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Summary. Latent class analysis (LCA) is a statistical tool for evaluating the error in categorical data
when two or more repeated measurements of the same survey variable are available. This paper
illustrates an application of LCA for evaluating the error in self-reports of drug use using data from
the 1994, 1995 and 1996 implementations of the US National Household Survey on Drug Abuse. In
our application, the LCA approach is used for estimating classification errors which in turn leads to
identifying problems with the questionnaire and adjusting estimates of prevalence of drug use for
classification error bias. Some problems in using LCA when the indicators of the use of a particular
drug are embedded in a single survey questionnaire, as in the National Household Survey on Drug
Abuse, are also discussed.
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1. Introduction

Survey data are subject to measurement errors from numerous sources including poor design
of questionnaires, difficult and misunderstood concepts, inadequately trained interviewers,
deliberate errors and the interview mode or setting. Measurement errors can have severe
biasing effects on the estimation and data analysis and will often reduce the precision of the
estimates and the power of statistical tests (Biemer and Trewin, 1997). The evaluation of
measurement errors in US surveys has become an important goal of national statistical
agencies (Martin and Straf, 1992) as well as non-Government survey research organizations.

The evaluation of measurement error is critical because

(a) data users need to understand the limitations of the data to interpret the survey results
appropriately,

(b) survey designers use information on the quality of data to guide improvements of the
survey process for future surveys,

(c) data analysts incorporate data on the non-sampling error distributions to reduce bias
and to increase the power of their analyses (see, for example, Fuller (1991)) and

(d) survey practitioners rely on survey error evaluations for the quality assurance of field
operations.

Traditional methods for assessing survey bias share an important shortcoming in that they
rely on the accuracy of so-called gold standard measurements. Gold standard measurements
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include reconciled reinterview responses, administrative record values, biological test results,
diary entries and other measurements which are assumed to contain little or no non-sampling
error. However, there is a growing literature that suggests that, in most situations, gold
standard measurements are quite fallible. For example, in reconciled reinterviews, more
experienced interviewers reinterview a sample of original interview respondents to identify
discrepancies between the original and reinterview reports. These discrepancies are then
reconciled to obtain revised, and presumably more correct, reports. However, recent work
suggests that reconciled reinterview data can be as erroneous as the original measurements
that they are intended to evaluate (see, for example, Biemer and Forsman (1992) and Biemer
et al. (2001)). Administrative records data are often inaccurate and difficult to use (Jay et al.,
1994; Marquis, 1978) as a result of differing time reference periods, definitional differences
and errors in the records themselves. Further, the collection of gold standard data is usually
quite costly and complex (Biemer, 1988).

An alternative to a gold standard analysis involves the application of statistical models to
replicate measurements of the same survey variable. For categorical data items for which two
replicate measurements are available, the statistical model proposed by Hui and Walter
(1980) can be applied to estimate the classification error probabilities in the measurements.
This method requires that the population be partitioned into two groups (e.g. smokers and
non-smokers) having different prevalence rates for the true characteristic but measurement
error distributions that do not vary by group (this is referred to as the homogeneous error
assumption). Under these assumptions, all parameters of the Hui–Walter model are identi-
fiable; however, no degrees of freedom are available for testing the lack of fit. Biemer and
Witt (1996) applied this model to estimate the classification error in reports of lifetime use
of marijuana, cocaine and alcohol in the US National Household Survey on Drug Abuse
(NHSDA).

A drawback of the Hui–Walter model is that standard Pearson or likelihood ratio v2

goodness-of-fit tests cannot be applied with this approach since the model is saturated.
Further, identifying grouping variables for which the homogeneous assumption is plausible is
difficult in many situations. However, when three replicate measurements (or indicators) are
available, the additional degrees of freedom allow the homogeneous error assumptions to be
relaxed and classification error parameters that vary by group are identifiable. In addition,
with three indicators the residual degrees of freedom are often adequate for testing model fit
for a wide range of models.

Of course, one difficulty is that three replicate measurements of the same survey variable are
difficult to obtain in practice. A common approach for obtaining two replicate measurements
is to use test–retest or reinterview methods that require recontacts of respondents. However,
contacting respondents to obtain three replicates is often not practical because of the burden
on respondents and their resistance, the risk of response conditioning effects by prior contacts
and the costs that are associated with repeated contacts with the respondent.

The present paper considers the analysis of replicate measurements which are embedded in
a single survey instrument and that can be obtained in a single interview. Since the replicate
measurements are collected during the same interview, the risk that errors made for one
measurement are correlated with the errors of the other two measurements must be con-
sidered in the analysis. Ideally, the wording of the replicate items should differ somewhat to
conceal the redundancy from the respondent to avoid resistance by the respondents to the
burden of answering the same questions repeatedly. Therefore, the indicators may not be
parallel measures (i.e. measures having the same error distributions), which further com-
plicates the analysis by introducing additional error parameters into the model.
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However, in many situations, embedding replicate measurements is feasible for obtaining
repeated observations for a limited number of items in the questionnaire. Our analysis will
demonstrate how correlated errors and departures from parallel measures can be modelled
and accounted for in the latent class analysis (LCA) estimates of measurement error. In the
present study, we analyse data from the NHSDA to demonstrate the analytical technique for
estimating classification errors in surveys having embedded replicate measurements. Our
analysis shows that LCA can be an important tool for identifying the sources of measurement
errors in such surveys and for adjusting survey estimates for measurement error bias by using
embedded indicators.

2. Statistical framework

We begin by developing the essential analytic tools for estimating classification errors in the
case of three embedded replicate measurements. Extensions to more than three indicators are
straightforward and will not be discussed here. Initially, we assume simple random sampling
from the target population and later extend the methodology to more complex survey
designs. In Section 3, this methodology will be applied to the NHSDA and the results will be
evaluated and discussed.

2.1. Model notation and assumptions
Let S denote a simple random sample of size n from a large population and let i denote a
particular unit in S. We are interested in evaluating the classification error associated with a
categorical response variable measured for the members of S. Let Xi, which is assumed to be
an unobservable or latent variable, denote the true value of the characteristic for unit i. Let
Ai , Bi and Ci denote three repeated observations (or indicators) of the characteristic for unit
i. For example, Ai may denote the response to question A in the survey, Bi the response to
question B and Ci the response to question C, where all three questions are designed to
measure the variable Xi but perhaps by different methods.

In the following, we shall assume that Xi is a dichotomous variable and that Ai, Bi and Ci

are dichotomous indicators of Xi. Thus, Xi, Ai, Bi and Ci take the values 1 or 2 for all units in
S. Extensions to k>2 categories for Xi, Ai, Bi and Ci do not afford any difficulties but will
not be considered here. For ease of notation, the subscript i is dropped in the following.

Let pz, for arbitrary random variable Z, denote Pr(Z ¼ z). Thus, px denotes Pr(X ¼ x), pxa

denotes Pr(X ¼ x,A ¼ a), pajx denotes Pr(A ¼ ajX ¼ x) and so on. Note that the classification
error probabilities for the indicator A are pajx for a 6¼ x. For example, pa ¼ 1jx ¼ 2 is the false
positive probability for A and pa ¼ 2jx ¼ 1 is the false negative probability. Likewise, pb ¼ 1jx ¼ 2

and pb ¼ 2jx ¼ 1 are the false positive and false negative probabilities respectively for B, and
pc ¼ 1jx ¼ 2 andpc ¼ 2jx ¼ 1 are the false positive and false negative probabilities respectively forC.
Hence the probabilities pajx, pbjx and pcjx are often referred to as error probabilities. It is tacitly
assumed that the error probabilities are the same for all members of the population. Later we
shall introduce covariates and grouping (or stratification) variables into the model to account
for heterogeneous error probabilities in the population.

Let XABC denote the cross-classification table for the variables X, A, B and C and let
(x, a, b, c) denote the cell associated with X ¼ x, A ¼ a, B ¼ b and C ¼ c. Thus, pxabc is the
expected proportion in cell (x, a, b, c) of the table and can be rewritten as

pxabc ¼ P (X ¼ x) P (A ¼ ajX ¼ x) P (B ¼ bjA ¼ a, X ¼ x) P (C ¼ cjA ¼ a, B ¼ b, X ¼ x)

¼ px pajx pbjax pcjabx (1)
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and, hence, the probability that a unit is classified in cell (a, b, c) is

pabc ¼
P

x
px pajx pbjax pcjabx: (2)

Let nabc denote the number of observations in cell (a, b, c), where

n ¼
P
a,b,c

nabc,

and assume that the nabc are distributed as a set of multinomial random variables. Then the
kernel of the likelihood of observing the table ABC is

L(ABC) ¼
Q
a

Q
b

Q
c

pabc
nabc : (3)

Note that there are eight (i.e. 23) cells in the observed table whereas the likelihood contains
15 model parameters plus an additional parameter for the overall mean. A necessary
condition for the model parameters to be identifiable (or estimable) is that the degrees of
freedom for the model (the number of cells minus the number of parameters including the
overall mean) are not negative. By this condition, equation (1) is not identifiable. To
overcome this problem, restrictions on the probabilities can be introduced to reduce the
number of parameters associated with the model. The traditional latent class model for the
table XABC introduces the restrictions pbjax ¼ pbjx and pcjabx ¼ pcjx which eliminate two and
six parameters respectively. This assumption, called local independence in the LCA literature
(see, for example, McCutcheon (1987)), is also quite common for estimating test–retest
reliability (see, for example Bohrnstedt (1983)). It specifies that errors in the indicators A, B
and C are mutually independent. With these restrictions, the number of model parameters is
reduced to 7 and the model is identifiable. However, as we discuss later, having non-negative
degrees of freedom is generally not sufficient for model identifiability with latent class models.

The local independence assumption is more plausible when the three indicators are
obtained in three separate interviews rather than within the same interview. However, even
in an interview–reinterview–reinterview situation, independent classification error is not
guaranteed (see Biemer et al. (2001) for an example of this). For example, respondents may
have repeated their erroneous responses across interview occasions either from memory or
from replicating the response process that led to the original classification error.

When measurements are embedded in the same questionnaire, the risk of correlated error
is greater owing to within-interview factors and increased memory effects. One means of
counteracting these effects is to vary the method for measuring the underlying construct, for
example, by altering the wording of the question while maintaining its original meaning and
intent (see, for example, Saris and Andrews (1991)) and by separating the questions in time
within the interview to the extent possible. Despite these precautions, the potential for
correlated error must still be considered in the analysis of the repeated measures data.

Since local independence models with three measurements are saturated models, models
which introduce additional terms for correlated error (so-called local dependence models) are
not identifiable unless further restrictions are place on the model (Hagenaars, 1988). For
example, by imposing the restrictions pajx ¼ pbjx ¼ pcjx—i.e. the classification error dis-
tributions for A, B and C are identical—2 degrees of freedom are saved which can be used to
estimate the two additional parameters introduced by relaxing the independence assumption
for two of the three indicators, e.g. pbjax. However, this equal error probability restriction is
not plausible and is likely to be violated if the method (i.e. question wordings) for obtaining
A, B and C varies within the questionnaire.
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Another technique for increasing the model degrees of freedom is to introduce a grouping
variable G having L levels. Now, the number of cells of the GABC-table is L times the number
of cells in the ABC-table. Equating some parameters of the model across the L groups to free
enough degrees of freedom for estimating the correlated error parameters often results in more
plausible assumptions for the model than are possible without the grouping variable.

For the case of two groups, say G ¼ 1 for males and G ¼ 2 for females, the GABC-table
has a total of 2 · 23 or 16 cells. Denoting the conditional classification probabilities for group
g by pajgx, pbjgx and pcjgx, we assume that

pajg¼1, x ¼ pajg¼2, x ¼ pajx (4)

for a ¼ a, b, c, i.e., for each indicator, the classification error probabilities for males and
females are equal (referred to as group homogeneity). We further assume that the three
measurements are correlated (Hagenaars, 1988) and introduce terms pbjax and pcjbx to model
the correlation. Thus, we assume that the joint error distributions, like the marginal dis-
tributions, are homogeneous across groups and that the three-way interactions between the
indicators given the true value of the characteristic are 0, i.e. pcjabx ¼ pcjbx.

For three indicators embedded in a single questionnaire, it seems plausible to assume a
causal ordering of errors in the indicators that reflects the temporal ordering of the indicators
in the interview, i.e. we assume local dependence between chronologically adjacent indicators
in the NHSDA questionnaire so that the error in B depends on A and the error in C depends
on B, but the error in C conditional on B does not depend on A. Thus, the probability of an
observation in cell (g, a, b, c) of the GABC-table is

pgabc ¼ pg

P
x

pxjg pajx pbjax pcjbx , (5)

which yields a likelihood for GABC with 13 model parameters (plus two parameters for the
overall means for the two groups), leaving 1 degree of freedom to assess the fit of the model.

These ideas can be extended in various ways, some of which will be explored in the next
section. Additional grouping variables can be added to the model which may be desirable,
not only to provide additional degrees of freedom for estimation of the error distributions,
but also to capture the heterogeneity of response errors across various population subgroups.
As the number of grouping variables in the analysis increases, a greater range of model
assumptions can be explored that reflect the interrelationships between the latent variable,
the indicators and the subgroups.

In the next section, we draw on the work of Haberman, Goodman and others who have
provided a convenient structure for exploring alternative probability models in the context of
a log-linear analysis with latent variables.

2.2. Relationship of latent probability models and log-linear models
Haberman (1979) showed that latent probability models like equation (5) can be re-
formulated as log-linear models with latent variables. Thus, much of the statistical theory
that has been developed for log-linear analysis can be directly applied to latent structure
analysis. Goodman (1973) showed that the model for the cell probabilities in equation (5),
including the latent variable classification, can be written as

log ( nxgabc ) ¼ uþ uG
g þ uX

x þ uA
a þ uB

b þ uC
c þ uGX

gx þ uXA
xa þ uXB

xb

þ uXC
xc þ uAB

ab þ uBC
bc þ uXAB

xab þ uXBC
xbc (6)

Measurement Error Evaluation of Self-reported Drug Use 101



where nxgab ¼ npxgab for n the number of observations. This is a hierarchical linear model
owing to the inclusion of all lower order interactions involving variables for the highest order
interactions. Correlated errors are modelled by the interactions terms involving two or more
repeated measures. Model (6) can be represented in shorthand notation as {XG, XAB, XBC}.
In this notation, only the highest order terms involving each variable in the model are shown
within the braces. The lower order terms are all implicitly included by the hierarchical model
structure. Methods for testing the fit of model (6) to the XGABC contingency table have been
developed that parallel those used for ordinary log-linear models. The primary difference is
that, since X is not observed, the fit of the latent log-linear model is assessed through the v2

goodness-of-fit criterion applied to the observed table only, i.e. GABC. (See Hagenaars (1990,
1993) for further details.)

In the next section, we shall illustrate the analysis of classification errors using embedded
repeated measurements and log-linear models with latent variables for data from the
NHSDA.

3. Illustration using the National Household Survey on Drug Abuse

3.1. Description of the data
The NHSDA is a multistage household survey designed to measure the population’s current
and previous drug use activities. The 1996 survey was the 16th study conducted in a series
initiated in 1971. Since 1990, the survey has been conducted annually, with independent
samples of households and people selected each time. For this study, data from the 1994,
1995 and 1996 surveys were used in the analysis: a total of 53825 interviews. The subsequent
description of the NHSDA will be restricted to design and implementation issues related to
these surveys.

3.2. Survey design and data collection
The NHSDA design is a stratified, multistage cluster sample of dwelling units selected in
approximately 127 primary sampling units in 1994 and 115 primary sampling units in 1995
and 1996. The primary sampling units represent geographic areas in the USA, generally
defined as counties, groups of counties or metropolitan statistical areas. The target pop-
ulation includes people who are 12 years old or older who live in households, certain group
quarters (e.g. college dormitories and homeless shelters) and civilians living on military
installations. Active military personnel and most transient populations, such as homeless
people not residing in shelters, are not included. The annual sample sizes for the 1994, 1995
and 1996 surveys are provided in Table 1. Hispanics, blacks, younger people and the
residents of certain metropolitan statistical areas are oversampled to ensure that the sample
sizes are adequate to produce the subpopulation estimates that are of interest.

The non-response rates for the NHSDA were 19%, 20% and 21% for 1994, 1995 and 1996
respectively. To reduce non-response bias in the estimates of drug use, the NHSDA
incorporates weight adjustments based on age, race and sex cells. The analysis to follow is
based on cell counts that have been weighted for unequal probabilities of selection and rescaled
to the original sample size. Since the inferential population for our study is the population of
NHSDA respondents, the NHSDA non-response adjustments were not used in our weighting.

The NHSDA interview process takes about an hour to complete and collects drug
and demographic data from each respondent by using a combination of interviewer-
administered and self-administered instruments. The interview begins with a set of inter-
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viewer-administered questions to collect data on basic demographic characteristics. The
remainder of the questionnaire is divided into sections corresponding to each substance of
interest: tobacco, alcohol, marijuana, cocaine, ‘crack’, hallucinogens, inhalants, analgesics,
tranquilizers, stimulants and sedatives. For each section, the interviewers present the answer
sheets to the respondents and ask them to record their responses on it. Depending on the
complexity of an answer sheet, the interviewer will either read the questions to the respondent
or, if preferred, respondents can read the questions themselves. On the completion of an
answer sheet, the respondent is requested to place the answer sheet in an envelope without
allowing the interviewer to see the responses. The motivation for conducting the interview in
this manner is to ensure that the respondent understands the questions and does not
erroneously skip over major parts of the questionnaire as well as to guarantee privacy for the
respondent.

