Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2009; Volume 197, Supplement 675
Joint meeting of The Slovenian Physiological Society, The Austrian Physiological Society and The Federation of European Physiological Societies
11/12/2009-11/15/2009
Ljubljana, Slovenia


MOLECULAR MECHANISMS OF THE FAT AND MUSCLE CROSSTALK
Abstract number: L125

Eckel1 Juergen

1German Diabetes Center, Duesseldorf, Germany

Chemerin is a newly described adipokine that affects adipogenesis and glucose homeostasis in adipocytes and increases with BMI in humans. This study aimed at investigating the regulation of chemerin release and its effects on glucose metabolism in skeletal muscle cells.

Human skeletal muscle cells were treated with chemerin to study its effects on insulin signalling, glucose uptake and activation of stress kinases. The release of chemerin was analyzed in human adipocytes and adipose tissue explants from lean and obese patients.

Chemerin induces insulin resistance in human skeletal muscle cells at the level of Akt and GSK3 phosphorylation and glucose uptake. Furthermore, chemerin activates p38 MAPK, NF-kB and ERK1/2. Inhibition of ERK partially prevents chemerin-induced insulin resistance pointing to participation of this pathway in chemerin action. Human adipocytes express chemerin and CMKLR1 differentiation-dependently. Fully differentiated fat cells secrete chemerin (15 ng/ml from 106 cells). This process is slightly but significantly increased by TNFa and markedly inhibited by over 80 % by PPARg activation. Adipose tissue explants from obese patients are characterized by significantly higher chemerin secretion as compared to lean controls (21 ng and 8 ng from 107 cells, respectively). Chemerin release is correlated with BMI, waist-hip-ratio and adipocyte volume. Furthermore, higher chemerin release is associated with insulin resistance at the level of lipogenesis and insulin-induced antilipolysis in adipocytes.

Adipocyte-derived secretion of chemerin may be involved in the negative crosstalk between adipose tissue and skeletal muscle contributing to the negative relationship between obesity and insulin sensitivity. A novel role might be assigned to chemerin in glucose and lipid metabolism in both adipose tissue and skeletal muscle.

To cite this abstract, please use the following information:
Acta Physiologica 2009; Volume 197, Supplement 675 :L125

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE