 31 22 44 
9 93.1 2 54 18 22 
10 115.9 21 47 4 26 
11 83.8 1 40 23 34 
12 113.3 11 66 9 12 
13 109.4 10 68 8 12 

Complete a ridge analysis and write a predictive equation for H. 
(Data used with the kind permission of the author.) 
 
Solution. 
The data are standardized as in Example 6.17. See following figure  
INSERT FIGURE FOR PROBLEM 6.14 
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6.15. Principle components. The following covariance matrix C was computed in a study of catchment 
characteristics of a river basin. 

                                    

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

01.201.308.2
01.31.9893.4

08.293.467.3
. 

Determine the eigenvalues and the eigenvectors, and comment on the results. 
 
Solution. 

C = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

01.201.308.2
01.31.9893.4

08.293.467.3
.          C - λ=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−

−−

λ
λ

λ

01.201.308.2
01.31.9893.4

08.293.467.3
 

0)λ1.98(08.201.393.408.2
08.201.393.4)λ01.2(93.4λ)-(3.673.01-λ)-λ)(2.01-λ)(98.1-(3.67|λIC|

2

22

=−−××

+××+−−=−

The eigen values are 1λ  = 98.4572752, 2λ  = 4.723437 and 3λ  = 0.5996811. 

0
46.9801.201.308.2

01.346.981.9893.4
08.293.446.9867.3
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=
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a

 

Also 12
31

2
21

2
11 =++ aaa . Hence 05262043.011 =a , 9980926.021 −=a , 
03228406.031 =a . 

Proceeding further 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00.82562818-0.563290200.03228406
70.003039950.061659780.99809260-
40.564206400.823955230.05262043

A  
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6.16. Nitrates in river. For the data given in Table E.6.2, where water quality is given at 1-km intervals, 
draw a semivariogram of the nitrate values, h = 1, 2,..., 30.. What type of model is suggested? 
 
Solution. 
From Table E.6.2 of Appendix E a partial list of semivariogram values for various 
distances in km are given by 

Distance     1     2     3     4     5     6     7     8    9    10 

Semivar, 3.728 3.270 3.049 3.278 3.227 3.019 3.644 3.780 4.055 4.321
 
 

Distance     13     14     15     16     17     18     19    20    21    22 

Semivar, 4.743 3.468 4.98 4.12 4.80 4.48 4.29 5.37 5.273 5.373 
 
 
 
Solution. Sketch of semivariogram vs. distance in km 
30⏐                                                                                                                            ▪ 
25⏐                                                                                                                         ▪ 
20⏐                                                                                                                   ▪ 
15⏐                                                                                                         ▪ 
  5⏐                                                                        ▪ 
  0⏐▪ 
______________________________________________________________________
_ 
    0                5               10               15               20              25               30                35 
Distance in km → 
 
An exponential model is suggested for the semivariogram. 
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6.17. Salinity of groundwater. The following salinity observations were recorded in 25 wells in a coastal 
aquifer, in milligrams per liter The wells are spaced at distances of approximately 1 km in the NS and 
EW. Directions. 

10.5       9.3     10.4      9.1     10.0 

  9.2     10.1     11.1    10.2     10.3 

11.2     10.8     10.2    11.5     11.5 

10.9      9.5      11.5    11.0     12.0 

11.1     10.5     11.0     10.7    12.5 

1. Determine the semivariogram under conditions of isotropy. 
2. Determine the semivariograms in the NE-SW and NW-SE directions 
3. Comment on the results 
 
Solution. 
The differences observed in salinity for various distances apart of the wells and 
directions are given below. 
1 km [total n = 40]:- 
↔1.2 1.1 1.3 0.9; 0.9 1.0 0.9 0.1; 0.4 0.6 1.3 0; 1.4 2.0 0.5 1.0; 0.6 0.5 0.3 1.8; 
↕ 1.3 2.0 0.3 0.2; 0.8 0.7 1.3 1.0; 0.7 0.9 1.3 0.5; 1.1 1.3 0.5 0.3; 0.3 1.2 0.5 0.5; 
2 km [total n = 30]:- 
↔ 0.1 0.2 0.3; 1.9 0.1 0.8; 1.0 0.7 1.3; 0.6 1.5 0.5; 0.1 0.2 1.5; 
↕ 0.7 1.7 0.1; 1.5 0.6 0.3; 0.2 0.4 0.8; 2.4 0.8 0.8; 1.5 1.7 1.0; 
3 km [total n = 20]:- 
↔1.4 0.7; 1.0 0.2; 0.3 0.7; 0.1 2.5; 0.4 2.0 
↕ 0.4 1.9; 0.2 0.4; 1.1 0.1; 1.9 0.5; 2.0 2.2 
4 km [total n = 10]:- ↔ 0.5, 1.1 0.3 1.1 1.4; ↕ 0.6 1.2 0.6 1.6 2.5; 
      NE 2 km [total n =16] .1 1.1 .3 .1 .3 2.0 1.6 .7 0.0 0.2 1.0 0.0 1.2 0.0 1.2 0.0 .5 1.3 
      /     8 km [total n =9] 0.8   0.2   1.7   0.9   0.2    0.7   1.0   1.2  0.5 
SW    18 km [total n =4] 1.8   0.9   0.5   0.2 
          32 km [total n =1] 1.0 
 
NW     2 km [total n =16] 1.2 .2 1.3 1.8 .4 .5 .4 .1 .8 1.3 1.6 .7 .8 1.7 1.5 .4 
      \     8 km [total n =9] 1.1   2.2   0.9   0.3   0.9   2.1   2.3   0.1   0.2 
      SE 18 km [total n =4] 2.7   0.5   2.2   1.5 
          32 km [total n =1] 2.0 
 
(a)Semovariogram for vertical and horizontal directions 
1.6⏐                                                                      ▪ 
1.5⏐                                                   ▪ 
1.4⏐  
1.3⏐  
1.2⏐  
1.1⏐                                 ▪ 
1.0⏐              ▪ 
___________________________________________ 
    0                1               2               3               4               
Distance in km → 

153



Applied Statistics for Civil and Environmental Engineers 
BY N.T. KOTTEGODA AND R. ROSSO © 

PROBLEM SOLUTION MANUAL FOR CHAPTER 6 - PAGE 16 (OUT OF 20) 

(b)Semovariogram for NE-SW directions 
1.2⏐                                                                                          ▪ 
1.1⏐                                                                    ▪ 
1.0⏐  
0.9⏐                                            ▪ 
0.8⏐                      ▪ 
______________________________________________________ 
    0                1               2               3               4                5               6 
Distance in km → 
 
 
(c)Semovariogram for NW-SE directions 
6⏐                                                                                                   ▪ 
5⏐                             
4⏐                                                                         ▪ 
3⏐                                                 ▪  
2⏐  
1⏐                      ▪ 
______________________________________________________ 
    0                1               2               3               4                5               6 
Distance in km → 
The approximate linear relationships suggest that isotropy is a reasonable assumption. 
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6.18. Linear semivariogram model. The following data are used for the semivariogram of the grouped 
data of Fig. 6.4.3. Fit a linear model by regression. 
Item km Semivariogram 
1 15.8 43423.3 
2 27.2 43886.0 
3 36.0 55604.7 
4 44.0 51576.5 
5 52.2 55397.1 
6 61.6 65899.6 
7 72.4 65089.6 
8 85.6 73292.7 
9 103.2 67044.6 
10 131.9 68610.7 
11 166.1 88218.9 
 
Solution. 
Please see diagram of semivariogram 
INSERT FIGURE FOR PROBLEM 1.18 
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6.19. Exponential semivariogram model. The following data are used for the semivariogram of the 
annual rainfall data of Fig. 6.4.1. Fit an exponential model stating any assumptions made. If one takes 
account of the results from Example 6.21, what can be said about the properties of the annual rainfall in 
the region? 
Item km Semivariogram  Item km Semivariogram 

1 8.3 37851.9  47 58.6 64391.7 
2 11.7 35326.8  48 59.8 68915.5 
3 13.6 68326.4  49 60.4 102468.4 
4 14.9 48446.3  50 61.0 49045.3 
5 16.1 31541.6  51 62.1 41186.5 
6 17.5 41053.2  52 63.3 49151.1 
7 18.7 49047.8  53 65.2 79739.4 
8 20.2 33951.9  54 66.5 66704.0 
9 21.4 45263.4  55 67.6 71922.7 
10 22.5 53088.1  56 69.0 52255.0 
11 23.8 34547.4  57 70.0 94147.4 
12 25.1 51042.2  58 71.1 64181.3 
13 26.1 39733.1  59 72.6 62752.7 
14 27.0 49519.7  60 74.0 56775.6 
15 28.2 32489.5  61 74.9 49858.3 
16 29.5 55755.0  62 75.6 75493.2 
17 30.8 47523.9  63 77.0 58419.7 
18 31.6 31275.0  64 78.6 48015.3 
19 32.2 56937.5  65 80.8 81717.9 
20 32.9 51891.9  66 82.4 84134.3 
21 33.9 51271.0  67 84.2 59251.8 
22 35.0 56113.3  68 85.8 68939.1 
23 36.2 53660.4  69 87.3 89176.8 
24 37.1 77947.4  70 88.6 63794.1 
25 37.9 38722.0  71 90.6 66877.4 
26 38.8 53830.4  72 92.3 97726.8 
27 39.9 60068.5  73 94.1 56009.0 
28 41.0 62769.7  74 96.9 51560.0 
29 41.9 61731.6  75 98.4 72857.7 
30 42.7 36311.1  76 100.6 58023.1 
31 43.6 47268.9  77 102.4 81231.9 
32 44.1 27706.2  78 104.9 51767.3 
33 44.6 75630.6  79 107.5 88162.3 
34 45.3 40477.0  80 110.6 60517.2 
35 46.1 64279.0  81 113.5 83272.4 
36 47.0 48014.5  82 116.1 62780.6 
37 47.9 48837.3  83 119.1 72207.9 
38 48.7 55357.7  84 122.0 88796.7 
39 50.3 56927.1.   85 126.3 71400.8 
40 51.8 70026.0  86 130.2 58951.1 
41 52.5 49162.2  87 134.3 81787.8 
42 53.4 43975.7  88 138.9 75341.3 
43 54.4 38393.8  89 144.9 57169.7 
44 55.0 72487.2  90 155.1 49060.9 
45 55.7 63407.0  91 166.1 88218.9  
46 57.1 71495.0     

 
Solution. 
Please see diagram of semivariogram 
INSERT FIGURE FOR PROBLEM 1.18 
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6.20. Exponential model. Repeat the Kriging analysis of the groundwater quality example of Example 
6.22 replacing the linear model by an exponential model stating any assumption made. Estimate the value 
at K. Comment on the models and the results. 
 
Solution. 
The exponential model and substitution from given data 

)]/exp(1[)()( 0 ahhAhF −−+= ϖδ  
5.4)]2/2exp(1[5.0 =−−+ϖ  

Hence 3279.6=ϖ     
)]2/exp(1[5.0)(ˆ hh −−+= ϖγ  

90.1)]2/5.0exp(1[5.0)5.0(ˆ =−−+= ϖγ  
99.2)]2/0.1exp(1[5.0)0.1(ˆ =−−+= ϖγ  

21.3)]2/12.1exp(1[5.0)12.1(ˆ =−−+= ϖγ  
21.399.29.10 321 =×+×+×+ λλλλ  
99.221.309.1 321 =×+×+×+ λλλλ  
90.1021.399.2 321 =×+×+×+ λλλλ  

00.1321 =++ λλλ , Hence 1λ  = 0.084; 2λ = 0.274; 3λ = 0.642; λ= 0.769 
Hence 54.1110642.015274.012084.0ˆ =×+×+×=kz mg/L 
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Chapter 7 - Frequency Analysis of Extreme Events 
 

7.1. Observed frequency of maximum annual storm rainfall data. Consider the 58-year data of 
maximum annual hourly storm depth reported in Table E.7.1. 
(a) Find the expected frequency of nonexceedance of the largest recorded value. 
(b) Find the theoretical probability of nonexceedance of this value resulting from the fitted GEV 

distribution.  
(c) Compute the plotting positions of the observations using the equation pi = (i - 0.35)/n where i is the 

rank in increasing order and n is the number of items of data. Compare the observed frequency 
estimates with these expected frequencies and with the theoretical ones. 

 
Solution 
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7.2. Hurst effect in hydrologic data. Using rescaled range analysis shown in  Example 7.8 compute the 
Hurst exponents for annual rainfall and runoff in the Po river at Pontelagoscuro, Italy (see data in 
Table E.7.2). Use equispaced values of ln n. 
 
Solution 
0.63 (rainfall); 0.72 (runoff) 
 
 
 
7.3. Minimum flight delay. An airport is designed to receive n daily flight arrivals. Find the mean and 
variance of the expected minimum delay if the interarrival time X is a shifted exponentially distributed 
variate with scale parameter λ and location parameter x0. 
 

 
 
 
 
7.4. Flood Discharge. Consider the data of maximum annual flood flows in the Tevere river at Ripetta, 
Italy, reported in Table E. 5.8. Compute the 100-year flood discharge using (a) the Gumbel distribution, 
(b) the GEV distribution, (c) the lognormal distribution, and (d) the gamma distribution. Perform a 
goodness-of-fit test using the chi-squared, Kolgomorov-Smirnov and Anderson-Darling tests. Consider α 
= 0.10 
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7.5. Depth-duration-frequency curves of storm rainfall. Consider the statistical summaries of 
Table 7.3.1 for the annual maximum storm depth for various durations observed at Lanzada, Italy. The 
estimated L-moments for the normalized annual maximum storm depth (extreme value data divided for 
various durations divided by the corresponding mean for the specified duration) are L1 = 1, L2 = 0.1330, 
and L3 = 0.0182, respectively. 
(a) Compute the parameters of the Gumbel distribution by the method of L-moments and compare this 

distribution with that estimated in Example 7.34 by the method of moments. 
(b) Compute the parameters of the GEV distribution by the methods of moments and L-moments, and 

compare these distributions with the Gumbel model on a Gumbel probability plot. 
(c) Find the depth-duration-frequency curve for a return period of 100 years using the GEV model 

estimated by the method of L-moments. 
 
Solution 
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7.6. Dry spells. A period of days on which no rainfall is experienced continuously is called a dry run if 
preceded and succeeded by one or more wet days. As shown in Example 4.16, the run length X of a dry 
spell can be modeled as a log-series distributed variate. Suppose that X has a mean of 5 days, so the 
estimated p is 0.07, and the number of dry spells in a year is a Poisson variate with a mean of 40. Find the 
cdf of the annual maximum run length of a dry spell. Compute the return period of a dry spell 60 days 
long. 
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7.7. Highest sea wave in a storm. The highest sea wave X in a storm is modeled as a Rayleigh-
distributed variate with pdf fX(x) = (x/λ2) exp[-(x/λ)2/2]. Suppose that parameter λ varies randomly from 
one storm to another, and assume that the number of storms in a year with λ ≥ λ0 is a Poisson-distributed 
variate with mean ν. Find the cdf of the annual maximum sea wave height, Xmax, if λ - λ0 is an 
exponentially distributed variate with parameter α. 
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7.8. Overflooding. The annual maximum flood discharge Xmax at a given river site is a Gumbel-
distributed variate with parameters α = 625 m3/s and b = 1152 m3/s. The overflooding volume Y during a 
flood with peak discharge X exceeding a value of          ε = 2000 m3/s is modeled as an exponentially 
distributed variate with mean c(X/ε)β, where c = 5×106 m3 and  β = 0.5. Assume that N ~ Poisson(ν) is the 
number flood events in a year with peak discharge exceeding ε with ν = 2.1. Find the cdf of the annual 
maximum overflooding volume, Ymax, and compute the 100-year overflooding volume. 
 
Solution 
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7.9. Sea waves. Consider the data set of simulated highest sea waves above a threshold in the upper 
Adriatic sea of Problem 1.23. Find the 10-year design wave height resulting from the data set obtained by 
using calibration strategy no.1, and that for calibration strategy no.2 (assume Poisson events and the 
shifted exponential distribution to fit the data). Compare these values with that obtained from the analysis 
of observed data reported in  Example 7.41. 
 

 
 
 

169



7.10. Maximum annual wind speed predictions. Find the probability distribution of maximum annual 
wind speed and the 50-year wind velocity for (a) Cagliari and (b) Pantelleria, Italy, by fitting the Gumbel 
distribution to the extreme value data shown in Table E.7.3 using the method of moments. 
 

 

 
 
 
 
 
 
 
7.11. Rescaling of wind speed estimates. The maximum annual wind speed X(t,z) averaged over a period 
of length t that is recorded at ground elevation z in a particular site with roughness length z0 scales as 

              X(λt,ηz) = X(t,z) [1 + 0.98 c(λ) / ln(z/z0)] ln(ηz/z0) / ln(z/z0), 

where  t < 1, 0 < λ <1 and η are two scaling factors, with c(λ) denoting a scaling function, c(1) = 0. 
Suppose that the available records are averaged for 5 minutes, say, λ = 1/12, for t in hours, with c(1/12) = 
0.54, the gauging station (site A) is located at elevation of z = 8 m in open terrain with z0 = 0.01 m, and the 
sample mean and standard deviation of the annual maximum data are 15 m/s and 3 m/s, respectively. 
Reference wind speed XA is taken as the 10-minute average wind speed at a standard elevation of 10 m, 
that is, XA = X(1/6 hours, 10 m), with η = 1.25, λ = 1/6, and c(1/6) = 0.36. 

(a) Find the cdf of annual maximum reference wind speed for site A using the Gumbel distribution 
and the method of moments. To design a building located in the downtown area, one must 
determine the 10-minute average wind speed at a ground elevation of 50 m knowing that the 
roughness length for this location (site B) is 0.3 m. The vertical profile of wind velocity is given by 
2.5 u* ln(z/z0), where u* denotes the friction velocity, which scales as u*B/u*A=(z0B/z0A)γ for two 
sites A and B with different roughness length (see Figure 7.P1). Therefore, one must rescale the 
reference wind speed as 
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          with t = 1/6 hours and γ = 0.07. 
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 (b) Find the cdf of annual maximum wind speed at zB = 50 m for site B using the Gumbel distribution 
and the method of moments. 

(c) Compute the 50-year design wind speed. 
 
