Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2007; Volume 191, Supplement 658
Joint Meeting of The Slovak Physiological Society, The Physiological Society and The Federation of European Physiological Societies
9/11/2007-9/14/2007
Bratislava, Slovakia


CALCIUM SIGNALLING AND INTEGRATION IN NEURONAL-GLIAL NETWORKS
Abstract number: STH09-43

Verkhratsky1 A.

1Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom [email protected]

Integration in the nervous system is achieved by signal processing within dynamic functional ensembles formed by highly complex neuronal-glial cellular circuits. The interactions between electrically excitable neuronal networks and electrically non-excitable glial syncytium occur through either chemical transmission, which involves the release of transmitters from presynaptic terminals of astroglial cells, or via direct intercellular contacts, gap junctions. Calcium ions act as a universal intracellular signalling system, which controls many aspects of neuronal-glial communications. In neurones, calcium signalling events regulate the exocytosis of neurotransmitters and establish the link between excitation of postsynaptic cells and integrative intracellular events, which control synaptic strength, expression of genes and memory function. In glial cells metabotropic receptor mediated release of calcium ions from the intracellular endoplasmic reticulum calcium store provide specific form of glial excitability. Glial calcium signals ultimately result in vesicular secretion of "glio"transmitters, which affect neuronal networks thus closing the glial-neuronal circuits. Cellular signalling through calcium ions therefore can be regarded as a molecular mechanism of integration in the nervous system.

To cite this abstract, please use the following information:
Acta Physiologica 2007; Volume 191, Supplement 658 :STH09-43

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE