CHAPTER 5 Answers to Problems

Problem 5.1.

Genotype	Observed	Expected	Chi-square
$150 / 150$	9	$\left(\hat{p}^{2} N=8.27\right)$	0.64
$150 / 154$	5	$(2 \hat{p} \hat{q} N=6.47)$	0.33
$154 / 154$	2	$\left(\hat{q}^{2} N=1.26\right)$	0.43
Total	16	(16.0)	0.83

Estimated frequency of $A=\hat{p}=[(2 \mathrm{x} 9)+5] / 32=0.719$

Estimated frequency of $A^{\prime}=\hat{q}=[5+(2 \times 2)] / 32=0.281$

Degrees of freedom = 1
The calculated X^{2} of 0.83 is less than the critical value for $\mathrm{P}<0.05$ with 1 d.f. of 3.84 (Table 5.1). Therefore we would accept the null hypothesis that the sampled population was in Hardy-Weinberg proportions at this locus.

Problem 5.2. Chromosome 2 is out of Hardy-Weinberg proportions in both populations because the chi-square values are greater than the critical value of 3.84 with 1 df . Chromosome 9 is in Hardy-Weinberg proportions in both populations ($\mathrm{P}>0.05$).

	Chromosome 2					Chromosome 9				
	$B B$	$S B$	$S S$	$\mathrm{f}(B)$	X^{2}	$C C$	$C R$	$R R$	$\mathrm{f}(C)$	X^{2}
Wild born	51	0	41	0.55	92.00	67	22	3	0.85	0.49
	(28.3)	(45.5)	(18.3)			(66.1)	(23.7)	(2.1)		
Zoo born	90	44	82	0.52	75.67	71	34	3	0.81	0.20
	(58.1)	(107.9)	(50.1)			(71.7)	(32.6)	(3.7)		

Problem 5.3.

| | | | | | | Allele frequencies | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Locus | 11 | 12 | 22 | 13 | 23 | 33 | 1 | 2 | 3 | X^{2} | df | Prob | H_{o} | H_{e} |
| GPI-2 | 81 | 2 | 0 | -- | -- | -- | 0.988 | 0.012 | 0.000 | 0.01 | 1 | $\mathrm{P}>0.05$ | 0.024 | 0.024 |
| LDH-A | 77 | 6 | 0 | -- | -- | -- | 0.964 | 0.036 | -- | 0.12 | 1 | $\mathrm{P}>0.05$ | 0.072 | 0.070 |
| PGD | 7 | 30 | 39 | 3 | 1 | 3 | 0.283 | 0.657 | 0.060 | 29.24 | 3 | $\mathrm{P}<0.001$ | 0.410 | 0.485 |
| PGM-1 | 55 | 26 | 2 | -- | -- | -- | 0.819 | 0.181 | -- | 0.28 | 1 | $\mathrm{P}>0.05$ | 0.313 | 0.296 |
| TPI-1 | 67 | 16 | 0 | -- | -- | -- | 0.904 | 0.096 | -- | 0.94 | 1 | $\mathrm{P}>0.05$ | 0.193 | 0.174 |
| 29 loci | 83 | -- | -- | -- | -- | -- | 1.000 | -- | -- | -- | -- | -- | 0.000 | 0.000 |

$$
P=5 / 34=0.15
$$

$$
H_{o}=\frac{(0.024+0.072+0.410+0.313+0.193)}{34}=0.030
$$

$$
H_{e}=\frac{(0.024+0.070+0.485+0.296+0.174)}{34}=0.031
$$

Problem 5.4. The simplest model of inheritance is that pale is recessive to dark because all progeny from pale X pale matings are pale. Let’s call the dominant allele D, and the recessive allele d.

We can estimate the frequency of the d allele using expression 5.5 where N_{22} is the number of pale progeny and N is the total number of progeny:

$$
\hat{q}=\sqrt{\frac{N_{22}}{N}}=\sqrt{\frac{106}{106+326}}=0.495
$$

And therefore, $\hat{p}=(1-\hat{q})=0.505$.

Three independent events must occur simultaneously for a pale chick to be produced by a dark X dark mating. First, the mother must be heterozygous (not $D D$), second the father must be heterozygous (not $D D$), and finally both heterozygous parents must pass on the d allele.

Some dark parents are heterozygous $D d$ and some are homozygous $D D$. The proportion of dark individuals that are expected to be heterozygous with this model is the expected frequency of heterozygotes ($2 p q$) divided by the total expected frequency of dark individuals $\left(p^{2}+2 p q\right)$:

$$
\frac{2 p q}{p^{2}+2 p q}=\frac{2(0.505)(0.495)}{(0.505)^{2}+2(0.505)(0.495)}=\frac{0.500}{0.255+0.500}=0.662
$$

That is, nearly two-thirds of all dark individuals are expected to be heterozygous with this model of inheritance if the population is in Hardy-Weinberg proportions.

If both parents are heterozygous ($D d$), then we expect one-quarter (0.25) of all progeny to be pale ($d d$) based upon Mendelian inheritance.

The probability that all three of these events occurs is the product of their independent probabilities:
(Prob mother $D d$) x (Prob father $D d$) x (Prob progeny $d d$ from $D d \times D d$)

$$
=0.662 \times 0.662 \times 0.25=0.110
$$

Therefore, we expected 29.1 (0.110×265) of the 265 progeny from dark x dark matings to be pale. We cannot use our standard chi-square test for fit to Hardy-Weinberg proportions in this situation. Nevertheless, the observed (25) and expected (29.1) numbers of pale progeny from matings between dark parents are in close agreement.

Problem 5.5.

(a)

Locus 5 freq(108)=0.673 chi-sq=1.23, 1 df NS, accept null hypothesis
Locus 82-2 freq(136)=0.753 chi-sq=0.84, 1 df NS, accept null hypothesis

Locus Fu2 freq(210)=0.707 chi-sq=1.43, 3 df NS, accept null hypothesis freq(222) $=0.173$ freq(228) $=0.129$
(b)

Locus	H_{e} historical	H_{e} extant
5	0.39	0.44
$82-2$	0.46	0.37
Fu2	0.90	0.45
13	0	0
31	0.05	0
$46-1$	0	0
89	0.04	0
107	0.68	0
140	0	0
Fu1	0.45	0
Mean	0.30	0.13

Problem 5.6. (a) Let freq $(a)=q$

$$
\begin{aligned}
& \hat{q}^{2}=7 / 50=0.14 \\
& \hat{q}=\sqrt{0.14}=0.37 \\
& \hat{p}=1-\hat{q}=0.63
\end{aligned}
$$

(b) Two independent events must occur simultaneously for a white bear to be produced by a black X white mating. First, the black parent must be heterozygous, and, second, this heterozygous parent must pass on the a allele.

The proportion of black individuals that are expected to be heterozygous is the expected frequency of heterozygotes ($2 p q$) divided by the total expected frequency of black individuals ($p^{2}+2 p q$):

$$
\frac{2 p q}{p^{2}+2 p q}=\frac{2(0.63)(0.37)}{(0.63)^{2}+2(0.63)(0.37)}=\frac{0.47}{0.40+0.47}=0.54
$$

We expect a heterozygous individual to transmit the recessive allele one-half of the time based upon Mendelian expectations.

The probability both these events occur is the product of their independent probabilities:

$$
(0.54)(0.50)=0.27
$$

Therefore, there is a 27% probability that the first progeny born to a mating between a black and a white bear this population will be white.

Problem 5.7. The simplest (and best) estimate of the frequency of the r allele is simply the frequency of black females since females will be hemizygous at this locus ($R \mathrm{~W}$ or $r \mathrm{~W})$. Therefore, $q=0.802$. We therefore expect q^{2} or 64.3% of the males to be black; this is very close to the observed proportion of 68.3%. Thus, the observed frequencies are compatible with the proposed model.

Problem 5.8. Estimated frequency of the null allele is 0.215 .

Problem 5.9. These data would suggest that there is something unusual about this population sample that produced a tendency for an excess of heterozygotes. We will see in Section 6.6 that there is a tendency for an excess of heterozygotes in small populations.