Solution 
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7.12. Wind speed prediction for Milan Park Tower. The 110-m Park Tower in Milan, Italy, is a steel 
tower built in 1933 on the occasion of the Fifth Triennial Decorative Arts Exhibition. From 1951 to 1973 
the following twelve thunderstorms were recorded by an anemometer located at the elevation of 108 m 
with 10-minute average wind speed X exceeding the critical mean velocity of 20.18 m/s. 

Date Wind Direction, °N Average Velocity, m/s 
29/04/53 15 20.86 
08/01/58 135 20.98 
05/01/59 315 25.06 
08/01/59 315 25.06 
09/01/59 315 22.19 
20/04/59 45 22.17 
28/07/59 345 20.26 
10/02/61 315 21.48 
12/02/61 315 27.21 
03/04/71 315 21.48 
20/11/71 315 21.48 
15/12/73 345 26.34 

Find the cdf of the annual maximum 10-minute average wind speed if the probability distribution of X is 
(a) exponential, and (b) Pareto, and compare the corresponding extreme values for a return period of 50 
years. Use a Gumbel probability plot to compare these results with Xmax ∼ Gumbel(2.89 m/s, 15.79 m/s) 
which is obtained by rescaling the extreme value data recorded at the Forlanini Airport station [Ballio, G., 
F. Mamberini, and G. Solari (1992) A 60-Year-Old 100-m-High Steel Tower: Limit States Under Wind 
Action, J. Wind Engin. and Industrial Aerodynamics, ASCE, Vol. 41-44, pp. 2089-2100]. 
 
Solution 
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7.13. Annual maximum wind speed in Pisa. Consider the following data set of 41 annual maximum 10-
minute average wind speeds at Pisa Airport, Italy. 

year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
m/s 15.43 15.43 15.37 15.43 22.03 18.52 16.46 18.00 19.55 19.03 18.00 19.41 18.52 13.89
year 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
m/s 18 14.40 16.46 14.40 16.46 13.43 21.50 13.37 15.43 20.58 11.32 15.43 11.32 14.40
year 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991  
m/s 16.46 16.98 13.59 22.63 15.95 13.89 13.89 19.05 13.89 13.89 16.98 19.95 12.33  

Use the Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests to compare the observed and 
theoretical cumulative frequencies as predicted by the (a) Gumbel, (b) Fréchet, (c) lognormal, (d) gamma, 
(e) GEV, (f) shifted-lognormal, and (g) shifted-gamma distributions. Discuss the decision of rejecting the 
null hypothesis when applicable. Consider α = 0.01 and 0.05. 
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7.14. Design return period tornado wind speed . For the case study of  Example 7.40, compute (a) the 
return period of a design tornado wind speed of 160 m/s and (b) the associated probability of exceedance 
using the contagious model of Eq. (7.3.17) with X∼lognormal (43 m/s, 16.34 m/s) and ν = 1.5×10-3. 
 
Solution 

 

 
 
 
 
 
 
 
7.15. Confidence limits of design values. Consider the Gumbel distribution given in inverse form by 
Eq. (7.2.26) where the sampling mean and standard deviation $ $μ σX and X  are used to estimate the 

population mean and standard deviation, μ and σ, respectively. Assuming that $ $μ σX Xand  are 
asymptotically normally distributed show that 

                [ ] ( ) ( )
n

nyny eeq

2
2

2

1.11396.1
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⎣
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−+−+= , 

where y denotes the reduced variate. This expression can be used to determine the confidence interval by 

approximating the sampling distribution of ξq as N ~ ( ) and substituting the sampling 

variance for σ2. Using this procedure, compute the 95 percent confidence interval for the annual 
maximum hourly storm rainfall predicted in Example 7.16. It can be shown that the variance of any 
estimator of a parameter is larger than, or at least equal to, a theoretically specified variance known as the 
Cramer-Rao lower bound, which makes use of the Cramer-Rao inequality of Subsection 5.2.3. This 
method may be used to derive the variance of quantile estimates from a given extreme value distribution. 

]ˆVar[,ˆ
qq ξξ
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7.16. Southern California earthquakes. Consider the ordered sample of Magnitudes of southern 
California annual maximum earthquakes from 1932 to 1962 reported by Lomnitz (1974). 

4.9 5.3 5.3 5.5 5.5 5.5 5.5 5.6 5.6 5.6 5.8 5.8 5.8 5.9 6.0 6.0 
6.0 6.0 6.0 6.0 6.2 6.2 6.3 6.3 6.4 6.4 6.5 6.5 6.5 7.1 7.7  

Originally, the Gumbel distribution was fitted to these data, but other potential candidates are the Fréchet 
and lognormal distributions. Use the Anderson-Darling goodness-of-fit test to compare the observed and 
theoretical cumulative frequencies as predicted by the (1) Gumbel, (2) Frèchet, (3) lognormal 
distributions. Consider α = 0.05. Compare the theoretical and observed cdfs on a Gumbel probability plot.  
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7.17. Historical records in extreme value analysis. One wishes to supplement the information available 
from a s-year sample of observed extreme value data with a historical record of h years given that a 
perception threshold or detection limit was exceeded l times. This occurs, for example, for paleoflood 
data, and also for water quality data exceeding a prescribed level, for sea wave heights estimated by 
sailors, and for earthquake intensity estimated from earthquake effects on landscapes. If e denotes the 
number of observations that exceeded the threshold in the s-year sample, a total of r = l + e observations 
exceeded this threshold for the n = s + h years of record, which is referred to as a censored sample. The 
natural estimator of the probability of exceedance of the detection threshold is r/n. If these r values are 
indexed by j = 1,...,r, the reasonable plotting positions accommodating the probabilities of exceedance 
within the interval (0, r/n) are 
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where pj is the probability of exceedance of the jth observation arranged in descending order, and η is a 
value depending on the underlying distribution, say, η = 0.4. Note that e observations that exceeded the 
threshold are counted among the r exceedances of that threshold. Plotting positions within (r/n, 1) for the 
remaining (s - e) data in the s-year sample are 
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for j = 1,..., s - e. For instance, consider the s = 58 years of data of maximum annual hourly storm depth 
shown in Table E.7.1. Suppose that during a supplementary historical period of h = 98 years, the 
maximum annual hourly storm depth in Genoa exceeded 100 mm in l = 5 years. The total length of the 
record is s + h = 156 years, and r = l + e = 5 + 3 = 8. The observed frequencies are thus modified as 
shown in Figure 7.P2, assuming that all historical storm depths exceeded the largest observed value. 
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 Fit the GEV distribution to the censored sample of maximum annual hourly storm depth at 
Genoa University using L-moments. 
 Consider the following data of annual maximum flood flows in m3/s for the Arno River in 
Florence, Italy, with s = 40 years. 
year 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

x 1642 - 1264 1130 1220 1780 1520 1100 1490 633 1350 1250 1345 1079 - 2068 na 978 1594 1206 1425 922 1780

year 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

x 937 1760 901 820 776 899 1600 1670 2070 1390 1000 - - 1120 3540 - 1430 1120 738 540 428 385 1060

It is reported that the discharge in the Arno exceeded l = 3 times a threshold of about 2400 m3/s in a 
historical period of h = 145 years. None of these floods exceeded the 1966 flood, which had a peak 
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discharge of 3540 cubic meters per second. Fit the GEV distribution to the censored sample by the 
method of L-moments.  Find the return period of a flood with peak discharge exceeding 3000 m3/s. 
 
Solution 
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7.18. Maximum local earthquake intensity and ground motion. Using the epicentral intensity data in 
the Charleston area, South Carolina, from 1893 to 1984 the following recurrence realtionship is found 
                                                   log(ν) = 1.02 - Y , 
where ν is the number of earthquakes with Intensity larger than Y in a year [see Amick, D. and P. Talwani 
(1986) Earthquake Recurrence Rates and Probability Estimates for the Occurrence of Significant Seismic 
Activity in the Charleston Area: the Next 100 years, in Proceedings of the Third Annual Conference on 
Earthquake Engineering, Charleston, South Carolina, Vol.1, pp.55-64]. Find the cdf of annual maximum 
earthquake intensity. Suppose that peak ground motion is related to local site intensity as 
                                 log(Z) = 0.3 Y + 0.014, 
where Z denotes the average horizontal peak acceleration in m/s2 peak [see Trifunac, M.D., and A.G. 
Brady (1975). “On the correlation of seismic intensity scales with peaks of recorded strong ground 
motion,” Bull. Seismological Soc. Amer., Vol. 65, pp. 139-162]. Find the cdf of the annual maximum 
average horizontal component of epicentral peak acceleration. 
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7.19. Ground motion acceleration in earthquakes. The horizontal peak ground motion acceleration Z is 
a basic quantity in seismic hazard analysis at a particular site (as discussed in Problem 1.1). It depends on 
different factors, because it increases with the epicentral intensity Y of an earthquake and with its 
magnitude X, and it decreases with the epicentral distance r of the site. The relationship between these 
variables also depends on the geographic region, and it is determined using multiple regression. Suppose 
that Log Z = 0.14 Y + 0.24 X - 0.68 log(r) + 0.60, where Y is the epicentral intensity as measured in the 
modified Mercalli scale, r is the epicentral distance in km, and Z is measured in meters per square second. 
This relationship provides a good fit for data from the western United States [see Murphy, J.R., and L.J. 
O’Brian (1977). “The correlation of the peak ground acceleration amplitude with seismic intensity and 
other physical parameters,” Bull. Seismological Soc. Amer., Vol. 67, pp. 877-915]. Suppose that X is a 
Gumbel-distributed variate with parameters α = 0.49 and b = 1.4 × 105, and X = 2Y/3 + 1. Evaluate the 
cdf of Z at an epicentral distance of 100 km. 
 

 
 
7.20. Ground motion acceleration in earthquakes. The horizontal peak ground motion acceleration z is 
a basic quantity in seismic hazard analysis at a particular site. For a magnitude-x earthquake that occurred 
at a distance z from a given site, an estimate of z can be obtained as z = A eBx / (u + C)2. 
Typical values are A = 1230, B = 0.8, C = 25 km for u in kilometers and z in centimeters per square 
second [see, for example, Newmark, N.M., and E. Rosenblueth (1977) Fundamentals of Earthquake 
Engineering, Prentice-Hall, Englewood Cliffs, N.J.]. Suppose that, in a homogeneous area, the annual 
number of earthquakes exceeding a given threshold x0 is a Poisson variate with mean ν, and X - x0 has an 
exponential distribution with scale parameter λ. If there are no recognized point sources or active faults, 
one can assume the epicentral distance as U ∼ uniform(0, l), with l denoting the maximum distance 
between two points in the given area. Show that the annual maximum of Z follows the Fréchet 
distribution. This distribution can be used to predict design values of horizontal peak ground motion 
acceleration in this area. 
 
Solution 

 
 
7.21. Southern California earthquakes. Consider the magnitude data listed in Table E.7.3. 
(a) Check the Poisson assumption for the occurrence of earthquakes exceeding magnitude 6 by fitting 

the exponential distribution to the interarrival time W. Compare the observed and fitted cdf of W 
on an exponential probability plot. 

(b) Compute the parameters of the Gutenberg-Richter law for type A zones, and find the return period 
of a magnitude-7 earthquake assuming that magnitude is bounded by Xmin  = 6 and Xmax = 8.22. 

 
Solution 
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7.22. Design return period of snow load. Snow load is evaluated as the product Z = X W, with X 
denoting the depth of snow cover, and W its specific weight. Based on a long record of observations of 
snow cover in the Italian Apennines, one models the depth X of snow delivered by a snow storm as 
X∼lognormal(0.32 m, 0.29 m). The specific weight of snow W depends on weather and season, and one 
should model snow pack dynamics to achieve accurate estimates of Z. However, measurements of density 
and temperature of snow yield W∼lognormal(3500 N/m3, 800 N/m3). Also, X and W are positively 
correlated with ρX,W = 0.60. If 4.7 snow storms are expected to occur in a year on average, show that the 
cdf of maximum annual snow load (see Figure 7.P3) can be written as 
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with ν = 4.7, μln(Z) = 6.696, and σln(Z) = 0.837. Note that 
( )YXYXYXYX VVρ ,)ln()ln()ln(),ln( 1ln ρσσ +=  

if ln(X) and ln(Y) have a bivariate normal distribution. 
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 Find the return period for design values of (a) zmax= 8000 N/m2, and (b) xmax= 2.15 m. 

 
Solution 
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Chapter 8 – Simulation Techniques for Design 
 

8.1. Flood regionalization. Develop an algorithm to generate random numbers to simulate the two-
component extreme value distribution of flood flows with cdf 
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Generate 100 samples each with 1000 items for given values of parameters and find the sampling 
probability distribution of the coefficients of variation and skewness. Let        α1 = 1.15 m3/s, b1 = 
10 m3/s, α2 = 2.20 m3/s, b2 = 15 m3/s. This method may be used to compare the theoretical and sampling 
variability of these coefficients as estimated from maximum annual flow data observed at different 
gauging stations in a region. 

 

Solution 

1) Assigning numerical values to the parameters x1, x2, α2. 

2) The pdf corresponding to the given cdf  reads 
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Applying the rejection method, simulate the samples as done in Illustration E8.13 (the 
same technique is applicable here since the two component extreme values distribution 
has a bell-shaped pdf). Find the optimum values of the parameters c, a and b of the 
proposed g(x). 

3) Calculate the coefficient of variation and skewness for each sample. 

4) Find the best pdf for the obtained samples of coefficients applying the Kolmogorov-
Smirnov test. 

5) The distributions are approximately N(0.32, 0.02) and N(7.91, 1.63) 
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8.2. Percolation cluster. A fluid spreading randomly through a medium is represented by particles 
moving on a square grid, that is, a quadratic lattice, where each node is occupied by a pore with a 
probability of p and neighboring pores are connected by small capillary channels (see Figure 8.P1). 

 A fluid injected into any given pore may only invade another adjacent pore that is directly 
connected to that pore through a capillary channel. The pores connected to the injection point form a 
cluster. 

 

p =0.5(a)

 

p =0.7(b)

 
Figure 8.P1 

 (a) Find the minimum probability, pc, that a fluid injected into a site on the left edge of the lattice 
reaches the right edge for the structure shown with 16 × 16 nodes. This cluster is called the 
spanning cluster, or the percolation cluster. Simulations on very large clusters showed that the 
probability of having a percolation cluster tends to zero as n → ∞ and p < 0.593 [from Ziff, R.M. 
(1986). “Test of scaling exponents for percolation-clusters perimeters,” Phys. Rev. Lett., Vol.56, 
pp. 545-548]. 

(b) The percolation probability p∞(p) is defined as the probability that a fluid injected at a site, chosen 
at random, will wet infinite number of pores. Then, p∞(p) = 0 for        p ≤ pc. Design a Monte 
Carlo experiment to show that the percolation probability vanishes as a power law near pc; that is 
p∞(p) ∝ (p - pc)α for p > pc, and p → pc. The exponent α is 5/36 for two-dimensional percolation 
and about 2/5 for three-dimensional percolation. 

(c) Design a Monte Carlo experiment to show that for large n the number of sites of the largest cluster 
increases as ln(n) for p < pc; as n2 for p > pc; and as nα for p = pc; with a value of α of about 1.89 
[from Feder, J. (1988). Fractals, Plenum Press, New York, Sec.7.2, “The infinite cluster at pc”]. 

 

Solution 

1) Assign uniform (0.1) random numbers to each situ of the lattice. 

2) Simulate uniform numbers so as to occupy a fraction p of the sites in the lattice. 

3) Verify with repeated simulations which is the smallest fraction p that allows get a  

1. spanning cluster. 

4) The critical probability pc amounts to 0.59275. 
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8.3. Invasion percolation. In a porous medium, oil is displaced by water, which is injected very slowly. 
Invasion percolation occurs when one neglects any pressure drops both in the invading fluid (water) and 
in the defending fluid (oil) because the capillary forces completely dominate the viscous forces, and the 
dynamics of the process is determined at the pore level. Simulation of the process on a lattice consists of 
following the motion of the water particle injected at a given site on the lattice as it advances through the 
smallest available pore, thus filling the pores with the invading fluid. As the invader advances, it traps 
regions of the defending fluid by completely surrounding regions of this fluid, that is, by disconnecting 
finite clusters of the defending fluid from the exit sites of the sample (see Figure 8.P2). 

water
oil

injection

exit
 

Figure 8.P2 
 

For a n × n lattice, the following simulation algorithm describes invasion percolation [from Wilkinson, 
D.J. and J.F. Willemsen (1983). “Invasion percolation: A new form of percolation theory,” J. Phys. A, 
Vol.16, pp. 3365-3376]. 

1. One assigns uniform(0, 1) random numbers to each site of the lattice. 

2. The injection for the invading fluid is assumed to occur at the upper-left corner, and extraction for 
the defending fluid at the lower-right corner. 

3. Growth sites are defined as the sites belonging to the defending fluid and neighbors to the 
invading fluid. 

4. The invading fluid advances to the growth site that has the lowest random number. 

5. Trapping is obtained by eliminating the growth sites in regions completely surrounded by the 
invading fluid from the list of growth sites. 

6. The invasion process ends when the invading fluid reaches the exit site. 

This algorithm is based on the fact that oil is incompressible (thus, water cannot invade trapped regions 
of oil). Using this simulation algorithm, show that the number of sites in the central m × m portion of the 
n × n lattice (with m << n) that are occupied by water is proportional to mα with a value of α of about 
1.89 [from Dias, M.M. and D.J. Wilkinson (1986). “Percolation with trapping,” J. Phys. A, Vol.19, pp. 
3131-3146). This is, for instance, one origin of the phenomenon of residual oil. 

 

Solution. 

The procedure is similar to that of Problem 8.2 after assigning uniform (0,1) random 
numbers to each site of the lattice. 
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8.4. Water storage. Water storage X in a large reservoir is modeled as a truncated normal variate with 
pdf 

          ( ) ( ) ( )[ ] ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−Φ−Φ

=
22

3
6exp

23
5389.1

3
6exp

23
1

21
1 xxxf X ππ

, 

for 0 ≤ x ≤ 9 units, and zero elsewhere. Find FX(7) by Monte Carlo integration using 1000 simulation 
cycles, and compare this result with that obtained using tables of the normal distribution. What is the 
number of simulation cycles required to achieve a standard error of estimation not larger than 10 percent 
of the true value? Assume the mode of X as the maximum ordinate for the rectangular envelope of fX(x), 
with 
0 ≤ x≤ 7 units. 
 

Solution 

1) Find the maximum α of the given pdf in the interval (0,9). 

2) Generate 2 samples of uniform variates U1(0,9) and U2(0,α). 

3) Compute the number c of points with coordinates (U1,U2) lying in the area under the 
given pdf in the interval (0,7). 

4) Compute the ratio d between the c and the total number of points generated. 

5) Multiple d for the area given by 9α. 

6) By computing analytically Fx(7), find the requested number of cycles. 

7) The resulting Fx(7) is approximately 0.7388. The requested number of cycles is 
approximately 361. 
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8.5. Storm rainfall. The total amount of water Z delivered by a storm in a given location is evaluated as 
Z = XY from independent duration X and average rainfall rate Y of a storm, with X ~ lognormal(1.2 hr, 
6 hr2), and Y ~ lognormal(10 mm/hr, 100 mm2/hr2). Assume that the number of storms in a year is a 
Poisson variate with a mean of 25. Using Monte Carlo simulation find the cdf of the annual maximum 
hourly storm depth, that is, the maximum amount of rainfall in a year which is delivered in the specified 
duration of one hour. 

Solution 

1) Simulate a sample from the Poisson variate with mean of 25, as done in Illustration 
E8.15. This given the position of each storm within the year. 

2) Simulate samples from the two given lognormal distributions. Generation of 
lognormal random numbers can be done by generating normal random numbers with 
assigned mean and variance and performing an exponential transformation. The mean 
and variance of the corresponding normal distribution (see Illustration 4.32) are 
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This allows to compute the duration and intensity of each storm. 

3) Compute the maximum rainfall height for the given durations. 

4) Find to best probability distribution is approximately a Gumbel (19.06, 0.10). 

 
8.6. Storm rainfall. Solve Problem 8.5 under the assumption that the duration X ~ lognormal(1.2 hr, 
6 hr2) of a storm and its average intensity Y ~ lognormal(10 mm/hr, 100 mm2/hr2) are negatively 
correlated variates with ρX,Y = -0.3. Note that if two jointly distributed variates U and W follow the 
bivariate normal distribution, then the covariance between X = exp(U) and Y = exp(W) is given by Cov(X, 
Y) = μX μY {exp[Cov(U, W)] - 1}. One can thus generate correlated values of X and Y from bivariate 
normal random numbers distributed as U = ln(X) ~ N(μln(X), σln(X)

2) and W = ln(Y) ~ N(μln(Y), σln(Y)
2) having 

a correlation coefficient of 
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Solution 

1) Use the same procedure given for the Exercise 8.5; generate the samples the two 
lognormal distributions by assigning the specified correlation. This can be done 
generating jointly distributed normal random numbers with mean and variance 
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and correlation given by the indicated relationship. Generation of multivariate normal 
random numbers is done in Illustration E8.16. 

2) The resulting distribution is approximately a Gumbel (7.00, 0,74). 
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8.7. Generation of beta variates. Let X ~ beta(a,b) with 0 ≤ x ≤ 1. Develop an algorithm to generate beta 
random numbers based on the rejection method. Compare the cdf resulting from simulation of 100 
samples of X ~ beta(1, 3) with its analytical form by using the Kolmogorov-Smirnov test. 

Solution 

1) Applying the rejection method, simulate the samples as done in Illustration E18.13 
(the same technique is applicable here since the beta distribution has a bell-shaped pdf). 
Find the optimum values of the parameters c, α and b of the proposed g(x). 

 

 
8.8. Wastewater treatment plant. An activated-sludge plant includes five serial processes: (1) coarse 
screening, (2) grit removal, (3) plain sedimentation, (4) contact treatment, and (5) final settling. Let Xi 
denote the efficiency of the ith treatment, that is, the fraction of remaining pollutant after removal by the 
ith serial treatment. For example, X1 is the fraction of pollutant removed by treatment process 1, X2 is the 
fraction of the remaining pollutant after removal by treatment process 2, and so on. The amount Qout of 
pollutant in the effluent is given by 

                             Qout  =  (1 - X1)(1 - X2)(1 - X3)(1 - X4)(1 - X5)Qin., 

where Qin denote the amount of pollutant in the untreated inflow. A quality indicator of the performance 
of the plant is then defined as 

                               Y  =  (1 - X1)(1 - X2)(1 - X3)(1 - X4)(1 - X5). 

Consider a plant with the following single-process mean efficiencies in the removal of the 5-day 20°C  
biological oxygen demand (BOD): 

                        μ1 = 0.05, μ2 = 0.05, μ3 = 0.20, μ4 = 0.70, μ5 = 0.10, 

where μi = E[Xi]. Suppose that X1, X2, X3, and X5 are normal variates with common coefficient of variation 
of 0.2, and X4 ~ uniform(0.6, 0.8). Find the pdf and cdf of Y by simulation assuming that the five 
processes are independent of each other. Compare the mean of Y with the nominal value. 

 

Solution 

1) Simulate samples of the quantities involved, given their pdf. Generation of normal 
random numbers can be done as explained in Illustration E8.11. Simulation of uniform 
random numbers can be done as explained in Section 8.2.1. 

2) The nominal value of the mean of Y can be computed as 

 E(Y) = (1-E(X1))  (1-E(X2)) (1-E(X3)) (1-E(X4))  (1-E(X5)) . 
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8.9. Underground pipeline subject to corrosion. An underground pressured pipeline is subject to 
stresses caused by external soil pressure and by internal (fluid) pressure. Assuming the radius of pipe r is 
much larger than the thickness of the pipe wall t, the circumferential stress sf due to internal pressure is 
estimated as 

sf  =  pr / t , 

where p is the internal pressure. The bending stress ss in the circumferential direction produced in the 
pipe wall by the external soil loading can be estimated from 
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Here Cd is a dimensionless calculation coefficient for soil load, γ is the unit weight of soil backfill, Bd is 
the width of the ditch at the top of the pipe, E is the modulus of elasticity of the pipe metal, km is a 
bending moment coefficient dependent on the distribution of vertical load and reaction and kd is a 
deflection coefficient dependent on the distribution of vertical load and reaction. The circumferential 
bending stress st produced in the pipe wall due to traffic loads (such as that resulting from roadway, 
railway, or airplane traffic) may be estimated from 
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where Ic is a dimensionless impact factor, Ct is the dimensionless surface load coefficient, F is the wheel 
load on surface, and A is the effective length of pipe on which load is computed. If the pipe remains in 
the elastic range under load, the maximum circumferential stress is given at the critical sections by 
sf + ss + st . By using simulation, compute the expected maximum circumferential stress and its coefficient 
of variation. Suppose that the quantities involved have the following distributions [from Ahammed, M. 
and R.E. Melchers (1994). “Reliability of underground pipelines subject to corrosion,” J. of Transp. 
Engin. Div., ASCE, Vol. 120, pp. 989-1002, reproduced by the permission of the publisher, ASCE]. 

 
Variate Distribution Mean Coefficient of variation 

p normal 6.205 MPa 0.20 
r normal 228.6 mm 0.05 
t normal 8.73 mm 0.05 

km lognormal 0.235 0.20 
Cd lognormal 1.32 0.20 
γ normal 18.85×10-6 N/mm3 0.10 

Bd normal 762 mm 0.15 
E normal 206800 MPa 0.05 
kd lognormal 0.108 0.20 
Ic normal 1.5 0.25 
Ct lognormal 0.12 0.20 
F normal 267000 N 0.25 
A normal 914 mm 0.20 

The main effect of corrosion is weight loss. Because we are mainly interested is general corrosion, it is 
assumed that the loss of wall thickness can be modeled empirically by a power law, d = kτn, where τ is 
the time of exposure in years, k is a multiplying coefficient, and n is a constant. Accordingly, one will 
substitute (t - d) or (t - kτn) for t in the above equations to account for corrosion. Suppose that both k and 
n are normal variates with means of 0.3 and 0.6, respectively, and coefficients of variation of 0.3 and 
0.2, respectively. Evaluate the expected maximum circumferential stress and its coefficient of variation 
after an exposure of 30 years. 

189



Applied Statistics for Civil and Environmental Engineers 
BY N.T. KOTTEGODA AND R. ROSSO © 

Problem Solution Manual for Chapter 8 - Page 8 (out of 14) 

Solution 

1) Simulate samples of the quantities involved, given their pdf. Generation of normal 
random numbers can be done as explained in Illustration E8.11. Generation of 
lognormal random numbers can be done by generating normal random numbers with 
assigned mean and variance and performing an exponential transformation. The mean 
and variance of the corresponding normal distribution (see Illustration 4.32) are 
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2) Compute the circumferential stresses given the items of the quantities involved. This 
allows to obtain a sample of circumferential stressed. 

3) Compute the expected value and coefficient of variation of the obtained sample. 
They are approximatively 288 and 0.22. 
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8.10. Debris flow. Debris flows, also referred as mudflows, are a significant hazard in many parts of the 
world, causing extensive damage to engineering structures such as buildings, bridges and culverts, as 
well as causing loss of life. From data analysis in the Los Angeles area, California, the following 
empirical formula was proposed to estimate the debris volume X in cubic meters: 

                              X = 56.56 Y0.75 a1.25 (1 + 80 e-0.239a-0.537W )0.5, 

where a denotes the watershed area in square kilometers, Y the 72-hour maximum annual rainfall depth in 
millimeters, and W the time interval between watershed burning in years [from McCuen, R.H., Ayyub, 
B.M. and T.V. Hromadka (1990). “Risk of Debris-Basin failure, ASCE J. Water Resources Plan. and 
Man. Div., ASCE, Vol. 116, pp.473-483, reproduced by the permission of the publisher, ASCE]. Assume 
that Y and W are independent variates, Y is a Gumbel-distributed variate with a mean of 100 mm and a 
coefficient of variation of 0.444, and W is a lognormal-distributed variate with a mean of 8 years and a 
coefficient of variation of 1.375. Consider a drainage area a of 2.5 km2, and find the probability 
distribution of X by simulation. 

 

Solution 

1) Simulate samples of the quantities involved, given their pdf.  Generation of normal 
random numbers ca be don as explained in Illustration E8.11. Generation of lognormal 
random numbers can be done by generating normal random numbers with assigned 
mean and variance and performing an exponential transformation. The mean and 
variance of the corresponding normal distribution ( see Illustration 4.32) are 
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2)  Compute the variable X given the items of the quantities involved. This allows to 
obtains a sample of debris volumes. 

3) Find the best pdf for the obtained sample using the Kolmogorov-Smirnov test. 

4) The pdf is approximately lognormal (14.200, 99152). 
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8.11. Reservoir capacity. In determining the optimal capacity of a reservoir let us assume that the 
manager will follow the so-called normal operating rule shown in Fig. 8.P3. 

Water available, s t + x t

R
el

ea
se

, r
t

cd τ

d τ

reservoir empty
s t =0 reservoir full

s t =c

 
Figure 8.P3 

 

In this case, the draft or release Rt is obtained as 

1. Rt = St + Xt,                       if St + Xt ≤ dτ , 

2. Rt = dτ ,                             if dτ < St + Xt < dτ + c, 

3. Rt = St + Xt - c,                  if St + Xt ≥ dτ + c, 

where c denotes the capacity of the reservoir. The rate of demand of water supply, dτ, is equal to the 
mean annual runoff in March, April, November and December. It is reduced to 85 percent in May, 
August, September and October, and to 70 percent in January, February, June and July. Using this rule 
and the other data of Example 8.22, find the optimal capacity of the reservoir for an average annual 
deficit of 1 percent of the annual demand. Assume full reservoir as the initial condition. Compare this 
result with that of Example 8.22. 

 

Solution 

1) Find the total annual demand of water supply by using the data of Illustration E8.23. 
Compute the maximum deficit allowed (1% of the total annual demand). 

2) Using the recursive stochastic equation of Illustration E8.19, simulate 100 years of 
monthly inflows. 

3) Using these data for a given value c of the capacity, and applying the relationships 
(a), (b) and (c) find the release Rt and the annual deficit. 

4) Change the value of c to find the optimum capacity. 

5) Verify with other simulations the correctness of the results. 

6) The optimum capacity is approximately 0.340. 
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8.12. Model selection for extreme value data. Let X denote a GEV-distributed random variable with 
parameters ε = 0, α = 1 and k = -0.2. Perform the following experiment. 

(a) Generate a sample of 100 outcomes of this variate. 

(b) Fit the (1) Gumbel, (2) Fréchet, (3) lognormal, (4) gamma, (5) GEV, (6) shifted-lognormal, 
(7) shifted-gamma and (8) log-Pearson Type III distributions to the generated sample. 

(c) Perform a goodness-of-fit testing procedure using the chi-squared, Kolgomorov-Smirnov and 
Anderson-Darling tests. 

Determine the probability models for which the null hypothesis is not rejected. 

Repeat the experiment for a sample of 10,000 outcomes. 

Solution 

Follow procedures for simulation in Example 8.9 and methods of fitting and testing in 
Chapter 7, including that adopted in Example 7.32. 
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8.13. River network. A river network can be described as a random binary tree, as shown in Fig. 8.P4a. 
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Figure 8.P4 
 

A mathematical tree originates from a root (ancestor) and it grows by subsequent branching, through a 
bifurcation process. A link is defined as the line segment between two vertices of the tree; external links 
are those connecting an internal vertex (junction) with an external vertex (source), and internal links are 
those joining two junctions. The total number of external links is called the “magnitude” of the tree. A 
tree of magnitude m has n = 2m - 1 links (total progeny). A hierarchical order can be assigned to each 
element of the tree by indexing a link by its “level” of branching, that is by progressively numbering the 
links from 1, which is assigned to the root, to k, which is the level of the source having the highest 
distance from the root. Let Xi denote the number of links at branching level i. In a standard model of river 
networks, the tree randomly branches with a constant branching probability p for all the links 
independently of the bifurcation level. Therefore, the number of links at level i + 1, Xi+1, depends only on 
Xi, the number of links at the previous level. The process of branching through upstream growth is called 
Markovian, because each stage of development depends only on the immediately previous one. If p = 1/2, 
the probability that Xi-1 links at level i - 1 will originate Xi links at level i is 
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where  

                                                   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

2
1

i

i

x
x

  

denotes the combinations of xi-1 links taking xi/2 at a time, and Xi-1 ≤ 2Xi. For example, if Xi-1 = 8 at level i 
- 1, the corresponding transition probabilities pX for Xi are those listed in the following table with the 
associated conditional cdf FX. 

Xi = 0 2 4 6 8 10 12 14 16 
pX = 0.0039 0.0313 0.1094 0.2188 0.2734 0.2188 0.1094 0.0313 0.0039 
FX = 0.0039 0.0352 0.1445 0.3633 0.6367 0.8555 0.9648 0.9961 1.0000 

One can simulate a river network by using the probability integral transform method as shown in 
Fig. 8.3.P4b. The process terminates when Xk = 0 (adsorbing state), and level k is called the “diameter” of 
the river network. Using this model find the probability distribution of the level j for which the number Xj 
of links is a maximum in trees with diameter of k = 8. 

 

Solution 

1) Simulate the river network using the probability integral transform method. Keep 
only the simulation whose diameter k is equal to 8. In order to reduce the number of 
simulations required, assign value 1 to the branching probability p of the root (first 
link). 

2) Find the best pdf of the obtained sample of levels j for which the number of links is a 
maximum in the obtained trees, using the Kolmogorov-Smirnov test. 

4) The resulting pdf is approximately lognormal (2.82, 0.96). 
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8.14. Seismic hazard. In a period of 600 years about 330 earthquakes occurred in Central Italy having 
epicentral MCS intensity X exceeding 6. Also, X is modeled as an exponential variate with scale and 
location parameters of 0.91 and 6, respectively. Seismic hazard in a specific site is represented by MCS 
intensity Y as evaluated from the following attenuation law 
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where Z denotes the distance from the �picenter, z0 = 9.5 km is the distance of the isoseismical line for 
epicentral intensity x0 = 10, and ψ0 = 1, ψ = 1.5 and ϕ =1.3 are the estimated values of parameters ψ0, ψ 
and ϕ for Central Italy [see Grandori, G., Drei, A., Perotti, F. and A. Tagliani (1991). “Macroseismic 
intensity versus epicentral distance”: The case of Cental Italy, in: Stucchi, M., Postpischl, D,. and D. 
Slejko, eds., “Investigations of Historical Earthquakes in Europe”, Tectonophysics, Vol. 193, pp.175-
181]. Suppose Z ∼ uniform(3 km, 25 km). and find the probability distribution of Y by simulation. 
Compute t 

The 100-year MCS intensity for this region assuming that Y is a Gumbel variate. 

 

Solution 

1) Applying the rejection method, simulate a sample of the given exponential 
distribution as done in Illustration E8.13 (the same technique is applicable here since 
the exponential distribution has a bell-shaped pdf). Find the optimum values of the 
parameters c, α and b of the proposed g(x). 

3) Simulate a sample of equal length of the Uniform (3.25) distribution. 

4) Using the two previous samples, calculate the sample of the Y’s. 

5) Find the best pdf for the sample of Y’s. 

5) The distributions is approximately a Gumbel (0.70, 4.65). 
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9.3. Structural safety factor. Consider a structure designed with a central safety factor of 2, and loaded 
with a non-random load y. Determine its risk of failure for (a) normally, (b) lognormally, and (c) gamma 
distributed load-carrying capacity X with mean μX=y and coefficient of variation VX=0.5. 

Solution. The probability of failure is given by 

pf = Pr[X>ζy] = 1 - FX(ζy) = 1 - FX(2y). 

(a) If X∼N(y, (yVX)2), 

( )p
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x y
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dx y y
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where Φ(.) denotes the cdf of the standard normal variate. 

(b) If X∼LN(μln(X) , σln(X)
2), 
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( )( )
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Since 

σln(X)
2 = ln(1 + VX

2) = ln(1 + 0.52) = 0.223 

and 

μln(X) = ln(μX) - 0.5 σln(X)
2 = lny - 0.5×0.223 = lny - 0.112, 
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(c) If X∼gamma(λ, γ), 

( )
p x x dxf
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Since 

γ = 1/VX
2 = 4 

and 
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λ = μ X / γ = y/4, 
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9.4. Pile. The conventional safety factor of a pile is z*=1.2. Both load-carrying capacity and strength are 
independent normal variates with coefficients of variation of 30% and 50%, respectively. Find the sigma 
bound hX = hY = h, if the central safety factor is ζ=1.6. 

Solution. By combining Eq. (9.1.4), 

ζ = μX/μY, 

with Eq. (9.1.6), 

z
h
h

hV
hV

X X X

Y Y Y
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−
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, 

one gets 

h
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V V zX Y
=

−
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+ ×
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.
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. 

 
9.5. Flow meters. The reliability of a standard flow meter used for rating municipal water supply to 
private buildings is 95%, and it is estimated that a defective meter underestimates flow of 20%. If the 
tolerable loss is 2% for each supplied building, what is the reliability of the municipal system if 100 
buildings are supplied? Calculate also the reliability if 1000 buildings are supplied. Note that for large n 
the binomial distribution can be approximated by the normal (with the same mean and variance) as 
shown in Sec. 4.2. 

Solution. The probability that a flow meter is defective is p=1-0.95=0.05. If n=100 
buildings are supplied, one assumes that the number N of defective meters is a binomial 
variate with parameters p and n. Thus, the expected number of defective meters is 

μN = pn = 0.05×100 = 5, 

and the variance is 

σN
2 = pn(1 - p) = 0.05×100(1 - 0.05) = 4.75. 

Hence, 

σN = √4.75 = 2.179. 

If l=0.2 is the loss due to a defective meter, the total loss X has a mean of 

μX = μN l = 5×0.2 = 1, 

and a standard deviation of 
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σX = σN l = 2.179×0.2 = 0.436. 

If the tolerable loss is t=0.02, the required system reliability is the probability that the 
total loss X is less than tn = 0.02×100 =2, that is r = Pr[X≤2]. Assuming that 
X∼N(1, 0.4362), system reliability is 

r = Φ((2 - 1)/0.436) = Φ(2.294) = 0.989, 

with Φ(⋅) denoting the cdf of the standard normal variate. 

For n=1000,  

μN = pn = 0.05×1000 = 50, 

σ2
N = pn(1 - p) = 0.05×1000(1 - 0.05) = 47.5, 

σN = √47.5 = 6.892, 

μX = μN l = 50×0.2 = 10, 

σX = σN l = 6.892×0.2 = 1.378. 

Thus, 

r = Φ((20 - 10)/1.378) = Φ(7.255) ≈ 1. 

 
9.6. Uniform capacity and demand. The joint capacity-demand distribution of a supply system is 
uniform, say, fX,Y(x,y)=(ab)-1 units-2, for 0≤X≤a units and 0≤Y≤b units, with a≥b. What is the reliability of 
the system? 

Solution. The reliability of the system is given by 

[ ]Pr X Y dx
ab

dy dx
ab

dy x
ab

dx
a

dx b
ab

a
a

b
a

b
a

b x

b

a b b

b
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0 0 0 0

21 1 1
2
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2

. 

It is also seen that the shaded area in Figure 9.S6 is b2/2 + b(b - a), which is normalized 
by ab to obtain 1 - b/(2a). 

Figure 9.S6

x

y

X =Y

a

b

b
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9.7. Pipe flow. The pressure p and water flow q in a circular pipe are measured as p=7 kpascal (kN/m2) 
and q=0.08 m3/s, respectively. The pipe is located 2 m above the reference level and its diameter is 
d=20 cm. The total head h (energy) in the pipe at the point of interest is given by Bernoulli’s equation, 

h
u

g
p

z= + +
2

2 γ
, 

where X1=u2/2g is called the kinetic head, X2=p/γ the pressure head, and X3=z the elevation head. 
Assuming X1, X2, and X3 to be normal variates with a coefficient of variation of 0.05, an engineer needs to 
determine the reliability of system operation for h>h0, with h0=3 m (the flow velocity is defined as the 
ratio between flow and cross sectional area of the pipe, say, u= q/(πd-2/4), g is the acceleration due to 
gravity, say g= 9.806 m/s2, and γ is the specific weight of water, say, γ= 9.806 kN/m3). Assume that all 
variates are independent of each other. 

Solution. The mean values of kinetic, pressure and elevation heads are given by 

μ1 = [0.08/(3.142×0.22/4)]2/ (2×9.806) = 0.331 m, 

μ2 = 7/9.806 = 0.714 m 

and 

μ3 = 2 m, 

respectively. If V1=V1=V3=0.05, the values of the corresponding standard deviation are 

σ1 = 0.05×0.331 = 0.017 m, σ2 = 0.05×0.714 = 0.036 m and σ3 = 0.05×2 = 0.107 m. 

Under tha assumption of independent normal variates, the total head Y is a normal 
variate with mean 

μY = μ1 + μ2 + μ3 = 0.331 + 0.714 + 2 = 3.044 m, 

and standard deviation 

σY = (σ1
2 + σ2

2 + σ3
2)1/2 = (0.0172 + 0.0362 + 1072)1/2 = 0.107 m. 

The required reliability is given by r = Pr[Y>h0] with h0= 3 m. It can be computed as 

r = Pr[Y>3] = 1 - Φ((3 - 3.044)/0.107) = Φ(-0.414) = 0.661, 

with Φ(⋅) denoting the cdf of the standard normal variate. 

 
9.8. Column load. A column of a building is designed with a central safety factor of 1.6. The coefficient 
of variation of its strength is 25%. The total column load is the sum of several factors: live load, dead 
load, wind load, and snow load. If these factors are independent normal variates as: 

Factor Expected value, in kN Coefficient of variation 
Live load 
Dead load 
Wind load 
Snow load 

70 
90 
30 
20 

0.15 
0.05 
0.30 
0.20 

find 

(a) the expected value and coefficient of variation of the total column load, Y; 

(b) the reliability index and the corresponding risk of failure of the column, if the strength is assumed 
to be a normal variate independent of load; and 
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(c) the reliability index and risk of failure, if the strength and load are correlated normal variates with 
ρ=0.6. 

Solution. Denote with X1, X2, X3, and X4 the live, dead, wind and snow loads, 
respectively. The values of the corresponding standard deviations are 
σ1=0.15×70= 10.5 kN, σ2=0.05×90= 4.5 kN, σ3=0.30×30= 9 kN and 
σ4=0.20×20= 4 kN. 

(a) The mean and variance of the total column load, Y, are the sums of the load 
component means and variances, that is 

μY = μ1 + μ2 + μ3 + μ4 = 70 + 90 + 30 + 20 = 210 kN 

and 

σY = (σ1
2 + σ2

2 + σ3
2+ σ4

2)1/2 = (10.52 + 4.52 + 92 + 42)1/2 = 15.1 kN. 

Also, the coefficient of variation of Y is VY = 15.1/210 = 0.072. 

(b) From μX=336 kN and VX=0.25, σX= 336×0.25 = 84 kN. For normal column strength 
X, the safety margin S=X-Y is a normal variate with mean  

μS = μX - μY = 336 - 210 = 126 kN 

and standard deviation 

σS = (σX
2 + σY

2)1/2 = (842 + 15.12)1/2 = 85.3 kN. 

From Eq. (9.1.13), the reliability index is 

β = 126/85.3 = 1.476. 

From Eq. (9.1.15) the probability of failure is 

pf = 1 - Φ(1.476) = 0.070, 

with Φ(⋅) denoting the cdf of the standard normal variate. 

(c) From Eq. (9.1.14) 

β
μ μ

σ ρ σ σ σ
=

−

− +
=

−

− × × × +
=X Y

X XY X Y Y
2 2 2 22

336 210

84 2 0 6 84 151 151
1660

. . .
. . 

The corresponding probability of failure is 

pf = 1 - Φ(1.660) = 0.048. 

Note that positive correlation between load and strength increases the reliability of the 
system. 

 
9.9. Earth embankment. For the stability of an earth embankment the overturning moment eW, must not 
exceed the resisting moment r(LA RA + LB RB ), as shown schematically in Figure 9.P1. For the given 
configuration LA =21 m, LB =4 m, r =12 m, e=3 m, and W=2000 kN/m2. Find the reliability of the system 
if RA and  RB are joint normally distributed variates with means 35 and 20 kN/m2, respectively, coefficient 
of variation of 20%, and coefficient of correlation of 0.7. 
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Solution. Since the standard deviations of RA and RB are σA = 0.20×35 = 7.0 kN/m2 and 
σB = 0.20×20 = 4.0 kN/m2, respectively, the mean and standard deviation of the 
resisting moment X are 

μX = 12×(21×35 + 4×20) = 9780.0 kN/m2 

and 

σX = {[12×(21×7)]2 + 2×0.7×12×(21×7)×12×(4×4) + [12×(4×4)]2 }1/2 = 1903.3 kN/m2. 

The overturning moment Y=eW has a mean of 6000 kN/m2, and null variance. Thus, the 
safety margin S=X-Y is a normal variate with mean 

μS = μX - μY = 9780 - 6000 = 3780 kN/m2, 

and standard deviation 

σS = (σX
2 + σY

2)1/2 = (1903.32 + 02)1/2 = 1903.3 kN/m2. 

From Eq. (9.1.13) the reliability index is 

β = 3780/1903.3 = 1.986. 

The probability of failure is obtained from Eq. (9.1.15), that is 

pf = 1 - Φ(1.986) = 0.024, 

with Φ(⋅) denoting the cdf of the standard normal variate. Thus, 

r = 1 - pf = 0.976 

is the reliability of the system. 

 
9.10. Slope stability. The wedge method for analysing the stability of an earth slope assumes a linear 
critical surface, such as AB in Figure 9.P2. The factor of safety is then obtained as 

( )[ ]
z c

h
=

−
2

22
sin cos

sin
θ ϕ

γ θ ϕ
, 

where c is the cohesion parameter, ϕ is the internal angle of friction or friction angle, θ is the slope 
angle, γ is specific weight, and h is the slope height. If these factors are independent normal variates as: 

Factor Expected value Coefficient of variation 
Friction angle 

Cohesion parameter 
Specific weight 

21° 
15 kN/m2 
20 kN/m3 

0.12 
0.40 
0.10 

find the risk of failure for a slope with h = 10 m, and θ = 55°. 

Solution. The following limiting state equation is considered 

g(ϕ, c, γ) = 2 X2 sinθ cos X1 - h X3 sin2[(θ - X1)/2] = 0, 

where X1=ϕ, X2=c and X3=γ are three random variables with 

μ1 = 21 deg, V1 = 0.12, and σ1 = 2.52 deg; 

μ2 = 15 kN/m2, V2 = 0.40, and σ2 = 6.0 kN/m2; 

μ3 = 20 kN/m3, V3 = 0.10, and σ3 = 2 kN/m3. 
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The partial derivates of the performance function with respect to each of the variables 
evaluated at the failure point are determined as 

∂g/∂Xi' = (∂g/∂Xi)(∂Xi/∂Xi') = (∂g/∂Xi) σi, 

which follows directly from Eq. (9.1.23a). Thus, 

(∂g/∂X1)f = {-2 x2 sin(55) sinx1 + 10 x3 sin[(55 - x1)/2] cos[(55 - x1)/2]} × 2.52, 

(∂g/∂X2)f = {2 sin(55) cosx1} × 6, 

and 

(∂g/∂X3)f = {- 10 sin2[(55 - x1)/2]} × 2, 

The means are taken as initial values, that is x1=21 deg, x2=15 kN/m2 and x3=20 kN/m3. 
Hence, (∂g/∂X1)f = 118.72, (∂g/∂X2)f = 9.177 and (∂g/∂X3)f = -1.710. 

Also, Σ(∂g/∂Xi)f
2 = 14182.4. From Eq. (9.1.31), 

α1 = 118.72/√14182.4 = 0.997, 

α2 = 9.177/√14182.4 = 0.077, 

and 

α3 = -1.710/√14182.4 = -0.014. 

Thus, the new failure point is given by 

x1(new) = μ1 - α1σ1β = 21 - (0.997×2.52)β = 21 - 2.512 β, 

x2(new) = μ2 - α2σ2β = 15 - (0.077×6.0)β = 15 - 0.462 β 

and 

x3(new) = μ3 - α3σ3β = 20 - (-0.014×2.0)β = 20 + 0.028 β. 

The limit state equation 

2 (15 - 0.462 β) sin(55) cos(21 - 2.512 β) -  

  - 10×(20 + 0.028 β) sin2[(55 - 21 + 2.512 β)/2] = 0 

is solved numerically for β to get β = 1.94. 

To perform the second iteration, one makes use of the new failure point, that is 

x1(new) = 21 - 2.512 β = 21 - 2.512×1.94 = 16.1, 

x2(new) = 15 - 0.462 β = 15 - 0.462×1.94 = 14.1 

and 

x3(new) = 20 + 0.028 β = 20 + 0.028×1.94 = 20.1. 

Then the values of the partial derivates are computed as (∂g/∂X1)f = 142.38, 
(∂g/∂X2)f = 9.443 and (∂g/∂X3)f = -2.214. Also, Σ(∂g/∂Xi)f

2 = 20365.8. Hence, 

α1 = 142.38/√20365.8 = 0.998, 

α2 = 9.443/√20365.8 = 0.066, 
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and 

α3 = -2.214/√20365.8 = -0.016. 

This gives a new failure point 

x1(new) = 21 - (0.998×2.52) β = 21 - 2.515 β, 

x2(new) = 15 - (0.066×6.0) β = 15 - 0.396 β 

and 

x3(new) = 20 - (-0.016×2.0) β = 20 + 0.032 β. 

Accordingly, the new limit state equation is 

2 (15 - 0.396 β) sin(55) cos(21 - 2.515 β) -  

  - 10×(20 + 0.032 β) sin2[(55 - 21 + 2.515 β)/2] = 0. 

 
Table 9.S10 - Slope stability. 

Design data Unit Mean Coefficient 
of Variation

Standard 
Deviation 

Friction angle, ϕ deg 21 0.12 2.52 
Cohesion, c kN/m2 15 0.40 6.0 
Specific weight, γ kN/m3 20 0.10 2.0 
Slope height, h m 10 - - 
Slope angle, θ deg 55 - - 
Nominal capacity, x kN/m2 22.9 - - 
Nominal demand, y kN/m2 17.1 - - 
Nominal safety factor, z - 1.34 - - 
Limit state of interest is g(ϕ,C,θ) = 2 c sinθ cosϕ - hγsin2[(θ-ϕ)/2] =0 

Iteration process  
Initial ϕ=x1f 21 16.1 16.0 16.0 
Initial c=x2f 15 14.1 14.2 14.2 
Initial γ=x3f 20 20.1 20.1 20.1 

(∂g/∂ϕ)f 118.72 142.38 143.00 143.01 
(∂g/∂c)f 9.177 9.443 9.450 9.450 
(∂g/∂γ)f -1.710 -2.214 -2.231 -2.231 

Σ(∂g/∂Xi)f
2 14182.4 20365.8 20543.4 20547.5 

α1f 0.997 0.998 0.998 0.998 
α2f 0.077 0.066 0.066 0.066 
α3f -0.014 -0.016 -0.016 -0.016 

New ϕ=x1f 16.1 16.0 16.0 16.0 
New c=x2f 14.1 14.2 14.2 14.2 
New γ=x3f 20.1 20.1 20.1 20.1 

g(.) 7E-07 1E-06 6E-06 6E-06 
yields β = 1.94 2.00 2.00 2.00 

Reliability, Φ(β) 0.974 0.977 0.977 0.977 
Risk, 1-Φ(β) 0.026 0.023 0.023 0.023 

  
Hence β = 2.00. Further iterations indicate that β = 2.00 is the required reliability index. 
This yields a probability of failure of 
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pf = 1 - Φ(2.00) = 0.023, 

with Φ(⋅) denoting the cdf of the standard normal variate. The corresponding reliability 
is 

r = 1 - pf = 0.977. 

Detailed computations are shown in Table 9.S10. 

 
9.11. Elastic collapse of a steel beam. Consider a simply supported steel beam with normally distributed 
strength X, with mean of 25 KN/cm2, and coefficient of variation of 15%. The bending moment Y is also 
a normal variate with mean 900 kN cm, and coefficient of variation of 20%. Find the reliability of the 
beam if its section modulus W is normally distributed with mean 20 cm3, and coefficient of variation of 
5%. Note that the limit state of interest is given by Y/W-X=0, and assume mutually independent X, Y and 
W. 

Solution. The following limiting state equation is considered 

g(Y, W, X) = x1 / x2 - x3 = 0, 

where X1=Y, X2=W and X3=X are three random variables with 

μ1 = 900 kN×cm, V1 = 0.20, and σ1 = 180 kN×cm; 

μ2 = 20 cm3, V2 = 0.05, and σ2 = 1 cm3; 

μ3 = 25 kN/cm2, V3 = 0.15, and σ3 = 3.75 kN/cm2. 

The partial derivates of the performance function with respect to each of the variables 
evaluated at the failure point are determined as 

∂g/∂Xi' = (∂g/∂Xi)(∂Xi/∂Xi') = (∂g/∂Xi) σi, 

which follows directly from Eq. (9.1.23a). Thus, 

(∂g/∂X1)f = (1/x2) × 180, 

(∂g/∂X2)f = (-x1/x2
2) × 1 

and 

(∂g/∂X3)f = (-1) × 3.75, 

The means are taken as initial values, that is x1=900 kN×cm, x2=20 cm3 and 
x3=25 kN/cm3. Hence, (∂g/∂X1)f = 9, (∂g/∂X2)f = -2.25 and (∂g/∂X3)f = -3.75. Also, 
Σ(∂g/∂Xi)f

2 = 100.1. From Eq. (9.1.31) 

α1 = 9/√100.1 = 0.899, 

α2 = -2.25/√100.1 = -0.225, 

and 

α3 = -3.75/√100.1 = -0.375. 

Thus, the new failure point is given by 

x1(new) = μ1 - α1σ1β = 900 - (0.899×180)β = 900 - 161.8 β, 

x2(new) = μ2 - α2σ2β = 20 - (-0.225×1)β = 20 + 0.225 β 
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and 

x3(new) = μ3 - α3σ3β = 25 - (-0.375×3.75)β = 25 + 1.406 β. 

The limit state equation 

(900 - 161.8 β) / (20 + 0.225 β) - (25 + 1.406 β) = 0 

is solved numerically for β to get β = 2.04. 

To perform the second iteration, one makes use of the new failure point, that is 

x1(new) = 900 - 161.8 β = 900 - 161.8×2.04 = 570.1, 

x2(new) = 20 + 0.225 β = 20 - 0.225×2.04 = 20.5 

and 

x3(new) = 25 + 1.406 β = 25 + 1.406×2.04 = 27.9. 

Then the values of the partial derivates are computed as 

(∂g/∂X1)f = 8.798, 

(∂g/∂X2)f = -1.362 

and 

(∂g/∂X3)f = -3.750. 

Also, Σ(∂g/∂Xi)f
2 = 93.3. Hence, 

α1 = 8.798/√93.3 = 0.911, 

α2 = -1.362/√93.3 = -0.141, 

and 

α3 = -3.750/√93.3 = -0.388. 

This gives a new failure point 

x1(new) = 900 - (0.911×180) β = 900 - 164.0 β, 

x2(new) = 20 - (-0.141×1) β = 20 + 0.141 β 

and 

x3(new) = 25 - (-0.388×3.75) β = 25 + 1.455 β. 

Accordingly, the new limit state equation is 

(900 - 164.0 β) / (20 + 0.141 β) - (25 + 1.455 β) = 0. 

Hence, β = 2.03. Further iterations indicate that β = 2.03 is the required reliability 
index. This yields a probability of failure of 

pf = 1 - Φ(2.03) = 0.021, 

with Φ(⋅) denoting the cdf of the standard normal variate, and a reliability of 

r = 1 - pf = 0.979. 

Detailed computations are shown in Table 9.S11. 
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Table 9.S11 - Elastic collapse of a steel beam. 

Design data Unit Mean Coefficient 
of Variation 

Standard 
Deviation 

Bending moment, Y kN cm 900 0.20 180 
Section modulus, W cm3 20 0.05 1 
Strength, X kN/cm2 25 0.15 3.75 
Limit state of interest is g(Y,W,X) = y/w - x  = 0 

Iteration process  
Initial y=x1f 900 570.1 567.1 566.7 
Initial w=x2f 20 20.5 20.3 20.3 
Initial x=x3f 25 27.9 28 28 

(∂g/∂M)f 9.000 8.798 8.873 8.872 
(∂g/∂W)f -2.250 -1.362 -1.378 -1.377 
(∂g/∂X)f -3.750 -3.750 -3.750 -3.750 

Σ(∂g/∂Xi)f
2 100.1 93.3 94.7 94.7 

α1f 0.899 0.911 0.912 0.912 
α2f -0.225 -0.141 -0.142 -0.142 
α3f -0.375 -0.388 -0.385 -0.385 

New m=x1f 570.1 567.1 566.7 566.7 
New w=x2f 20.5 20.3 20.3 20.3 
New x=x3f 27.9 28.0 27.9 27.9 

g(.)=x1f/x2f-x3f 2E-07 9E-08 9E-08 -7E-07 
yields β = 2.04 2.03 2.03 2.03 

Reliability, Φ(β) 0.979 0.979 0.979 0.979 
Risk, 1-Φ(β) 0.021 0.021 0.021 0.021 

  
 
9.12. Flexure formula. Consider a timber beam subject to flexure. The stress at the extreme fiber at a 
distance X2 from the neutral axis acted upon by a bending moment X3 is given by X2X3/X4, where X4 
denotes the moment of inertia of the section. We assume that the factors are normal variates as 

Factor Expected value Coefficient of variation 
Bending moment, X3 
Moment of inertia, X4 

Distance from neutral axis, X2 

6 kN cm 
90 cm4 
20 cm 

0.25 
0.10 
0.05 

and assume that X2, X3, and X4 are independent each other. Find the reliability of the system if the 
capacity X1 of the beam is a normal variate with a mean of 4 kN/cm2, and a coefficient of variation of 
30%. 

Solution. The following limiting state equation is considered 

g(X1, X2, X3, X4) = x1 - x2 x3/ x4 = 0, 

where X1, X2, X3 and X4 are four random variables, with 

μ1 = 4 kN/cm2, V1 = 0.30, and σ1 = 1.2 kN/cm2; 

μ2 = 20 cm, V2 = 0.05, and σ2 = 1 cm; 

μ3 = 6 kN×cm, V3 = 0.25, and σ3 = 1.5 kN×cm. 
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μ4 = 90 cm4, V3 = 0.10, and σ4 = 9 cm4. 

The partial derivates of the performance function with respect to each of the variables 
evaluated at the failure point are determined as 

∂g/∂Xi' = (∂g/∂Xi)(∂Xi/∂Xi') = (∂g/∂Xi) σi, 

which follows directly from Eq. (9.1.23a). Thus, 

(∂g/∂X1)f = (1) × 1.2, 

(∂g/∂X2)f = (-x3/x4) × 1, 

(∂g/∂X3)f = (-x2/x4) × 1.5 

and 

(∂g/∂X4)f = (x2 x3 / x4) × 9, 

The means are taken as initial values, that is x1=4 kN/cm2, x2=20 cm, x3=6 kN×cm and 
x4=90 cm4. Hence, 

(∂g/∂X1)f = 1.2, 

(∂g/∂X2)f = -0.067, 

(∂g/∂X3)f = -0.333 

and 

(∂g/∂X4)f = 0.133. 

Also, Σ(∂g/∂Xi)f
2 = 1.573. From Eq. (9.1.31), 

α1 = 1.2/√1.573 = 0.957, 

α2 = -0.067/√1.573 = -0.053, 

α3 = -0.333/√1.573 = -0.266, 

and 

α4 = 0.133/√1.573 = 0.106. 

Thus, the new failure point is given by 

x1(new) = μ1 - α1σ1β = 4 - (0.957×1.2)β = 4 - 1.148 β, 

x2(new) = μ2 - α2σ2β = 20 - (-0.053×1)β = 20 + 0.053 β, 

x3(new) = μ3 - α3σ3β = 6 - (-0.266×1.5)β = 6 + 0.399 β 

and 

x4(new) = μ4 - α4σ4β = 90 - (0.106×9)β = 90 - 0.954 β. 

The limit state equation 

(4 - 1.148 β) - (20 + 0.053 β)(6 + 0.399 β) / (90 + 0.954 β) = 0, 

is solved numerically for β to get β = 2.121. 

To perform the second iteration, one makes use of the new failure point, that is 
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x1(new) = 4 - 1.148 β = 4 - 1.148×2.121 = 1.57, 

x2(new) = 20 + 0.053 β = 20 - 0.053×2.121 = 20.11, 

x3(new) = 6 + 0.399 β = 6 + 0.399×2.121 = 6.87 

and 

x4(new) = 90 - 0.954 β = 90 - 0.954×2.121 = 88.0. 

Then the values of the partial derivates are computed as 

(∂g/∂X1)f = 1.2, 

(∂g/∂X2)f = -0.078, 

(∂g/∂X3)f = -0.343 

and 

(∂g/∂X4)f = 0.160. 

Also, Σ(∂g/∂Xi)f
2 = 1.589. Hence, from Eq. (9.1.31), 

α1 = 1.2/√1.589 = 0.952, 

α2 = -0.078/√1.589 = -0.062, 

α3 = -0.343/√1.589 = -0.272, 

and 

α4 = 0.160/√1.589 = 0.127. 

Thus, the new failure point is given by 

x1(new) = μ1 - α1σ1β = 4 - (0.952×1.2)β = 4 - 1.142 β, 

x2(new) = μ2 - α2σ2β = 20 - (-0.062×1)β = 20 + 0.062 β, 

x3(new) = μ3 - α3σ3β = 6 - (-0.272×1.5)β = 6 + 0.408 β 

and 

x4(new) = μ4 - α4σ4β = 90 - (0.127×9)β = 90 - 1.143 β. 

Accordingly, the new limit state equation is 

(4 - 1.142 β) - (20 + 0.062 β)(6 + 0.408 β) / (90 + 1.143 β) = 0, 

Hence β = 2.120. Further iterations indicate that β = 2.120 is the required reliability 
index. This yields a probability of failure of 

pf = 1 - Φ(2.120) = 0.017, 

with Φ(⋅) denoting the cdf of the standard normal variate, and a reliability of 

r = 1 - pf = 0.983. 

Detailed computations are shown in Table 9.S12. 
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Table 9.S12 - Flexure formula. 

Design data Unit Mean Coefficient 
of Variation 

Standard 
Deviation 

Section modulus, X4 cm4 90 0.10 9 
Bending moment, X3 kN cm 6 0.25 1.5 
Distance, X2 cm 20 0.05 1 
Capacity, X1 kN/cm2 4 0.30 1.2 
Limit state of interest is g(x1,x2,x3,x4) = x1 - x2x3 /x4  = 0 

Iteration process  
Initial x4f 90 88.0 87.6 87.5 
Initial x3f 6 6.85 6.87 6.87 
Initial x2f 20 20.11 20.13 20.13 
Initial x1f 4 1.57 1.58 1.58 
(∂g/∂X4)f 0.133 0.160 0.162 0.162 
(∂g/∂X3)f -0.333 -0.343 -0.345 -0.345 
(∂g/∂X2)f -0.067 -0.078 -0.078 -0.078 
(∂g/∂X1)f 1.200 1.200 1.200 1.200 

Σ(∂g/∂Xi)f
2 1.573 1.589 1.591 1.592 

α4f 0.106 0.127 0.129 0.129 
α3f -0.266 -0.272 -0.273 -0.273 
α2f -0.053 -0.062 -0.062 -0.062 
α1f 0.957 0.952 0.951 0.951 

New x4f 88.0 87.6 87.5 87.5 
New x3f 6.85 6.87 6.87 6.87 
New x2f 20.11 20.13 20.13 20.13 
New x1f 1.57 1.58 1.58 1.58 

g(.)=x2fx3f/x4f-x1f -6E-07 8E-09 9E-09 9E-09 
yields β = 2.121 2.120 2.120 2.120 

Reliability, Φ(β) 0.983 0.983 0.983 0.983 
Risk, 1-Φ(β) 0.017 0.017 0.017 0.017 

  
 
9.13. Surveying using Geosatellite Positioning System. The values of latitude YGPS and longitude XGPS 
obtained by GPS readings at a point are affected by a certain random multiplicative error, Z. Thus, 
XGPS=Zx and YGPS=Zy, respectively, with x and y denoting longitude and latitude of the point. Find the 
reliability of measuring the planar distance w between two points with a tolerance of 3% if Z is a 
lognormally distributed variate with unit mean and coefficient of variation of 0.02, assuming that all 
(four) readings used in measuring the distance are independent of each other (this reliability can be 
evaluated as Pr[0.97 < WGPS/w ≤ 1.03]). 

Solution. The planar distance between two points with coordinates (x1,y1) and (x2,y2) is 
given by 

w = [(x2 - x1)2 + (y2 - y1)2]1/2; 

while that obtained by GPS readings is 

WGPS = [(Zx2 - Zx1)2 + (Zy2 - Zy1)2]1/2 = Zw. 
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Thus, WGPS /w = Z. The required reliability is computed as 

r = Pr[zsup < WGPS/w ≤ zinf] = Φ[(lnzsup - μln(Z))/σln(Z)] - Φ[(lnzinf - μln(Z))/σln(Z)]. 

with Φ[⋅] denoting the cdf of the standard normal variate. Since, zsup = 0.97 and 
zinf  = 1.03, lnzsup = 0.0296 and lnzinf = -0.0305. Also, 

σln(Z) = [ln(1 + VZ
2)]1/2 = [ln(1 + 0.022)]1/2 = 0.0200 

and 

μln(Z) = ln(μZ) - 0.5 σln(Z)
2 = 0.0002. Hence, 

r = Φ[(0.0296 + 0.0002)/0.02] - Φ[(-0.0305 + 0.0002)/0.02] = 

  = Φ(1.488) - Φ(-1.513) = 0.932 - 0.065 = 0.867. 

 
9.14. Column load. The strength of column of a building is normally distributed with mean of 336 kN, 
and coefficient of variation of 25%. The total column load is the sum of several components, say, the live 
load, dead load, wind load, and snow load. If these factors are independent variates as: 

Factor Expected value, in kN Coefficient of variation 
Normal live load 
Normal dead load 
Weibull wind load 
Gumbel snow load 

70 
90 
30 
20 

0.15 
0.05 
0.30 
0.20 

find the reliability index and the risk of failure of the column. 

Solution. Since μX = 336 kN and VX = 0.25, σX = 0.25×336 = 84 kN is the standard 
deviation of column strength, X. Denote Y1, Y2, Y3, and Y4 the live, dead, wind and snow 
loads, respectively. The values of the corresponding standard deviations are given by 

σ1 = 0.15×70 = 10.5 kN, 

σ2 = 0.05×90 = 4.5 kN, 

σ3 = 0.30×30 = 9 kN 

and 

σ4 = 0.20×20 = 4 kN. 

From Eqs. (4.2.15) and (4.2.16) 
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−γ
λ λ λ

γ γ

exp , 

where γ is found by solving numerically Eq. (4.2.17c) for γ. Thus, 

Γ(1 + 2/γ) / Γ2(1 + 1/γ) - (1 + V3
2) = 0, 

that is 

Γ(1 + 2/γ) / Γ2(1 + 1/γ) - (1 + 0.32) = 0, 

which yields γ = 3.71. From Eq. (4.217a) 

λ = μ1 / Γ(1 + 1/γ) = 30 / Γ(1 + 1/γ) = 30 / Γ(1.27) = 33.24 kN. 
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From Eqs. (7.2.17) and (7.2.18) 
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exp exp . 

The values of α and b are evauated from Eqs. (7.2.21) and (7.2.22). Thus, 

α = (√6 / π) σ4 = 0.780×4 = 3.12 kN 

and 

b = μ4 - 0.5772 α = 20 - 0.5772×3.12 = 18.20 kN. 

Because Y3 has the Weibull distribution, the equivalent normal variate is determined 
using y3* = 20 kN as a starting point. Thus, 

σ3* = φ{Φ-1[FY3
(y3*)]}/fY3

(y3*) = φ{Φ-1[FY3
(20)]}/fY3

(20) = 

 = φ[Φ-1(0.1407)]/0.0242 = φ(-1.077)/0.0242 = 0.223/0.0242 = 9.230 

and 

μ3* = y3* - σ3* Φ-1[FY3
(x3*)] = 20 - 9.230×(-1.077) = 29.942. 

Similarly for Y4∼Gumbel(18.2 kN, 3.12 kN) the equivalent normal variate is determined 
using y4* = 15 kN as a starting point. Thus, 

σ4* = φ{Φ-1[FY4
(y4*)]}/fY4

(y4*) = φ{Φ-1[FY4
(15)]}/fY4

(15) = 

 = φ[Φ-1(0.0614)]/0.0550 = φ(-1.543)/0.0550 = 0.121/0.0550 = 2.208 

and 

μ4* = y4* - σ4* Φ-1[FY4
(y4*)] = 15 - 2.208×(-1.543) = 12.620. 

From Eq. (9.1.13) 

β = [μX - (μ1 + μ2 + μ3* + μ4*)] / (σX
2 - σ1

2 + σ2
2 + σ3*

2 + σ4*
2)1/2 = 

 = (336 - 70 - 90 - 29.94 - 12.62)/(842 - 10.52 + 4.52 + 9.232 + 2.212)1/2 = 

 = 1.546. 

This procedure is iterated as shown in Table 9.S14a until convergence to the value of 
β = 1.451 is achieved. 
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Table 9.S14a - Column load. Analytical solution. 

Design data Unit Mean Coefficient 
of 

Variation 

Standard 
Deviation

Scale 
Paramete

r  

Shape 
Paramete

r  

Location 
Parameter

Normal Stength, X kN 336 0.25 84.0    
Normal Live Load, Y1 kN 70 0.15 10.5    
Normal Dead Load, Y2 kN 90 0.05 4.5    
Weibull Wind Load, Y3 kN 30 0.30 9.0 33.24 3.71  
Gumbel Snow Load, Y4 kN 20 0.20 4.0 3.12  18.20 
Iteration process   

y3 = 20.0 25.0 30.0 32.0 33.0 33.5 
y4 = 15.0 18.0 20.0 21.0 22.0 22.5 

F(y3*) = 0.1407 0.2934 0.4952 0.5805 0.6224 0.6429 
f(y3*) = 0.0242 0.0365 0.0427 0.0423 0.0414 0.0408 

Φ-1[F(y3*)] = -1.077 -0.543 -0.012 0.203 0.312 0.366 

φ{Φ-1[F(y3*)]} = 0.223 0.344 0.399 0.391 0.380 0.373 

μ3* = 29.942 30.130 30.113 30.122 30.137 30.148 

σ3* = 9.230 9.441 9.338 9.240 9.182 9.151 
F(y4*) = 0.0614 0.3443 0.5704 0.6653 0.7440 0.7773 
f(y4*) = 0.0550 0.1177 0.1027 0.0869 0.0705 0.0628 

Φ-1[F(y4*)] = -1.543 -0.401 0.177 0.427 0.656 0.763 

φ{Φ-1[F(y4*)]} = 0.121 0.368 0.393 0.364 0.322 0.298 

μ4* = 12.620 17.839 19.969 20.818 21.570 21.917 

σ4* = 2.208 3.128 3.825 4.190 4.561 4.749 

μX−μ1−μ2−μ3*-μ4* = 133.44 128.03 125.92 125.06 124.29 123.93 

σX
2+σ1

2+σ2
2+σ3*2+σ4*2 = 7276.57 7285.42 7288.33 7289.43 7291.62 7292.80 

yields β = 1.564 1.500 1.475 1.465 1.456 1.451 
Reliability, Φ(β) = 0.941 0.933 0.930 0.929 0.927 0.927 
Risk, 1-Φ(β) = 0.059 0.067 0.070 0.071 0.073 0.073 

  
From Eq. (9.1.15) the probability of failure is 

pf = 1 - Φ(1.451) = 1 - 0.927 = 0.073. 

Simulations are performed by generating values of X, Y1, Y2, Y3 and Y4. Since 
X∼N(336 kN, 842 (kN)2), an outcome of x can be obtained using the Box-Muller method 
of Illustration E8.10, that is 

x = μX + (-2lnu1)1/2 sin(2πu2) σX, 

where u1 and u2 denote two uniform (0,1) random numbers. Let, for example, u1=0.4 
and u2=0.7. For μX = 15° and σX = 1.5° one gets 

x = 336 + 84 [-2ln(0.4)]1/2 sin(2×0.7π) = 227.85. 

