
The Bayesian choice of crop variety and

fertilizer dose

Chris M. Theobald

University of Edinburgh, UK

and Mike Talbot

Biomathematics and Statistics Scotland, Edinburgh, UK

[Received April 2000. Revised June 2001]

Summary. Recent contributions to the theory of optimizing fertilizer doses in agricultural crop
production have introduced Bayesian ideas to incorporate information on crop yield from several
environments and on soil nutrients from a soil test, but they have not used a fully Bayesian
formulation. We present such a formulation and demonstrate how the resulting Bayes decision
procedure can be evaluated in practice by using Markov chain Monte Carlo methods. The approach
incorporates expert knowledge of the crop and of regional and local soil conditions and allows a
choice of crop variety as well as of fertilizer level. Alternative dose±response functions are ex-
pressed in terms of a common interpretable set of parameters to facilitate model comparisons and
the speci®cation of prior distributions. The approach is illustrated with a set of yield data from spring
barley nitrogen±response trials and is found to be robust to changes in the dose±response function
and the prior distribution for indigenous soil nitrogen.
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1. Introduction

1.1. Background
In agriculture, both economic and environmental considerations demand that chemical
fertilizers should be applied only in quantities which are strictly justi®ed. Even if environ-
mental concerns are ignored, the use of some fertilizers, such as nitrogen, to increase crop
yields shows diminishing and even negative returns at high dose levels, so the extra bene®t
from applying more fertilizer may be outweighed by the additional cost. The choice of how
much fertilizer to use for a crop depends on the expected return at each dose level, on the cost
of the fertilizer and on the amount of nutrient that is already in the soil.

To provide data on the expected gains from applying a fertilizer, trials are carried out
using di�erent dose levels, and these trials are often repeated over locations and/or years. The
usual approach to determining the optimum level (as described, for example, in France and
Thornley (1984)) is as follows:

(a) to specify a parametric dose±response model for the yield;
(b) to derive (as a function of the parameters) the dose level which maximizes the expected

value of the crop minus the cost of applying fertilizer;
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(c) to substitute parameter estimates based on the trial data into the expression for the
optimum level.

Some reasons why this approach may be incomplete are as follows.

(i) The `optimum' level determined in this way does not take account of sampling
variation in the parameter estimates. We may investigate the likely cost of using
estimates rather than true parameter values (as in Wallach and Loisel (1994)), but this
does not necessarily lead to an improved choice of level.

(ii) To allow for (and to quantify) the e�ects of di�erences between locations, infor-
mation from separate trials needs to be combined via a hierarchical dose±response
model (Wallach, 1995a, b) rather than pooled as if the same parameter values
applied to all environments.

(iii) There may also be information about the target environment which should in¯uence
the choice of fertilizer level, such as the result of a test of the amounts of nutrients
already in the soil and crop yields in previous seasons. Babcock et al. (1996) derived a
posterior distribution for soil nitrate based on data from a soil test and used this to
estimate the optimum level by assuming a linear-plus-plateau dose±response function.
Wallach (1995b) included a covariate, the clay fraction for each location, in a hier-
archical model.

The present paper proposes a decision theory framework for fertilizer optimization which
includes hierarchical modelling of trial data and the incorporation of information on soil
nutrients in the target environment. It also addresses the following inadequacies of the
conventional approach to this problem.

(iv) Information may be available on the responses of individual crop varieties. If the
varieties have been grown in the same environments then it is e�cient to analyse the
data on all the varieties together.

(v) There may be a choice of the variety to be grown as well as of the fertilizer level to be
applied.

(vi) Expert knowledge of the crop may indicate likely parameter values.

1.2. Application of Bayesian decision theory
Suppose that x

*
and y

*
denote the fertilizer level and the resulting yield (per unit area) for a

particular variety grown in a target environment, and that the unit cost of the fertilizer and the
value of a unit of the crop are denoted by c and p, so that the fertilizer cost and crop value for unit
area are respectively cx

*
and py

*
. The values of c and p are known approximately when the

choice of level ismade. Itwould be straightforward to generalize the cost of fertilizer to allow for
a non-linear dependence on x

*
(such as a discontinuity at 0 representing the saving from not

applying any fertilizer); other possible generalizations are to a vector of levels of di�erent
nutrients or to a single nutrient to be applied on di�erent dates in the growing season.

Bayesian decision theory (as described for example in DeGroot (1970) or Cox and Hinkley
(1974)) o�ers a solution to the determination of a genuine optimum fertilizer level (or
combination of variety and level) given the trial data and the choices of parametric model
and prior distribution. Under this prescription, we must do as follows:

(a) de®ne the utility of applying level x
*

at the target location: an obvious (but not
automatic) choice is the crop value minus the cost of fertilizer for unit area, i.e.
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u(x
*
, y
*
) � py

*
ÿ cx

*
; (1)

(b) specify a prior distribution for the model parameters which re¯ects knowledge of the
dose±response relationship and of the target environment;

(c) derive the posterior distribution of the parameters given the set D of trial data;
(d) calculate the posterior expected utility E{u(x

*
, y

*
)|x

*
, D} at each of the possible fer-

tilizer levels;
(e) choose the level giving the highest posterior expected utility.

If a choice is to be made of the variety to be sown as well as of the fertilizer level then the
calculation in (d) must be carried out for each variety and the overall optimum combination
found (taking account of any di�erences between varieties in the cost of seed and the price
commanded for the crop).

If h denotes the vector of parameters used in the model then calculating the posterior
expected utilities is not achieved by replacing h by an estimate, even a Bayesian estimate, in a
formula for the expected utility given h. In this respect our prescription extends the partly
Bayesian approaches of Wallach (1995a, b) and Babcock et al. (1996) in which point estim-
ates are required for some parameters.

Also the future crop yield would usually be assumed independent of the trial data D given
h. If this assumption is made, the posterior expected utility for equation (1) equals

p E{E(y
*
j x
*
, h)jD}ÿ cx

*
: (2)

The inner expectation E(y
*
| x
*
, h) in expression (2) is the dose±response function: in a hierar-

chical model for the trial and future yields, this would not depend on the parameters speci®c
to other locations. The outer expectation is over the posterior distribution of h. The objective
function of Wallach and Loisel (1994) is E(y

*
| x
*
, h) ) cx

*
/p in our notation.

Section 2 of this paper concerns the speci®cation and ®tting of dose±response models for
past and future crop yields. Section 3 applies the ideas of Sections 1 and 2 by using data on
the yield response of spring barley to nitrogen fertilizer and also examines the robustness of
the resulting choice of level to changes in the dose±response function and the prior distri-
bution for indigenous nitrogen. Section 4 discusses the desirability and feasibility of the
Bayesian approach. The data which are analysed in this paper can be obtained from

http://www.blackwellpublishers.co.uk/rss/

2. Dose±response models for a single nutrient

We consider here dose±response models for a single nutrient and ®rst distinguish a dose±
response function, de®ning the possible dependence of expected yield on fertilizer level for a
particular variety in an individual environment, from a dose±response model, which also
describes other aspects of the relationships between the crop yields, including those between
the parameters of the dose±response functions for di�erent environments and varieties.

The following considerations are relevant to the choice of dose±response models under a
Bayesian approach to fertilizer optimization.

(a) The dose±response functions should be su�ciently ¯exible to give a good represen-
tation of the dependence of crop yield on fertilizer level. For example, Boyd et al.
(1976) found that strictly increasing functions, such as the exponential and inverse
linear functions, tend to give a poor ®t to data on spring barley. Quadratic functions
(which are commonly used for fertilizer optimization) consistently overestimate the
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fertilizer level for maximum yield: more realistic functions show a much more gradual
change in expected yield above the turning-point than below it. Cerrato and Blackmer
(1990) pointed out the invalidity of the quadratic model in the context of maize trials.
Boyd et al. (1976) concluded that the model with two straight lines and the inverse
quadratic function give the best ®t. After examining a large set of trials, Sparrow
(1979) recommended the inverse quadratic and the inverse linear functions with a
descending linear function over the model with two straight lines.

(b) The models should be hierarchical to incorporate information from several environ-
ments, preferably relating to several locations and years. If e�ects for the environments
are modelled as a random sample from a normal distribution, this variation should be
on a suitable scale.

(c) Model parameters should be easily interpretable to simplify the speci®cation of prior
distributions.

2.1. Dose±response functions
We consider below three dose±response functions relating the expected yield to the dose x of
a single fertilizer which allow a rapid increase to a maximum and a more gradual (or no)
decrease beyond the turning-point. One, the linear-plus-plateau function, is speci®ed by three
parameters: the others require four. To facilitate the speci®cation of prior distributionsÐand
comparisons between the modelsÐwe express them all in terms of parameters which are
intended to be easy to interpret. Pike (1984) has suggested a similar set of parameters for the
inverse quadratic dose±response function.

The ®rst of these parameters, representing the amount of indigenous nutrient per unit
area, requires an assumption of additivity between the nutrient that is already in the soil and
that which is added, so that it is meaningful to consider the total nutrient level after
application: the de®nition might be easily generalized to allow for a conversion (possibly
speci®c to the crop) between the values of indigenous and applied nutrient. We assume that
the expected yield is 0 when the total nutrient level is 0, but positive above this value (except
possibly at values well beyond the range of levels that are used in practice).

One advantage of this choice of parameter is that we may have information from a soil test
on the indigenous nutrient level. As in Babcock et al. (1996), the posterior distribution from a
measurement model of the level at the target environment can be used as the prior distri-
bution in the dose±response model.

The ®rst three parameters are as follows:

(a) a is the amount of the nutrient that is already in the soil, so the total nutrient level is
x+a;

(b) c is the maximum expected yield, achieved at x � d ) a if the function has a turning-
point and otherwise at 1;

(c) d is the total nutrient level giving the maximum expected yield, for functions with a
turning-point.

The choice of a fourth parameterÐwhere this is requiredÐis less obvious. For the inverse
quadratic function, Pike (1984) suggested using as a parameter the slope b, say, at )a, i.e. when
the total nutrient level is 0. We have found that the speci®cation of a genuine prior distribution
for b is di�cult because this part of the dose±response function is outside the experience of the
expert. This parameter can also have a high (negative) posterior correlation with a. It may
instead be easier to consider the likely reductions in yield from using total nutrient levels which
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are close to d, say 10 or 20 kg below d. For dose±response functions which are approximately
quadratic around the maximum, such as the inverse quadratic and inverse linear functions
consideredbelow, this reduction in yield is roughly proportional to the curvature of the function
at the maximum. Thus for our fourth interpretable parameter we assume that

(d) e is minus the second derivative of the dose±response function at its maximum.

We consider the following three dose±response functions, expressed in terms of the above
parameters.

The linear-plus-plateau, three-parameter, curve comprises a linearly increasing portion and
a constant portion, expressible as

E( y j x, a, c, d) � c(x� a)=d (0 < xOdÿ a),
c (xPdÿ a).

�
(3)

The inverse quadratic function, recommended by Nelder (1966), Boyd et al. (1976) and
Sparrow (1979), is the ratio of a linear function of x and a quadratic function, and is
expressible as

E(y j x, a, c, d, e) � 2c2(x� a)

2c(x� a)� de(x� aÿ d)2
(x > 0): (4)

The inverse linear with descending linear function, suggested by Greenwood et al. (1971)
and also recommended by Sparrow (1979), is the sum of an inverse linear function and a
descending linear function, which may be combined as

E(y j x, a, c, d, e) � c(x� a){2cÿ de(x� aÿ d)}

2c(x� a)ÿ d2e(x� aÿ d)
(x > 0): (5)

Other dose±response functions are in use which are not so easily expressed in terms of the
set of parameters de®ned above, e.g. an exponential function with an upper asymptote minus
a multiple of x, which might be written as

E(y j x, a, f, g, j) � f[1ÿ exp{ÿ g(x� a)}]ÿ j(x� a) (x > 0):

Also, the above argument for using the curvature at the maximum as a parameter obviously
does not apply to the function comprising two straight lines.

2.2. Specifying and ®tting hierarchical models
We regard the vector of parameters, [a c d] or [a c d e], for any of the above dose±response
functions as speci®c to a particular environment, and we analyse the data recorded for the
various environments by using a hierarchical random-e�ects model. Under such a model,
e�ects for the trial and target environments are treated as arising from a common
distribution. If there is a year ´ location structure in the data then factors for years and
locations may instead be included in the random-e�ects model. If several varieties are
considered then c, d and e also depend on the variety.

We follow modern practice by representing our hierarchical models by using directed
acyclic graphs and ®tting the models by using Markov chain Monte Carlo (MCMC)
methods. See Gilks et al. (1996) and Brooks (1998) for introductions to these methods. Fig. 1
shows such a graph for the linear-plus-plateau dose±response function given by equation (3)
when yields yjl have been achieved at fertilizer levels xjl in environment j. The nodes of the
graph (represented by circles) correspond to the experimental fertilizer levels and yield data,
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the unknown parameters in the model and the possible future fertilizer levels and expected
yields. Nodes within a rectangle are repeated over the levels of a factor, such as the
environment classi®cation. Full and broken arrows indicate stochastic and deterministic
dependence respectively between nodes. Thus the distribution of yjl is de®ned in terms of its
expectation ljl and standard deviation ry, and the value of ljl is determined from xjl, aj, cj and
dj. Higher level nodes pa, pc and pd, each comprising one or more parameters, de®ne the
distributions from which the aj, cj and dj are drawn.

The right-hand side of Fig. 1 includes `future' nodes corresponding to the target location.
In these nodes, index j for environments is replaced by an asterisk, whereas index l for
experimental fertilizer levels is replaced by an index m de®ning the possible levels x

*m

which might be used at this location. The value (a
*
, c
*
, d
*
) of (a, c, d) for the target location

is assumed to be drawn from the same distribution as each of the (aj, cj, dj). To make
predictions of future yields (rather than expected yields) we can add nodes y

*m with
expectations l

*m and standard deviation ry.
For the four-parameter dose±response functions (4) or (5), additional nodes for the ej and

e
*
(and their parents) need to be included.
If several varieties are under consideration, we also require a variety factor in the graph

with index i, say, and we seek to model recorded yields yijl corresponding to fertilizer levels xijl
along with future expected yields li*m

and future yields yi*m
. In the above formulation, the

parameters aj relate only to the environments, but cj and dj (and ej if required) need to be
generalized to cij etc. to allow dependence on varieties, and the expected yields lijl then
depend on xijl, aj, cij, dij and any eij.

How the higher level nodes pc, pd and pe should be generalized when there is more than
one variety depends on what we wish to assume about the e�ects of the varieties and their
interaction with environments. We might, for example, assume that the cij can be split into
additive variety and environment e�ects cvi and cej respectively, with a similar decomposition
for the dij (and the eij if included in the model) so that

cij � cvi � cej,

dij � dvi � dej,

eij � evi � eej:

9>=>; (6)

Fig. 1. Directed acyclic graph for applying model (3) in trial and target environments
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Fig. 2 shows a possible expansion of the graph in Fig. 1 to include data on several
varieties. It incorporates the additive model (6) for cij and dij, and makes the same prior
assumptions about the performance of all the varieties, since each of the sequences of
parameters {cvi}, {cej} etc. is assumed to be sampled from a common distribution. If the
distributions of the aj, cvi, cej etc. are taken to be normal (conditional on their parent nodes)
then their expectations and variances need to be speci®ed. The common prior expectation of
the cij under the additivity assumption is the sum of those for the cvi and cej, so only one of
their prior expectations needs to be assumed non-zero: we take these expectations to equal a
common value lcv and 0 respectively. A similar argument applies to the dij (and to any eij).

Note that the nodes for the expected yields at the target location are connected directly to
the variety components cvi and dvi but not to the environmental components cej etc.: the
variety to be grown in the target environment is one of those used in the trials, but the
environment is assumed to be new.

Other elaborations of the graph may be useful, such as the following:

(a) including nodes for soil test results (as parents of the corresponding a-nodes);
(b) incorporating previous yields at the target location (as in Wallach (1995a)) by adding

nodes for them or by including the target location as one of the trial locations;
(c) including nodes for future yields, so that their posterior predictive distributions can be

estimated;
(d) allowing the utility to be non-linear in yield to re¯ect the farmer's aversion to risk

(Anderson et al., 1977);
(e) including dependence on covariate values for di�erent environments;
(f) allowing the standard deviation of the yield to depend on one or more of the environ-

ment, the variety and the fertilizer level.

Fig. 2. Directed acyclic graph for applying model (3) with assumption (6) to several varieties in trial and target
environments
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We use the WinBUGS program (Spiegelhalter et al., 1999) to ®t our models to the yield
data and to evaluate posterior distributions and expectations for any possible fertilizer level
given the yield data. This program, which is freely available from

http://www.mrc-bsu.cam.ac.uk/bugs,

allows models to be speci®ed by using a directed acyclic graph and selects and implements an
appropriate MCMC method. It provides summary statistics and kernel density estimates of
probability density functions for each node; the inclusion of nodes for the target location
allows the calculation of posterior predictive distributions, posterior expected yields and
hence posterior expected utilities for the possible fertilizer levels.

3. An example

Table 1 shows the grain yields (at 15% moisture content) of three varieties of spring barley
(Hordeum vulgare L.), each grown with ®ve levels of nitrogen fertilizer in two successive years
at ®ve trial centres in the Grampian region of north-east Scotland. Only seven of the
10 possible year ´ location combinations were used, but complete data were recorded for
these. The yields show a substantial variation between the year ´ location combinations but
suggest that variety Georgie tends to give the highest yields except at low nitrogen levels,
where Sundance may be superior. However, Sundance and Midas are more suitable for
malting than Georgie and may therefore command a higher market price.

Table 1. Grain yields of three spring barley varieties at ®ve trial centres

Variety Centre Yields (tonnes ha)1) for the following applied nitrogen levels (kg ha)1) and years:

0 35 62 90 125

1976 1977 1976 1977 1976 1977 1976 1977 1976 1977

Georgie 1 4.206 5.710 4.586 6.014 5.075 6.609 5.795 5.527 6.009 4.249
2 Ð 3.860 Ð 4.020 Ð 4.980 Ð 5.035 Ð 5.690
3 4.785 Ð 5.159 Ð 5.791 Ð 5.681 Ð 5.594 Ð
4 4.501 Ð 4.888 Ð 5.463 Ð 5.262 Ð 5.588 Ð
5 5.625 3.164 5.897 4.097 6.785 4.769 6.823 5.113 7.219 5.365

Mean 4.55 4.95 5.64 5.61 5.67

Midas 1 4.622 5.015 4.494 6.057 5.370 6.013 5.266 6.192 5.234 5.583
2 Ð 3.370 Ð 4.165 Ð 4.835 Ð 5.485 Ð 6.125
3 4.103 Ð 4.467 Ð 4.372 Ð 4.666 Ð 4.415 Ð
4 4.217 Ð 5.079 Ð 4.884 Ð 4.928 Ð 5.099 Ð
5 5.121 3.381 5.803 4.293 6.211 4.555 6.410 5.213 6.828 5.780

Mean 4.26 4.91 5.18 5.45 5.58

Sundance 1 4.666 5.613 4.490 5.889 5.548 5.524 5.627 4.361 5.600 3.961
2 Ð 3.690 Ð 4.170 Ð 4.790 Ð 5.180 Ð 5.595
3 4.378 Ð 4.987 Ð 5.319 Ð 5.183 Ð 5.170 Ð
4 4.369 Ð 4.872 Ð 5.197 Ð 5.118 Ð 5.535 Ð
5 5.993 3.273 6.124 4.122 6.720 4.484 6.913 5.234 7.088 5.979

Mean 4.57 4.95 5.37 5.37 5.56

30 C. M. Theobald and M. Talbot



3.1. Models and prior distributions
We evaluate and compare the posterior expected utilities corresponding to the three dose±
response functions given by equations (3)±(5), carrying out the necessary calculations by
using the WinBUGS program. We treat the year ´ location combinations merely as de®ning
seven environments, since di�erent ®elds were used in the two years.

As well as de®ning the nodes and their relationships via the directed acyclic graph, we
must specify the distribution of each node given the values of any parents that it may have.
The choice of these distributions allows expert knowledge of the crop to be incorporated: we
eschew the use of improper or `uninformative' prior distributions.

The distributional families that are used must be su�ciently ¯exible to be able to represent
the prior opinions of experts, but su�ciently simple to allow these opinions to be expressed
without undue di�culty. A convenient speci®cation takes all the variances to have scaled
inverse v2-distributions and the remaining stochastic nodes (including the trial and target
yields) to be normal. Since our model is hierarchical, some unknown parameters have
distributions de®ned by the values of their parents. We adopt the convention of using Roman
symbols (with Roman or Greek subscripts) for the quantities which need to be speci®ed by
the expert to de®ne the joint prior distribution for the model.

We have found that normal distributions are conveniently chosen by considering percentiles
of the relevant distribution, whereas distributions for variances can be speci®ed by giving a
prior estimate of each variance and corresponding degrees of freedom. Thus, an estimate s2

(with d degrees of freedom) of a variance r2 corresponds to ds2r)2 having the distribution v2(d),
so r)2 has prior expectation s)2 and d measures the precision of this estimate. Equivalently, if
Ga(a, b) denotes a gamma distribution with probability density function

bazaÿ1 exp(ÿ bz)=C(a) (z > 0)

then r)2 has the distribution Ga(12d,
1
2ds

2).
The distributions set out below in equations (7) correspond to the directed acyclic graph

shown in Fig. 2 and hence assume a common prior distribution for the dose±response
function of the three varieties, along with the additivity of variety and environment e�ects
expressed in equations (6). The notation `�' is to be interpreted as `is distributed as' or `are
distributed independently as', according to the context. Also the prior distributions for dvi,
dej, de*

and their parents (and for evi, eej, ee*
and theirs when relevant) are analogous to those

given for cvi, cej, ce*
, lcv, rcv and rce. For each of the dose±response functions de®ned in

equations (3)±(5), the expected trial yields lijl are de®ned by replacing a, c and d (and e, where
required) by aj, cvi + cej, dvi + dej and evi + eej respectively: for the target yields li*m, they
are replaced by a

*
, cvi + ce*

, dvi + de*
and evi + ee*

.

yijl � N (lijl, r
2
y ), dys2yr

ÿ2
y � v2(dy),

aj, a*
� N (la, r

2
a), la � N (ma, t2a), das2ar

ÿ2
a � v2(da),

cej, ce*
� N (0, r2

ce), dces2cer
ÿ2
ce � v2(dce),

cvi � N (lcv, r
2
cv), lcv � N (mcv, t2cv), dcvs2cvr

ÿ2
cv � v2(dcv):

9>>>=>>>; (7)

The prior distribution used with all three dose±response functions is de®ned by specifying
values for the quantities ma, t

2
a, s

2
a and da for the as, mcv, t

2
cv, s

2
ce, dce, s

2
cv and dcv for the cs,

analogous quantities for the ds and any es, and s2y and dy for r2
y. Our values for these

quantities, shown in Table 2, are based on experience with the crop in Scotland. In particular,
the joint prior distribution for the evi and eej was chosen by considering the reduction in yield
from using total nutrient levels that were 25 kg below d.
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A disadvantage of taking the prior conditional distributions of the a-, c-, d- and e-
parameters to be normal is that it allows them to take implausible or even nonsensical
combinations of values in the posterior distribution, albeit with a very small probability. To
prevent such values occurring in the calculation of the posterior expected utilities, we
truncate the distributions of a

*
and evi + ee*

at zero and restrict the expected future yields
li*m to the interval [0, 20].

The models ®tted make many assumptions, and we might assess the sensitivity of the
posterior expected utilities to any of them. As well as ®tting three dose±response functions,
we consider the assumption that the common prior conditional distribution of the amounts
of indigenous soil nitrogen aj and a

*
is normal. Babcock et al. (1996) suggested that a

positively skewed distribution should be assumed for these levels and compared a
uniform and a gamma prior distribution. Having assumed normality, we could investigate
the sensitivity of our results to positive skewness in several ways: the method used here is
to assume that the distributions in the second line of expression (7) apply instead to a
monotone function x, say, of a, so that the xj and x

*
have common prior distribution

N(lx, r2
x), lx has the distribution N(mx, t2x) and dxs

2
xrÿ2x is distributed as v2(dx). To

attempt to isolate the e�ect of skewness from other di�erences between the distributions of a
and x, we must ensure that the two priors are similar in some sense, e.g. have the same ®rst
and second moments or the same values for speci®ed quantiles. Here we illustrate taking x
to equal ln(a) and match the two priors for a by taking dx equal to da and s2x=t

2
x equal to

s2a=t
2
a, while keeping the 5% and 95% quantiles of the marginal distribution for a the same.

The matching is achieved by simulating these distributions under the normal and log-normal
models using WinBUGS.

For the values of ma, t
2
a, s

2
a and da speci®ed in Table 2, the distribution for ln(a) which

provides this match is given by mx � 4.298, t2x � 0.0136, s2x � 0.0068 and dx � 50.

3.2. Results
For each model, 100000 MCMC iterates were used (with a Metropolis-within-Gibbs algo-
rithm) following a `burn-in' of 5000 iterates.

Table 2. Parameter values de®ning the prior distribution for models (3)±(5) for spring barley

Parameter Mean Variance Estimate Degrees of freedom

la 75 50 Ð Ð
lcv 5.75 0.20 Ð Ð
ldv 150 625 Ð Ð
lev 3.2 ´ 10)4 1.5 ´ 10)7 Ð Ð

r2
a Ð Ð 25 50

r2
ce Ð Ð 0.25 20

r2
cv Ð Ð 0.20 20

r2
de Ð Ð 900 20

r2
dv Ð Ð 400 20

r2
ee Ð Ð 2.0 ´ 10)8 10

r2
ev Ð Ð 5.0 ´ 10)9 5

r2
y Ð Ð 0.25 100
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The posterior expected utilities are evaluated at applied nitrogen levels of 0, 10, ¼ ,
140 kg ha)1 and assume a price of £400 per tonne for fertilizer nitrogen: grain prices of
£100 per tonne, £110 per tonne and £107.50 per tonne are assumed for Georgie, Midas and
Sundance respectively, re¯ecting how suitable each variety is for malting. Figs 3(a)±3(c) show
these posterior expected utilities under the three dose±response models with the parameter
values speci®ed in Table 2, along with the lower and upper 5% points of the posterior
predictive distribution of utility. Corresponding plots assuming log-normal distributions for
the aj and a

*
are almost identical with those assuming normality and are therefore omitted.

Because of their price advantage, the varieties Midas and Sundance achieve larger pos-
terior expected utilities than Georgie, despite Georgie's generally higher mean yields. Table 3
gives the optimum levels (interpolated to the nearest kilogram per hectare) and the corres-
ponding posterior expected utilities for each combination of the three varieties, the three
dose±response functions and the normal and log-normal priors for a. Midas appears slightly
superior to Sundance for all three functions and both priors, and would thus be selected for
the optimum combination of variety and nitrogen level under the above price structure.

A comparison of results for the six combinations of dose±response function and distri-
bution for a shows the following:

(a) given the remaining prior assumptions, the procedure is robust to replacing a normal
prior for indigenous nitrogen by a matching log-normal prior;
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Fig. 3. Plots of posterior expected utility and the lower and upper 5% points of the posterior predictive distri-
bution of utility for spring barley varieties Georgie (ÐÐÐ), Midas (± á± á± á) and Sundance (± ± ±) using the
dose±response functions (a) linear plus plateau, (b) inverse quadratic and (c) inverse linear with descending linear
function: (d) shows the posterior expected utilities for these varieties under the inverse quadratic model when
information on soil nitrogen at the target site is incorporated
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(b) very similar posterior expected utilities arise from the inverse quadratic dose±response
function and the inverse linear with a descending linear function;

(c) the linear-plus-plateau function leads to smaller posterior expected utilities at low
nitrogen levels than the other two functions;

(d) similar optimum levels are indicated under the three dose±response functions.

Observation (c) suggests that if the price of fertilizer nitrogen were much higher then the
linear-plus-plateau function would indicate substantially lower optimum levels than the other
two functions.

3.3. Using information on the target environment
These results assume that the environment in which the barley is to be grown is selected at
random from the same population as the trial environments, but we may have available, and
want to use, additional information on the amount a

*
of indigenous nitrogen at the target

environment. This might come from a soil test (as in Babcock et al. (1996)) orÐless
expensivelyÐfrom knowledge of the site and of the crops grown in previous years. For
example, if our assessment of a

*
could be expressed as an estimate a

*
with a standard

deviation of ta, we might take a
*
to have distribution N(a

*
, t2a) and add a node for a

*
to

Fig. 2 as a child of a
*
. There are many alternatives to this assumption, of course: a

*
might be

given a Student or log-normal distribution, or taken to be normal with standard deviation
proportional to its expectation, as in Babcock et al. (1996).

Fig. 3(d) shows the posterior expected utilities for the three varieties under the inverse
quadratic model when the estimated level of indigenous nitrogen and its standard deviation
equal 40 kg ha)1 and 5 kg ha)1. The optimum levels and posterior expected utilities for
Georgie, Midas and Sundance are respectively (99, 525), (103, 556) and (90, 550): Midas is
still the best choice, but a higher applied nitrogen level is indicated because of the low level
that is thought to be in the soil.

4. Discussion

The choice of fertilizer dose is one of many management issues in agriculture which is
unambiguously a decision problem, rather than a problem of inference. The conventional
approach to such problems involves deriving an optimum decision in terms of unknown

Table 3. Optimum applied nitrogen levels and corresponding posterior expected utilities with normal
and log-normal priors for indigenous nitrogen

Variety Prior for indigenous
nitrogen

Optimum levels (kg ha)1) and expected utilities (£ ha)1)
for the following dose±response functions:

Linear plus plateau Inverse quadratic Inverse linear

Georgie Normal 80, 515 85, 532 83, 538
Log-normal 84, 519 85, 532 83, 538

Midas Normal 82, 560 90, 563 91, 569
Log-normal 87, 566 90, 562 91, 569

Sundance Normal 79, 548 75, 556 73, 563
Log-normal 83, 553 75, 556 73, 563
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parameters and then replacing their values by point estimates. This leads to decisions which
are optimum only in an asymptotic sense, which fail to exploit expert knowledge, and
which may be based on unreasonable estimates of variance components in hierarchical
models.

The Bayesian approach o�ers the possibility of incorporating expert knowledge of likely
parameter values in a systematic way via the prior distribution. Although this prior
information could be used to produce estimates with superior properties, even the use of
improved estimates does not lead to an optimum decision: the Bayesian solution requires the
integration of the utility function rather than the substitution of point estimates. Recent
advances in Bayesian technology, particularly the development of MCMC methods, allow
an increasing range of such decision problems to be tackled. The results obtained for the
above example suggest that the resulting decisions may be robust to changes in the prior
distribution and the dose±response model.

The incorporation of expert knowledge of how crop yields depend on indigenous and
added nitrogen o�ers the possibility of reducing the size of fertilizer trials. For example, for
most combinations of variety and environment the yields shown in Table 1 do not show a
decline at the highest nitrogen level, so the data might be thought inadequate for a conven-
tional analysis. We can use the sample data more e�ciently by analysing all the yields in
a hierarchical model and by adding information on the likely position and shape of the
response curves.

The case for using prior distributions in decision-making is possibly stronger than in
statistical inference (Cox and Hinkley (1974), page 417) but still requires careful modelling
and elicitation of expert knowledge, possibly with co-operation between the subject-matter
specialist and a statistician. Equally, the application of MCMC methods requires more
judgment than the use of a conventional model ®tting package.
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