The same procedure is used to generate values y1 and y2 of Y1∼N(70 kN, 10.52 (kN)2) 
and Y2∼N(90 kN, 4.52 (kN)2). Since Y3∼Weibull(33.24 kN, 3.71), the probability 
integral transform is used to get a value y3 of Y3, that is 

y3 = 33.24 (-lnu3)1/γ, 
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with u3 denoting a uniform (0,1) random number. Similarly, a value y4 of 
Y4∼Gumbel(18.2 kN, 3.12 kN) is obtained from 

y4 = 18.2 - 3.12 ln(-lnu4), 

with u4 denoting a uniform (0,1) random number. This procedure is repeated n times to 
perform n simulation cycles. If one denotes with xi, y1i, y2i, y3i, y4i the generated values 
for the i-th cycles, a failure occurs if xi < y1i + y2i + y3i + y4i. In this case, let ηi=1, where 
ηi is the failure counter. If xi ≥ y1i + y2i + y3i + y4i, then ηi=0. The simulated probability 
of failure is estimated as pf = Σηi / n. The results of 10 runs with n=1000 cycles for each 
run are shown in Table 9.S14b. 

 
Table 9.S14b - Column load. Simulation results (n=1000). 

Run # : 1 2 3 4 5 6 7 8 9 10 Average
r = 0.914 0.923 0.919 0.921 0.928 0.938 0.917 0.933 0.928 0.927 0.925 
pf = 0.086 0.077 0.081 0.079 0.072 0.062 0.083 0.067 0.072 0.073 0.075 

  
It is seen that the average probability of failure is 0.075. 

 
9.15. Stormwater removal. In the Italian method for designing storm sewer systems the system capacity 
is estimated by 

W qX qX
s

= − −⎛
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1
1

exp  , 

where W is the stormwater removal capacity (i.e., the volume of stormwater which can be appropriately 
drained by the system) for a storm with duration X, q is the outlet discharge capacity (i.e., the maximum 
discharge which can be conveyed by the outlet channel under uniform flow conditions), and s is system 
storage capacity (i.e., the volume of water which can be stored in the whole system, including the outlet 
channel, upstream channel network, and surface detention). System reliability can be evaluated using the 
concepts of capacity and load by considering the volume of stormwater delivered in a storm event as the 
storm depth multiplied by drainage area a, that is, aXY, where Y denotes the average intensity of a storm 
(see: Rosso, R. and E. Caroni (1977) “Storm sewer capacity design under risk”, Proc. XVII Congr. Int. 
Assoc. Hydraul. Res., Baden-Baden, August 15-19, Vol.4, pp.537- 543). Consider the stormwater 
removal system for a drainage area of 205×103 m2 in a location where the duration X and intensity Y of a 
severe storm are independent exponentially distributed variates with means of 1.4 hours and 18 mm/hour, 
respectively. The outlet discharge capacity of the system is 4 m3s-1, and its storage capacity is 1500 m3. 
Using coherent units, 

(a) compute the system reliability for a storm by simulation. 

(b) Because of gradually varied flow in the system, the system storage during a storm may not achieve 
storage capacity, and a random variate Z is substitued for s to evaluate the stormwater removal 
capacity W. Simulate system reliability for a storm if fZ(z)=3z2/s3 for 0≤z≤s, and 0 elsewhere. 

Solution. (a) Since μX = 1.4 hours = 5040 s and μY = 18 mm/hour = 5×10-6 m/s, the 
exponential assumption for X and Y gives 

FX(x) = 1 - exp(-x/5040) and FY(y) = 1 - exp(-2×105 y). 
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Each simulation cycle is then performed by generating values x and y of 
X∼exponential(1/5040 s-1) and Y∼exponential(2×105 s/m). From the probability integral 
transform, 

x = -5040 lnu 

and 

y = -5×10-6 lnv, 

where u and v denote two uniform (0,1) random numbers. Let, for example, u=0.9 and 
v=0.2. Thus, 

x = -5040 ln(0.9) = 531 s and y = -5×10-6 ln(0.3) = 8.05×10-6 m/s, 

which are used to evaluate system capacity as 

w qx qx
s

= − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

×

− −
×⎛

⎝⎜
⎞
⎠⎟

=
−

1 4 531

1 4 531
1500

2805
1

3exp
exp

m  . 

This is compared with the effective volume of stormwater, that is 

axy = 205,000×531×8.05×10-6 = 876 m3. 

Since w≥axy, the system performs properly for this cycle. In this case, let ηi=0, where ηi 
is the failure counter for the i-th simulation cycle. On the contrary, ηi=0 if wi≥axiyi. If n 
cycles are performed, the simulated probability of failure is estimated as pf = Σηi / n, 
and the associated system reliability is pf = 1 - Σηi / n. The results of 10 runs with 
n=1000 cycles for each run are shown in Table 9.S15. 

 
Table 9.S15 - Stormwater removal. Simulation results (n=1000). 

Run # Σηi(a) pf(a) r(a) Σηi(b) pf(b) r(b) 
1 18 0.018 0.982 18 0.018 0.982 
2 15 0.015 0.985 16 0.016 0.984 
3 12 0.012 0.988 13 0.013 0.987 
4 25 0.025 0.975 26 0.026 0.974 
5 17 0.017 0.983 18 0.018 0.982 
6 13 0.013 0.987 13 0.013 0.987 
7 14 0.014 0.986 14 0.014 0.986 
8 15 0.015 0.985 17 0.017 0.983 
9 20 0.020 0.980 22 0.022 0.978 

10 19 0.019 0.981 21 0.021 0.979 
Average 16.8 0.017 0.983 17.8 0.018 0.982 

  
It is seen that the average probability of failure is 0.017 and system reliability is 0.983. 

(b) The randomness of storage capacity is considered here. This is a random variable Z 
with cdf 

FZ(z) = z3 / s3 = z3 / 15003,  
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for z≤s, and 1 for z>s. A random outcome z of Z is obtained from 

z = s t1/3 = 1500 t1/3, 

with t denoting a uniform (0,1) random number. Let, for example, t=0.1. Then, 

z = 1500 0.11/3 = 696 m3. 

Using the above generated values of x and y, system capacity is geiven by 

w qx qx
z

= − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

×

− −
×⎛

⎝⎜
⎞
⎠⎟

=
−

1 4 531

1 4 531
696

2230
1

3exp
exp

m  , 

which is larger than the effective volume of stormwater of 876 m3. The above counting 
procedure is repeated n times, and the results of 10 runs with n=1000 cycles for each 
run are also shown in Table 9.S15. It is seen that the average probability of failure is 
0.018 and system reliability is 0.982. 

 
9.16. Dilution requirements. The amount of water into which wastewater can be discharged without 
creating objectionable conditions is represented by a dilution parameter which is commonly expressed for 
combined systems as the minimum streamflow Y required. If wastewater with a first-stage BOD of W in 
N per capita is discharged daily into a stream with a permissible loading of Z in N/m3, the required 
streamflow becomes Y=0.012W/Z in m3/s per 1,000 population (see: Fair, G.M., Geyer, J.C. and D.A. 
Okun (1971): “Elements of water supply and wastewater disposal”, 2nd edition, John Wiley and Sons, 
New York, p.659). Assume that population is 10,000, permissible loading Z can vary uniformly from 
0.23 to 0.12 N/m3, and load W is a normal variate with a mean of 1.2 N per capita and coefficient of 
variation of 20%. Find the reliability of the system by simulation if streamflow X is a gamma variate with 
mean and standard deviation of 2 and 0.5 m3/s, respectively. 

Solution. Each simulation cycle is performed by generating values w and z of 
W∼N(1.2 N, 0.242 N) and Z∼uniform(0.12 N/m3, 0.23 N/m3). From the probability 
integral transform, 

z = 0.12 + (0.23 - 0.12)u1, 

with u1 denoting a uniform (0,1) random number. For example, if u1=0.3, 

z = 0.12 + (0.23 - 0.12)×0.3 = 0.153 N/m3. 

An outcome of w can be obtained using the Box-Muller method of Illustration E8.10, 
that is 

w = μW + (-2lnu2)1/2 sin(2πu3) σW, 

where u2 and u3 denote two uniform (0,1) random numbers. Let, for example, u2=0.4 
and u3=0.7. For μX = 1.2° and σX = 0.24° one gets 

w = 1.2 + 0.24 [-2ln(0.4)]1/2 sin(2×0.7π) = 0.891 N per capita. 

Then, 

y = 10×0.012×0.981/0.153 = 0.699 m3/s 

is the simulated discharge requirement or system load, which is compared with system 
capacity, that is streamflow X. An outcome x of X∼gamma(16, 0.125 m3/s) is obtained 
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by generating a standard gamma random number v with shape parameter r = 16 by 
using the rejection method of Illustration E8.12. Let, for example, v = 4.2, then 

x = 4.2×0.125 = 0.525 m3/s. 

Since x<y, the system fails for this cycle. In this case, let ηi=1, where ηi is the failure 
counter for the i-th simulation cycle. On the contrary, ηi=0 if x≥y. If n cycles are 
performed, the simulated probability of failure is estimated as pf = Σηi / n, and the 
associated system reliability is pf = 1 - Σηi / n. The results of 10 runs with n=1000 
cycles for each run are shown in Table 9.S16. 

 
Table 9.S16 - Diluition requirements. 

Simulation results (n=1000). 

Run # Σηi r pf 
1 9 0.991 0.009
2 13 0.987 0.013
3 18 0.982 0.018
4 9 0.991 0.009
5 17 0.983 0.017
6 11 0.989 0.011
7 13 0.987 0.013
8 9 0.991 0.009
9 9 0.991 0.009

10 16 0.984 0.016
Average 12.4 0.988 0.012

  
It is seen that the simulation average of system reliability is 0.988. 

 
9.17. Law of diminishing returns. Consider a system with n serial components, each of them constituted 
by m redundant independent subcomponents with equal probability of failure p. Find (a) the overall 
reliability of this system. (b) Show that, by determining the rate of increase of system reliability with 
increasing number m, the advantage of introducing additional redundant subcomponents in each serial 
component rapidly vanishes. 

Solution. (a) From Eq. (9.2.7) the probability of failure of the i-th serial component is 
pfi=pm. From Eq. (9.2.1) 

( ) ( ) ( )r p p pfi
i

n
m

i

n
m n

= − = − = −
= =

∏ ∏1 1 1
1 1

 

is the required system reliability. 

(b) The rate of increase of r with increasing m is given by 

( ) ( )dr
dm

d
dm

p np p
p

m n m m n
= − = −

−
1 1 11

ln , 

which is shown to rapidly decrease in Figure 9.S17. 
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Figure 9.S17
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9.18. Pipe network. Consider the portion of a pipeline network for urban water supply of 
Illustration E9.18 (see, also, Figure 9.2.2). Assuming independent failure modes find the probability that 
node c remains isolated if there is a common probability of rupture of 1% for all pipes. 

Solution. From the network it is seen that for this condition to hold at least one of the 
following routes must work: (2), (1,5), (1,3,4). Thus, the required probability of failure 
is pf = Pr[ABC], where the events A, B and C are the failures of route (2), (1,5) and 
(1,3,4), respectively. For each route the probability of failure is obtained as shown at the 
extreme right-hand side of Eq. (9.2.8). That is 

Pr[A] = 1 - (1 - p) = p (that is route A does not work); 

Pr[B] = 1 - (1 - p)(1 - p) = 2p - p2 (that is route B does not work); 

Pr[C] = 1 - (1 - p)(1 - p)(1 - p) = 3p - 3p2 + p3 (that is route C does not work). 

It is seen that these routes form three parallel-serial (that is redundant) systems. 
However, the events described here are not independent. For example, routes B=(1,5) 
and C=(1,3,4) have pipe 1 in common. Therefore, their joint effects are considered. 
Route A is independent from routes B and C. From Eq. (9.2.8) 

pf = Pr[ABC] = Pr[A] Pr[BC]. 

On the other hand, routes B and C are not independent. From the addition rule of 
probability, 

Pr[BC] = Pr[B] + Pr[C] - Pr[B+C] = (2p - p2) + (3p - 3p2 + p3) - [1 - (1 - p)4] = 

 = p + 2p2 - 3p3 + p4. 

Thus, 
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pf = Pr[ABC] = Pr[A] Pr[BC] = p (p + 2p2 - 3p3 + p4) = p2 + 2p3 - 3p4 + p5. 

For p=0.01, 

pf = 0.012 + 2×0.013 - 3×0.014 + 0.015 = 0.000102. 

 
9.19. Retaining wall. The retaining wall for road embankment sketched in Figure 9.P3a can fail due to 
several factors. The failure modes are schematically indicated in the block diagram for system reliability 
analysis shown in Figure 9.P3b as given by Harr (1987). Under the assumption of independent modes 
compute the reliability of the overall system if the individual probabilities of failure are as indicated in 
parentheses. 

Solution. The system can be viewed as a serial system with components given by 
redundant subsystems. Denote with pij the probability of failure of the j-th redundant 
component of the i-th serial component. System reliability is found by combining 
Eqs. (9.2.1) and (9.2.6), that is 

( )r ps ij
j

m

i

n i

= − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥==

∏∏ 1 1
11

, 

where mi denotes the number of redundant components of the i-th serial component, and 
n is the number of serial components. The individual probabilities are as follows. 

Serial component 1 has m1=1 subcomponents, with p11 = 0.001 (earthquake). 

Serial component 2 has m2=2 subcomponents, with p21 = 0.0001 (heavy load) and with 
p22 = 0.001 (weakened condition of pavement). 

Serial component 3 has m3=3 subcomponents, each of which is a serial system. The 
corresponding probabilities of failure are found as 

p31 = 1 - (1 - p311)(1 - p312) = 1 - (1 - 0.001)(1 - 0.005) = 0.005995, which accounts for 
bearing capacity and retaining wall, 

p32 = 1 - (1 - p321)(1 - p322) = 1 - (1 - 0.001)(1 - 0.001) = 0.001999, which accounts for 
bearing capacity and soil stability, and 

p33 = 1 - (1 - p331)(1 - p332) = 1 - (1 - 0.005)(1 - 0.001) = 0.005995, which accounts for 
retaining wall and soil stability. 

Serial component 4 has m4=3 subcomponents, with p41 = 0.02 (groundwater table), 
p42 = 0.02 (drainage) and p43 = 0.001 (freezing). 

Thus, 

( ) ( )1 1 0 001 0 9991
1

1
− = − =

=
∏ p j
j

. . , 

( ) ( )( )1 1 0 0001 1 0 001 0 99892
1

2
− = − − =

=
∏ p j
j

. . . , 

( ) ( )( )( )1 1 0 005995 1 0 001999 1 0 005995 0 986073
1

3
− = − − − =

=
∏ p j
j

. . . . , 
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( ) ( )( )( )1 1 0 02 1 0 02 1 0 001 0 959444
1

2
− = − − − =

=
∏ p j
j

. . . . , 

and 

rs = (1 - 0.999)(1 - 0.9989)(1 - 0.98607)(1 - 0.95944) = 0.9441. 

 
9.20. Raingage network. The raingage network for stormwater management in the metropolitan area of 
Milan, Italy, is constituted by 16 stations. It is seen that real time operation of the urban drainage control 
system requires telemetered data from at least 12 stations in order to have sufficient information of spatial 
precipitation. Find the reliability of the network if the failures occur independently with a probability of 
10%. 

Solution. From Eq. (9.2.11) 

( )r p
m
x

p pf
x m x

x k

m
= − =

⎛
⎝
⎜

⎞
⎠
⎟ − −

=
∑1 1 , 

with m=16, k=12 and p=0.1. Thus, 

( )r
x

p px m x

x
=

⎛
⎝
⎜

⎞
⎠
⎟ − =−

=
∑

16
1

12

16
 

= 1820×0.912×0.14 + 560×0.113×0.13 + 120×0.914×0.12 + 16×0.915×0.1 + 1×0.916×1 = 

 = 0.0514 + 0.1423 + 0.2745 + 0.3294 + 0.1853 = 0.9830. 

 
9.21. Improved reliability bounds for a k-out-of-m system. Assuming that failures occur as rare 
events, one can substitute the Poisson distribution for the binomial distribution to compute the reliability 
of a k-out-of-m system. Accordingly, Serfling (1974) found 

FX(m-k) - l ≤ r ≤ FX(m-k) + l, 

where FX(.) is the cdf of a Poisson variate X with mean Σpi, and 2l=Σpi
2, where the summation is made 

over all m components, each of them having an individual probability of failure of pi. Compute these 
bounds for the pumping system shown in Figure 9.2.3 with p=0.03. 

Solution. This is a 3-out-of-4 system with equal probability of failure for each 
component, that is m = 4, k = 3 and pi = p =0.03. The mean of X is given by 
mp = 4×0.03 = 0.12. Thus, 

( ) ( ) ( )F m k F
mp e

x
e e

X X

x mp

x
− = = = + =

−

=

− −

∑1 012
0

012
1

0 9934
0

1 0 0 12 0 12

!
.

!
.

!
.

. .
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Since l = 4×0.032/2 = 0.0018, the lower and upper bound are found as 

r- = FX(1) - l = 0.9934 - 0.0018 = 0.9916 

and 

r+ = FX(1) + l = 0.9934 + 0.0018 = 0.9952, 

respectively. 
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9.22. Levee collapse. The design elevation of a levee built for flood protection at a site in the Po river 
plain was determined using the estimated 200-year flood, so that overtopping occurs with a risk of 0.5% 
in a year. However, this structure can fail also due to excessive seepage through the foundation material 
at high stages of the river, and it is estimated that this can occur with a probability of 10% if the 10-year 
flood stage is exceeded. Assuming that the two failure modes are normal and correlated with ρ=0.7, find 
the minimum reliability of the levee and compare this probability with that corresponding to the 
independent case. 

Solution. Denote with A, B and C the occurrence of the 200-year flood, of the 10-year 
flood and of excessive seepage, respectively. Since Pr[C|B] = 0.10, the corresponding 
probabilities are 

Pr[A] = 1/200 = 0.005, 

Pr[B] =1/10 = 0.1 

and 

Pr[C] = Pr[C|B] Pr[B] = 0.1×0.1 = 0.01. 

From Eq. (9.2.17) two weak bounds for system reliability are found as 

min (1 - Pr[A], 1 - Pr[C]) ≤ r ≤ 1 - Pr[A] Pr[C], 

that is 

min (0.995, 0.99) ≤ r ≤ 1 - 0.005×0.01, 

0.99 ≤ r ≤ 0.99995. 

Under the assumption of normal failure modes, the reliability bounds are found by using 
Eq. (9.2.25). The individual reliability indeces of the two serial failure modes A and C 
are 

βA = Φ-1(1 - Pr[A]) = Φ(1 - 0.005) = Φ(0.995) = 2.576, 

βC = Φ-1(1 - Pr[C]) = Φ(1 - 0.01) = Φ(0.99) = 2.326. 

Also, 

( ) ( )pa A
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and 
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. . 

From Eq. (9.2.22) 

1 - Pr[A] - Pr[C] + max (pa, pc) ≤ r ≤ 1 - Pr[A] - Pr[C] + pa + pc, 

that is 

1 - 0.005 - 0.01 + max (0.0029, 0.0038) ≤ r ≤ 1 - 0.005 - 0.01 + 0.0029 + 0.0038, 

0.9888 ≤ r ≤ 0.9917. 
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The minimum reliability of the levee is 0.9888. From Eq. (9.2.1) 

r = (1 - Pr[A]) (1 - Pr[C]) = (1 - 0.005) (1 - 0.01) = 0.9851 

for independent failure modes. 

 
9.23. Redundant and serial equally reliable components. A system with a given overall reliability r is 
composed of l positively correlated components; each of them has an identical probability of failure, say, 
p. Find the bounds for the reliability of each component if (a) they are serial; (b) they are redundant. 

Solution. By substituting the reliability ris = 1 - p of the i-th serial positively correlated 
component for p in Eq. (9.2.16) 

[1 - (1 - ris)]l ≤ r ≤ 1 - (1 - ris), 

one gets 

r ≤ ris ≤ r1/l. 

From Eq. (9.2.18) 

1 - (1 - ris) ≤ r ≤ 1 - (1 - rir)l, 

that is 

1 - (1 - r)1/l ≤ ris ≤ r. 

where rir = 1 - p is the reliability of the i-th redundant positively correlated component. 

 
9.24. Repeated design. The reliability of a particular design procedure to prevent the collapse of 
buildings caused by earthquakes was found to be 99% over a long period of time. Since it is planned to 
construct 10 structures using this design, evaluate the probability that none of the 10 similar structures 
fails over the same time span. 

Solution. The risk of failure of a new structure is p = 1- r = 1 - 0.99 = 0.01. The 
probability that none of 10 structures will collapse is given by the binomial pmf for X=0 
with individual failure probability p and n=10 number of trials, that is 

( ) ( ) ( )f p pX 0
10
0

1 1 0 01 0 90440 10 0 10=
⎛
⎝
⎜

⎞
⎠
⎟ − = − =− . . .  

 
9.25. Reservoir sedimentation. When reservoir sedimentation exceeds the dead level in a reservoir, it 
can affect its efficiency in meeting the target demand. Expensive maintainance work is than necessary to 
remove sedimentation excess. Assuming that the annual sediment yield trapped by a reservoir with dead 
capacity c is an exponentially distributed variate with mean μ, find expressions of (a) R(t) and (b) h(t). (c) 
For c=5×106 m3 and μ=4×105 m3, determine the design life for a reliability level of 90%. Note that the 
sum of t exponentially distributed variates having a common scale parameter is a gamma distributed 
variate with the same scale parameter and shape parameter equal to t. 

Solution. (a) The cumulative sedimentation X after t years is a gamma distributed 
variate with pdf 

( ) ( )
f x

t
x x

X

t

=
⎛
⎝
⎜

⎞
⎠
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⎝
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⎟

−
1

1

μ μ μΓ
exp . 
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The reliability function for the reservoir is given by the probability that X is less than c, 
that is 

( ) ( )
R t

t
x x dx
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−
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1

1
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exp . 

This is the cdf of X for X=c.  

(b) The probability that X reaches c after t years equals the probability that the survival 
time W is t years, that is 
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t
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From Eq. (9.4.17) 
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The reliability and hazard functions are shown in Figure 9.S25 for c=5×106 m3 and 
μ=4×105 m3. 

Figure 9.S25
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(c) The reliable life for r = 0.9 is obtained by iterative computations of R(t). Since 

( ) ( )
R x x dx

c

8 1
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0 930
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and 
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( ) ( )
R x x dx
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the reliable life of the reservoir is from 8 to 9 years. 

 
9.26. Road pavement. Suppose that a road is made of 1000 pavements sections. The number of 
surviving pavements ns after the j-th year in service is as follows: 

j = 1 2 3 4 5 6 7 8 9 10 
ns = 865 782 701 362 201 157 86 47 40 36 
j = 11 12 13 14 15 16 17 18 19 20 

ns = 31 27 26 16 10 6 4 3 2 1 

Estimate the pdf and cdf of the survival time distribution, fW(t) and FW(t), the reliability function R(t), and 
the hazard function h(t) for a pavement section. Find the reliable life of a pavement section for a specified 
reliability level of 70%. Note that for the discrete case the hazard function is the ratio between the 
number of failures in a time interval and the average number of survivors for the period. 

Solution. The cdf of survival time W is computed as 

FW(t) = [ns(0) - ns(t)] / ns(0), 

where t=j and ns(t) denotes the number of surviving pavements. The pmf of W is given 
by 

pW(t) = FW(t) - FW(t-1) = [ns(t-1) - ns(t)] / ns(0). 

From Eq. (9.4.1) 

R(t) = 1 - FW(t) = 1 - [ns(0) - ns(t)] / ns(0) = ns(t) / ns(0). 

From Eq. (9.4.17) 

h(t) = pW(t) / R(t) = [ns(t-1) - ns(t)] / ns(t). 

The computed values of FW(t), pW(t), R(t) and h (t) are reported in Table 9.S26 for 
t=1,...20. Functions FW(t), R(t) and h (t) are also shown in Figure 9S.26. 
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Table 9.S26 - Road pavement. 

j=t ns,t FW(t) fW(t) R(t) h(t) 
0 1000 0.000 0.000 1.000 0.000 
1 865 0.135 0.135 0.865 0.156 
2 782 0.218 0.083 0.782 0.106 
3 701 0.299 0.081 0.701 0.116 
4 362 0.638 0.339 0.362 0.936 
5 201 0.799 0.161 0.201 0.801 
6 157 0.843 0.044 0.157 0.280 
7 86 0.914 0.071 0.086 0.826 
8 47 0.953 0.039 0.047 0.830 
9 40 0.960 0.007 0.040 0.175 
10 36 0.964 0.004 0.036 0.111 
11 31 0.969 0.005 0.031 0.161 
12 27 0.973 0.004 0.027 0.148 
13 26 0.974 0.001 0.026 0.038 
14 16 0.984 0.010 0.016 0.625 
15 10 0.990 0.006 0.010 0.600 
16 6 0.994 0.004 0.006 0.667 
17 4 0.996 0.002 0.004 0.500 
18 2 0.997 0.001 0.003 0.333 
19 1 0.998 0.001 0.002 0.500 
20 0 0.999 0.001 0.001 1.000 

  

Figure 9.S26

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

t = j

F
W

(t
) a

nd
 R

(t
)

0

1

2

h
(t

)

 
From Table 9.S26 R(3) = 0.701 and R(4) = 0.362. Thus, t0.7 ≈ 3 years. 

 
9.27. Weibull reliability function. The reliability function of a salt-water conversion unit is taken as 
R(t) = exp[-(t/τ)γ], where τ is its characteristic lifetime, t is the test time, and γ is a parameter estimated 
from observations of several units of this type. For γ = 1, one has the exponential distribution with 
constant rate of failure 1/τ; and γ = 2 gives the Rayleigh model associated with a linearly increasing 
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hazard function. (a) Find the expression of h(t) associated with R(t). (b) If τ = 10 years, γ = 1.5, and the 
unit is observed to be performing properly for 5 years, find its conditional reliability at the end of this 
period for t=10 years. 

Solution. (a) From Eq. (9.4.1) the cdf of survival time W is given by 

FW(t) = 1 - R(t) = 1 - exp[-(t/τ)γ]. 

Thus, 

fW(t) = dFW(t)/dt = (γ/τ)(t/τ)γ-1 exp[-(t/τ)γ]. 

From Eq. (9.4.17) 

h(t) = fW(t)/R(t) = (γ/τ)(t/τ)γ-1 exp[-(t/τ)γ] / exp[-(t/τ)γ] = (γ/τ)(t/τ)γ-1, 

which is shown in Figure 9.S27. 
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(b) The required conditional reliability function is given by 

R(t|5) = 1 - Pr[5<W≤t|W>5] = 1 - Pr[5<W≤t] / Pr[W>5] = 1- [FW(t) - FW(5)] / R(5). 

Hence 

R(t|5) = 1 - {exp[-(5/10)1.5] - exp[-(t/10)1.5} / exp[-(5/10)1.5]. 

For t=10, 

R(10|5) = 1 - {exp[-(5/10)1.5] - exp[-(10/10)1.5} / exp[-(5/10)1.5] = 0.5239. 

 
9.28. Combined hazards in bridge construction. An engineer evaluates the reliability of a bridge to be 
constructed in an earthquake prone area, where the estimated return period of catastrophic earthquakes is 
250. The 200-year flood must be taken as a design guidance for that area. The bridge is exposed to the 
hazard due to obsolescence, which increases in time as a logistic function, say, 

hobs(t) = 0.05/{1+exp[-0.25(t-25)]} 

where t is in years. Assuming that earthquakes and floods are independent sequences of Poisson events 
find (a) the reliability function of the bridge, and (b) its design life for a reliability level of 90%. 
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Solution. (a) Under the Poisson assumption, the hazard functions for earthquakes and 
floods are given by 

he(t) = (1/250) exp(-t/250)/exp(-t/250) = 1/250 = 0.004 year-1 

and 

hf(t) = (1/200) exp(-t/200)/exp(-t/200) = 1/250 = 0.005 year-1, 

respectively. Since the three processes are mutually independent, the hazard rates can be 
added. Thus, 

h(t) = hobs(t) + he(t) + hf(t) = 0.05/{1+exp[-0.25(t-25)]} + 0.009. 

From Eq. (9.4.18) 
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t t
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which is shown in Figure 9.S28. 
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(b) The design life for a reliability level of 90% is found by solving numerically 

( )[ ]0 9 0 009 0 05
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⎧
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∫t

u
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t

, 

which yields t0.9 ≈ 11 years. 

 
9.29. Bearing capacity of soil. Bearing capacity of soil depends on the following three factors: 

Y = tan4(45 + X/2), 

W = eπtan(X) tan2(45 + X/2), 

Z = cotan(X) [eπtan(X) tan2(45 + X/2) - 1], 
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which are functions of the friction angle X (see: Vannucchi, 1986). Using the point estimate method find 
the mean and coefficient of variation of Y, W and Z for mean friction angles of 15°, 25° and 35°, and 
coefficients of variations of X of 0.1, 0.2 and 0.3. Compare these estimates with those obtained by 
simulation. 

Solution. For μX = 15° and VX = 0.1, σX = 1.5°. Application of Eq. (9.1.35) gives 

y1 = tan4(45 + μX/2 + σX/2) = tan4(45 + 15/2 + 1.5/2) = 3.216 

and 

y2 = tan4(45 + μX/2 - σX/2) = tan4(45 + 15/2 - 1.5/2) = 2.589. 

These point estimates are used in Eqs. (9.1.40) and (9.1.41) to obtain 

μY = 0.5[tan4(45 + μX/2 + σX/2) + tan4(45 + μX/2 - σX/2)] = 0.5(3.216 + 2.589) = 2.903, 

and 

σX
2 = 0.25[tan8(45 + μX/2 + σX/2) + tan8(45 + μX/2 - σX/2) -  

 - 2 tan4(45 + μX/2 + σX/2) tan4(45 + μX/2 - σX/2)] = 

 = 0.25(3.2162 + 2.5892 - 2×3.216×2.589) = 0.098; 

hence, 

VY = σY / μY = 0.0981/2/2.903 = 0.108. 

Similarly, 

w1 = exp[π tan(μX + σX)] tan2(45 + μX/2 + σX/2) = 

 = exp[π tan(15 + 1.5)] tan2(45 + 15/2 + 1.5/2) = 2.536×1.793 = 4.548 

and 

w2 = exp[π tan(μX - σX)] tan2(45 + μX/2 - σX/2) = 

 = exp[π tan(15 + 1.5)] tan2(45 + 15/2 - 1.5/2) = 2.126×1.609 = 3.421. 

Then, 

μW = 0.5(4.548 + 3.421) = 3.984, 

and 

σW
2 = 0.25(4.5482 + 3.4212 - 2×4.548×3.421) = 0.318; 

hence 

VY = σY / μY = 0.3181/2/3.984 = 0.141. 

Also, 

z1 = cotan(μX + σX) {exp[π tan(μX + σX)] tan2(45 + μX/2 + σX/2) - 1} = 

 = cotan(15 + 1.5) {exp[π tan(15 + 1.5)] tan2(45 + 15/2 + 1.5/2) 2) - 1} = 

 = 3.376×3.548 = 11.978 

and 

z2 = cotan(μX - σX) {exp[π tan(μX - σX)] tan2(45 + μX/2 - σX/2) - 1} = 
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 = cotan(15 - 1.5) {exp[π tan(15 - 1.5)] tan2(45 + 15/2 - 1.5/2) 2) - 1} = 

 = 4.165×2.421 = 10.084. 

Then, 

μZ = 0.5(11.978 + 10.084) = 11.031, 

and 

σZ
2 = 0.25(11.9782 + 10.0842 - 2×11.978×10.084) = 0.897; 

hence 

VY = σY / μY = 0.8971/2/11.031 = 0.086. 

The same procedure is carried out for VX equal to 0.2 and 0.3. The complete results are 
shown in Table 9.S29 for μX = 15°, 25° and 35°. 

Simulations are performed by generating values of Y, W and Z from that of friction 
angle X∼N(μX , σX

2). An outcome of x can be obtained using the Box-Muller method of 
Illustration E8.10, that is 

x = μX + (-2lnu1)1/2 sin(2πu2) σX, 

where u1 and u2 denote two uniform (0,1) random numbers. Let, for example, u1=0.4 
and u2=0.7. For μX = 15° and σX = 1.5° one gets 

x = 15 + 1.5 [-2ln(0.4)]1/2 sin(2×0.7π) = 13.069; 

hence 

y = tan4(45 + 13.069/2) = tan4(51.534) = 2.510, 

w = exp[π tan(13.069)] tan2(45 + 13.069/2) = 3.285 

and 

z = cotan(13.069) {exp[π tan(13.069)] tan2(45 + 13.069/2 ) - 1} = 9.845. 

This procedure is repeated and the means and coefficients of variation of Y, W and Z are 
estimated from the generated samples. The results are shown in Table 9.S29. 
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Table 9.S29 - Bearing capacity of soil. 

 (a) Point Estimate Method 
μX VX μY VY μW VW μZ VZ 

15 0.1 2.903 0.108 3.984 0.141 11.031 0.086 
15 0.2 2.957 0.214 4.116 0.277 11.194 0.171 
15 0.3 3.049 0.315 4.339 0.404 11.471 0.253 
25 0.1 6.196 0.190 11.083 0.257 21.151 0.175 
25 0.2 6.580 0.368 12.400 0.484 22.487 0.340 
25 0.3 7.249 0.523 14.797 0.662 24.867 0.489 
35 0.1 14.321 0.290 37.084 0.411 49.272 0.309 
35 0.2 16.560 0.537 50.047 0.706 59.755 0.568 
35 0.3 20.770 0.719 78.120 0.870 81.309 0.754 

 (b) Simulation 
μX VX μY VY μW VW μZ VZ 

15 0.1 2.902 0.108 3.983 0.143 11.029 0.086 
15 0.2 2.924 0.163 4.037 0.419 11.096 0.138 
15 0.3 2.956 0.213 4.115 0.590 11.192 0.175 
25 0.1 6.191 0.194 11.081 0.268 21.147 0.180 
25 0.2 6.354 0.295 11.645 0.419 21.712 0.278 
25 0.3 6.590 0.406 12.515 0.590 22.563 0.388 
35 0.1 14.329 0.307 37.242 0.474 49.357 0.342 
35 0.2 15.300 0.481 43.439 0.820 54.197 0.575 
35 0.3 16.873 0.709 55.763 1.380 63.123 0.940 

  
 
9.30. Partial Load Factors for Beams. Consider two simply supported beams made of different 
materials which are designed to carry the same live load, with a nominal value of ql=2 kN/m. The 
nominal dead loads are qd=1 kN/m for beam 1, and qd=3 kN/m for beam 2, respectively. The mean value 
of the nominal resistance is (γdqd + γlql)/φ with φ=0.9, γd=1.33 and γl=1.5, and its coefficient of variation 
is 0.1. Use the FOSM method to compute the values of the reliability index β for the two beams assuming 
that both dead and live loads are normally distributed variates with means equal to the nominal values 
and coefficients of variation of 0.1 for the dead loads, and 0.25 for the live load, respectively. Modify the 
value of the partial factor γd for beam 1 in order to obtain the same reliability of beam 2. 

Solution. The mean, standard deviation and coefficient of variation of load Y are 

μY(Beam 1) = qd(Beam 1) + ql = 1 + 2 = 3 kN/m, 

σY(Beam 1) = (σd(Beam 1)
2 + σl

2)1/2 = [(0.1×1)2 + (0.25×2)2]1/2 = 0.510 kN/m 

and 

VY(Beam 1) = σY(Beam 1) / μY(Beam 1) = 0.510/3 = 0.170, 

for beam 1; and 

μY(Beam 2) = qd(Beam 2) + ql = 3 + 2 = 5 kN/m, 

σY(Beam 2) = (σd(Beam 2)
2 + σl

2)1/2 = [(0.1×3)2 + (0.25×2)2]1/2 = 0.583 kN/m 

230



Applied Statistics for Civil and Environmental Engineers 
BY N.T. KOTTEGODA AND R. ROSSO © 

Problem Solution Manual for Chapter 9 - Page 35 (out of 36) 

and 

VY(Beam 2) = σY(Beam 2) / μY(Beam 2) = 0.583/3 = 0.117, 

for beam 2. The mean of resistance X is 

μX(Beam 1) = (γdqd(Beam 1) + γlql)/φ = (1.33×1 + 1.5×2)/0.9 = 4.811 kN/m, 

for beam 1; and 

μX(Beam 2) = (γdqd(Beam 2) + γlql)/φ = (1.33×3 + 1.5×2)/0.9 = 7.767 kN/m, 

for beam 2, with VX(Beam 1) = VX(Beam 2) = VX = 0.1. 

From Eq. (9.1.34) 
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Eq.(9.1.34) is inverted to obtain the modified partial load factor γdm for beam 1 for a 
specified value of the reliability index, that is 

( )μ μ βX Y X YV V( ) ( ) ( )expBeam Beam Beam1 1
2

1
2= + . 

Hence, 
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10.1. Treatment plant design. Design I of a wastewater plant for a new community is based on the 
expectation that some heavy industries will be established in the area. This eventuality has an estimated 
probability of .9. Some alternative designs are considered. The cost of implementing Design I(a) is 
$300,000 and Design I(b) is $400,000. These designs are based on effluents of two types (depending on 
types of possible heavy industries) that have equal probabilities, given a positive decision on citing the 
industries here. If these industries are not established in the area, a loss $150,000 will be incurred because 
of modifications to the plant in Design I(a). Furthermore, if Design I(a) is implemented, whereas 
subsequently Design I(b) is found to be necessary, an additional cost of $150,000 will be incurred. 
[Design I(b) is versatile in all these aspects.] 
 Design II, on the other hand, costs $170,000 to implement and does not take account of the 
extra industrial effluent; however, if the industries are cited in the area, it is deemed that extensions 
costing an estimated $330,000 will be necessary to meet the increased demand. 
           Sketch a tree diagram and show the expected risks. What decision should be taken? 
 
Solution 
Solution. Sketch of tree diagram showing estimated probabilities of the true states of 
nature, costs in dollars, and, in bold, expected risks in dollars for different designs;        
о represents a node. 
                            о -$300,000 
                          / 0.5 
      -$375,000 о 
                      /    \ 0.5 
              0.9 /         о -$450,000 
-$382,500 о 
Design    /    \ 0.1                                                                      о -$400,000 
    I(a)   /          о-$450,000                                                      / 0.9 
          о  -------------------Design I(b)------------- -$400,000 о  
            \                                                                                   \ 0.1 
Design  \       о -$500,000                                                          о- $400,000 
    II         \   / 0.9 
-$467,000 о   
                    \ 0.1  
                      о -$170,000 
Choose Design I(a). The design risk is -$382,500. 
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10.2. Decision tree and utility curve. A structural engineer has to choose an action from three 
alternatives a1, a2, and a3. The state of nature to cope with is the modulus of elasticity used in the design. 
Suppose the unknown states of nature are approximated discretely by θ1, θ2 and θ3. The monetary values 
of action a1 consequent to the three states of nature are estimated as $500,000, $150,000, and -$300,000, 
respectively. The corresponding values are $250,000, $200,000, and -$100,000 for action a2 and 
$200,000; $50,000, and -$50,000 for action a3. Sketch the decision tree. Assigning a utility value of +1 
unit to the highest of these monetary values and -1 unit to the lowest value, draw three utility curves to 
typically represent (a) a risk seeker, (b) a risk avoider and (c) a large organization with a balanced view 
on risk taking. In case (c) what utility should be assigned for the outcome of the second action and the 
third state of nature. 
 
Solution 
Sketch of decision tree showing actions a and, in bold, monetary values of actions in 
dollars, consequent to the true states of nature θ; о represents a node. 
                о $500,000 
          1θ  /  
            о--- 2θ --- о $150,000 
           /    \ 3θ  
         /        о -$300,000 
   /                                         о $250,000 1a
     /                                    1θ  /  
  о--------- ------------------о---2a 2θ ---о $200,000 
    \                                          \ 3θ  
      \                                          о -$100,000 
   \           о $200,000 3a
          \ 1θ  /                 
            о ---- 2θ ----- о $50,000 
              \ 3θ  
                о- -$50,000  
 
 
Sketch of three typical utility curves;- for (a) a risk seeker ■ (b) a risk avoider ● and (c) 
a large organization with a balanced view on risk taking *. 
___________________________________________________________ 
+1|                                                                                        ●| 
    |                                         ●                       *                 ■   | 
 0 ___________●___________*______________■____________________ 
    |          ●          *                ■                                                | 
-1|●                                                                                         | 
-300   -200     -100      0      100       200      300       400     500→ Units of $1,000 
 
Utility for second action and third state of nature using curve (c) is -0.5. 
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10.3. Rural water supply. A contractor has the job of providing water to communities in a rural area by 
drilling boreholes. There is uncertainty regarding the depth of the ground water level. Experience 
elsewhere suggests an assumption of either 10m or 20m. It is necessary to acquire well-casing, pumps, 
and other equipment in advance because of time factors. If an incorrect choice of depth is made, a loss 
will be incurred in monetary units as follows: 
                                                                                                Water depth 

Purchase equipment for depth 10m 20m 
10m no loss 150 units 
20m 50 units no loss 

From data of other wells in the region the following prior probabilities are assumed. 
Pr(depth 10m) = .7 
Pr(depth 20m) = .3. 
Draw the decision tree and show the expected risks. Determine the Bayes rule. Compare with the 
minimax solution. 
          A hydrogeologist is consulted on the optimum depth. The following likelihoods are assigned to the 
predictions: 
                                                                                     Actual depth 

Indicated depth 10m 20m 
10m 0.7 0.1 
20m 0.3 0.9 

Obtain the posterior probabilities of the two states of nature conditional to the predictions. Determine the 
expected risks for each prediction.  
 
Solution 
Sketch of decision tree showing water depth d for which equipment is purchased, 
estimated prior probabilities of the true states of nature θ, that is, depth of water of 10 m 
or 20 m, loss in monetary units if an incorrect decision is made and, in bold and boxed, 
expected risks in monetary units; о represents a node. 
                о 0 
          1θ  / 0.7 
    [45] о--- 2θ --- о 150 
          /      0.3    
    / 10 m                               о 50 1d
      /                                    1θ  / 0.7 
  о--------- -------------[35]-о---2d 2θ ---о 0 
              20 m                             0.3 
 
The following are given in monetary units. 
Expected risks: R( ) = 45 and R( ) =35. 1d 2d
Hence Bayes Rule is decision  2d
Minimax: For decision , risk = 150 1d
                 For decision , risk = 50 2d
Hence choose decision  2d
Posterior: 
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)|( 211 dP θ  = 1- 0.5625 = 0.4375. 
Expected risks for decision , R( ) = 0 × 0.9423 + 150 × 0.0577 = 8.7 1d 1d
                        for decision , R( ) = 50 × 0.4375 + 0 × 0.5625 = 21.9 2d 2d
Hence choose decision  2d
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10.4. Pipes and cofferdam. Find solutions to the pipes-for-water-supply (Example10.3) and cofferdam 
(Example10.4) problems using the following criteria: 
(a) Bayesian theory with uniform prior 
(b) Maximax (maximize maximum profit or minimize minimum loss) 
 
Solution 
From Example 10.3 but assuming a vague prior distribution 
(a) True states of nature:                       1θ                2θ           Expected costs 
Decisions:                                     -18.0             -3.0             -10.50 1d
                                                     -18.3            35.4                8.55 2d
                                                     -32.7            -1.4               -17.05 → optimum 3d
                                                     -33.0            37.0              + 2.00 4d
(b) Maximax                                      Benefits 
Decisions:                                      18.0              1d
                                                      18.3            2d
                                                      32.7                                             → optimum 3d
                                                      33.0    4d
From Example 10.4 but assuming a vague prior distribution 
(a) True states of nature:                     1θ                   2θ           Expected costs 
Decisions:                                       -0                -60,000             -30,000 1d
                                                     -750              -18,000              -9,375 2d
                                                     -3,000            -6,000               -4,500 3d
                                                    -7,500                  0                   -3,750→ optimum 4d
                                                  -15,000                0                     -7,500  5d
(b) Maximax        ( or minimize costs)     
Decisions:                                       -0                -60,000               → optimum 1d
                                                     -750              -18,000              | 2d
                                                     -3,000             -6,000              |  3d
                                                    -7,500                  0                  → optimum 4d
                                                  -15,000                  0                  → optimum 5d
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10.5. Water projects. Water supply schemes are planned for three new towns, X, Y and Z. Designs are 
based on projected populations 10 years hence. Future populations with approximated probabilities are as 
follows: 
                                                                          Probability 

Town  .25 .50 .25 

X 90,000 100,000 120,000 
Y 125,000 150,000 175,000 
Z 160,000 190,000 250,000 

Assume that the water demand is 100 liters per day per head of population. The cost C in dollars per 
million liters per day varies with size S of water supply scheme in liters per day as follows: 
                   C = -S/10 + 100,000 
Assume additional supply is sold to local industries at $70,000 per million liters per day and any shortfall 
is met from alternate sources at $130,000 per million liters per day. Determine the optimum sizes of 
plants at X, Y and Z on the basis of expected minimum costs and sizes given by the above forecasts of 
population. 
 
Solution 
For town X    with water supply of size S, L         9                    10                  12 610
Probabilities of 3 future populations as tabulated       0.25                 0.5                 0.25 
Initial cost C of supply = $(S/10 + 100,000), $     1.0                   1.1                  1.3 610
SizeS = 10 × L, E[C] = $1,100,000 -70,000 × 0.25 +0 × 0.50 + 260,000 × 0.25 = 
$1,147,500. 

610

SizeS = 11 × L, E[C] = $1,200,000 -140,000×0.25-70,000×0.50+130,000×0.25 =      
$ 1,162,500. 

610

SizeS = 12 × L, E[C] = $1,300,000 -210,000×0.25-140,000×0.50+0×0.25 =               
$ 1,177,500. 

610

Optimum size of supply = 10 × L and expected cost =$1,147,500 610
For town Y    with water supply of size S, L       12.5                   15                 17.5 610
Probabilities of 3 future populations as tabulated       0.25                   0.5                 0.25 
Initial cost C of supply = $(S/10 + 100,000), $     1.35                   1.6               1.85 610
Size S= 14 × L, E[C]=$1,500,000-105,000×0.25 +130,000 ×0.50+ 3.5×130,000× 
0.25 = $1,652,500. 

610

SizeS = 15 × L, E[C] = $1,600,000 -175,000×0.25-0×0.50+2.5 ×130,000×0.25 =        
$ 1,637,500. 

610

SizeS = 16 × L, E[C] = $1,700,000 -3.5×70,000×0.25-70,000×0.50+195,000×0.25 =               
$ 1,652,500. 

610

Optimum size of supply = 15 × L and expected cost =1,637,500 610
For town Z    with water supply of size S, L         16                     19                 25 610
Probabilities of 3 future populations as tabulated       0.25                   0.5                 0.25 
Initial cost C of supply = $(S/10 + 100,000), $      1.7                     2.0                 2.6 610
SizeS = 18 × L, E[C] = $1,900,000 -140,000 × 0.25 +(1×0.50+7×0.25) ×130,000 
=$2,157,500.  

610

SizeS = 19 × L, E[C] = $2,000,000 -210,000×0.25+0× 0.5 + 6×0.25 ×130,000 =        
$ 2142,500. 

610

SizeS = 20 × L, E[C] = $2,100,000 –(4× 0.25 +0.50) ×70,000+650,000×0.25 =               
$ 2,157,500. 

610

Optimum size of supply = 19 × L and expected cost =2,142,500 610
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10.6. Contractor’s utility function. Suppose the utility function of the contractor in Example10.1 is 
defined by the following pairs of utilities (in the range 0 to 100 units) and gains in units of $100,000: 

Utility Gain
100 2.30

80 1.25
60 0.90
40 0.60
20 0.50

0 0.25
 
What decision should be taken if the expected utility were to be maximized and the probabilities of 
winning either contract are equal. 
 
Solution 
Sketch of utility curve: Utility vs. Gain in $ 
100|                                                                                                              *            | 
  90|                                                                                                                            | 
  80|                                                        *                                                                  |  
  70|                                                                                                                            | 
  60|                                        *                                                                                  | 
  50|                                                                                                                            | 
  40|                               *                                                                                           | 
  30|                                                                                                                            | 
  20|                   *                                                                                                       | 
  10|                                                                                                                            | 
    0|          *                                                                                                                | 
     0               50,000             100,000             150,000             200,000              250,000 
For action     R(1d 1θ , ) = -241,000          R(1d 2θ , ) = -38,000  1d
Expected utility = E[U]= 0.5×(99+6) = 52.5. 
 For action     R(2d 1θ , ) = -55,000     R(2d 2θ , ) = 42,000      2d
Expected utility = E[U]= 0.5×(28+7) = 17.5 
Take decision  to maximize the expected utility. 1d
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10.7. Earth dam. Two designs are submitted for an earth dam. Design I is based on locally available 
materials, and its implementation is estimated to cost $1,000,000. For Design II 5,000 m3 of a particular 
type of clay is required. The engineer’s estimated pdf of the availability X of the clayey material in the 
vicinity of the dam is uniform (0, 7000 m3). The estimated cost of implementing Design II is $650,000; 
however the average cost of hauling any extra material from outside the area at $100 per m3 should be 
added. Which design should be accepted on the basis of expected least cost? What decision should be 
taken if the engineer’s pdf for X is  

                         f x xX ( ) exp( / )= −
1

3500
3500 ? 

 
Solution 
Design I       Cost = $1,000,000     based on local materials 
Design II       Cost = $ 650,000     based on  5,000 m3 of a clayey material 
(a) Uniform(0, 7000 m3) distribution assumed for the pdf of the availability X of the 
clayey material in the vicinity of the dam 

C = cost of extra material = [ ] 571,178$2/5000
7000
100

7000
)5000(100 5000

0
2

5000

0

=−=
−

∫ xxdxx  

Total cost of Design II = $650,000 + $178,591 = $828,571. 
(b) Simple exponential distribution with parameter 1/3500 assumed for the pdf of the 
availability X of the clayey material in the vicinity of the dam 

C = cost of extra material = dxex x 3500/
5000

0 3500
)5000(100 −∫

−  

dxe x 3500/
5000

05.3
500 −∫= dxex x 3500/

5000

035
1 −∫−  

I
35
1.111000500 35/5 −⎥⎦

⎤
⎢⎣
⎡ −×=

e
 

Where I = [ ]3500/3500 xxe− dxe x 3500/
5000

0

3500 −∫+  

= 5..3/5

50003500
e

×− + ⎥⎦
⎤

⎢⎣
⎡ − 5..3/5

2 113500
e

 

C = 150×1000+ =233,878. 7/10/1000350 e×
Total cost of Design II = $650,000 + $233,878 = $888,878. 
 
The  answer is Design II in each case. 
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10.8. Soil strengths with uniform prior. In Example 10.11, the engineer decided that the prior 
distribution of the soil strength is N(85,000; 11,0002 ). Determine the posterior distribution and the 
optimum design strength assuming that the prior distribution is uniform (75,000; 95,000). 
 
Solution 
From Eqs. (10.2.17) and (10.2.18) and the ensuing discussion, 
the posterior mean 1μ  = x  = 70,000  and the  2m/N
posterior variance  =  = .  2

1σ n/2σ 3/000,15 2

That is, the posterior distribution N(70,000, ). 3/000,15 2

For the given constants, b = 0.8, c= 90,000 and k = 0.00001, the optimum design 
strength 

2
11 2

1ln1 σμ ××−⎟
⎠
⎞

⎜
⎝
⎛+= k

ck
b

k
a  

   
3
000,1500001.0

2
1

00001.090000
8.0ln

00001.0
170000

2

××−⎟
⎠
⎞

⎜
⎝
⎛

×
+=  

= 70,000 – 11,778 - 375 = 57,847  2m/N
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10.9. Loss functions. It was shown that in the case of squared loss function, the Bayes estimator is the 
mean value of the state of nature θ. What estimator is obtained if the loss function is (a) constant and (b) 
linear with respect to θ ? 
 
Solution 
(a) Constant loss function. Let us assume that 
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|~
=

θ
θ
d
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Therefore, the Bayes estimator for a constant loss function is the posterior mode of θ. 
(b) Linear loss function. Let us assume that the loss function is l . 
Then 

|~|),~( θθθθ −= c

( ) [ ] ∫∫ −=== θθθθθθθθθθθ dxfcdxfllEdR )|(|~|)|(),~(),~(,~  is the associated risk. 
Simple probabilistic considerations would immediately indicate that the above 
expression for  is minimized by = ),~( dR θ θ~ median of θ, which corresponds to the 
Bayes estimator of θ. We can show this as follows: 
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That is, θ~ = median of θ. 
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10.10. Traffic rates. In Example 10.10 ten exponentially distributed waiting times between successive 
vehicles are given.. Using this data, formulate and apply a likelihood ratio test in which the null 
hypothesis is that the parameter is 1 minute and the alternative hypothesis is that it is 0.9 minute, if (a) the 
prior probabilities are 0.4 and 0.6, respectively, (b) the prior probabilities are unknown. Show how the 
Type I and II errors of the test, α and β respectively, can be calculated. 
 
Solution 
NH: exponential parameter λ = 0θ  =1.0 minute 
AH: exponential parameter λ = 1θ  = 0.9 minute 
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(a) The prior probability for value 0θ  = 1.0 min of the exponential parameter is  = 
0.4; The prior probability for value

0p

1θ  = 0.9 min of the exponential parameter is  = 
0.6 

1p

The critical region is limited by
1
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1
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From the foregoing calculations
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Therefore we reject the NH. 

 (b) For the uniform prior distribution,  =  =  0.5, Then 0p 1p
0

1

p
p

>  = 1 

1

0

L
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0

1

p
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> . Therefore we not reject the NH. 

(c) Under the NH, ~ gamma (n, ∑
=

n

i
ix

1
0θ ) ~ /(22

2nχ 0θ ) 

This gives a procedure to calculate the probabilities α and β of the Type I and II errors. 
 
 
 
 
10.11. Traffic rates. In Example 10.10 estimate the Poisson parameter λ using the posterior mean. 
Compare with the moments or ML estimator. What is the significance of the difference? 
 
Solution 

For gamma, 005.1
45.10
5.10

2.1025.0
105.0

==
+
+

=
+
+

=
xS

nrx
α

λ  

From sample data of intervals between vehicles  = 10.2 and n = 10 Hence xS
x =10.2/10= 1.02 

For exponential,  = λ̂ λ~  = 1/ x  = 1/1.02 = 0.980. 
The difference is on account of the prior information. 
 
 

243



10.12. Ecuador rainfalls. From the data used in Example 10.13 choose some series which meet the 
model requirements more closely and repeat the exercise of comparing the past averages with the James-
Stein estimators for predicting the future averages (see Table E10.2). The lag-l serial correlation that are l 
units apart in time) may be estimated, say, for l = 1, 2 and 3, as follows: 

                         r
x x x x

x x
l

t t l
t

n l

t
t

n=
− −

−

+
=

−

=

∑

∑

( )(

( ) )

1

2

1

)
 

In an independent time series the  have an approximate N(0, 1/n) distribution. Are the 
conclusions from the reduced data set substantially different? 

r ll , ≠ 0

 
Solution 
We follow the same procedure as in Example 10.14. The conclusions are the same. 
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