Most of the answer sheets are designed so that even respondents who have never used a
particular drugwill answer each question on the answer sheet. Since both users and non-users of
a drug are asked to respond to essentially the same number of questions, the interviewer is less
likely to guess that the respondent is a user or non-user on the basis of the time that the
respondent takes to complete an answer sheet. This is another feature of the survey that is
designed to protect the privacy of the respondent. In addition, some respondents who indicate
that they never used the drug under direct questioning will later answer an indirect question
about the drug in a way that implies use of the drug (as shown in Table 2). This redundancy in
the questionnaire provides the basis for constructing three repeated measures for estimating
accuracy of reporting on drug use using the LCA discussed in the previous section.

3.3. Repeated measures of drug use
The definitions of the three indicators in terms of specific NHSDA questions appear in the
exhibits in Appendix A. For each of the three years, indicator A is the response to the

Table 1. Sample sizes (number of households) for the 1994, 1995 and 1996
NHSDA by analysis domain

Domain Numbers of households for the following years:

1994 1995 1996

Sex
Males  7950 7652 7774
Females 9859 10095 10495

Race
Hispanic 4706 4599 4841
Black 4010 4208 4372
White or other 9093 8940 9056

Age (years)
12–17 4698 4595 4538
18–25 3706 3963 4366
26–34 5223 5213 5262
35 and older 4182 3976 4103

Total sample size 17809 17747 18269

 The NHSDA sample contains slightly fewer males owing to the differential
non-response rate by gender.

Measurement Error Evaluation of Self-reported Drug Use 103



so-called recency of use (or recency) question which asks about the length of time since
marijuana or hashish was last used. Also, for all three years, indicator B is the response to
the so-called frequency of use (or frequency) question which asks how frequently, if ever,
the respondent has used marijuana or hashish in the past year. Indicator C is a composite
of several questions (seven in 1994 and eight in 1995 and 1996) on the so-called drug
answer sheet. An affirmative response to any one of these is coded as ‘yes’ for C and
otherwise C is coded as ‘no’. Note from Appendix A that in 1994 this composite question
included question 7 which required that the respondent responds ‘yes’ or ‘no’ to two
questions:

(a) whether you wanted to cut down on the use of marijuana or hashish and
(b) whether you were able to cut down.

As we shall see later, this question proved to be quite difficult for respondents. In 1995 and
1996, question 7 was replaced by two very different questions (see Appendix A). In addition,
questions 5 and 6 were modified from the 1994 version.

Clearly, indicators A, B and C appear to satisfy the goal of embedding repeated
measurements in a single instrument in that the methods used to measure the underlying
construct are varied. For this research, interest lies primarily in estimating the false positive
and false negative probabilities separately for A, B and C and in comparing the LCA
estimates of px, the true prevalence of use of marijuana in the past year, with the corres-
ponding estimates from the NHSDA.

The classification variable used for the NHSDA official estimates of use of marijuana in
the past year, which we shall denote by T, may be defined as T ¼ 1 if either A or B is 1, and
T ¼ 0 otherwise, i.e. an individual is classified as a user in the past year for NHSDA
estimation if either A or B indicates use in the past year. However, disagreement between A
and B may also be the result of an error in the report of use in the past year (i.e. a false
positive error). Since the NHSDA does not take into account the potential for false positive
error (as the LCA estimates do), we expect that the LCA-derived estimates of px will be
smaller than the corresponding NHSDA estimates.

For example, for indicators A and B in 1995, the estimated false positive error rates are
0.01% and 0.78% respectively, and the false negative error rate estimates are 8.96% and
0.90% respectively. The adjusted rate of use in the population from the LCA is 7.68%. If a
positive response to either or both questions is used to indicate use, the estimated rate
would be about 8.40% or about three-quarters of a percentage point larger than the LCA
estimate.

Table 2. Observed inconsistencies in the three indicators of use of marijuana

Indicator Results for the following years:

1994 1995 1996

n % n % n %

A versus B 241 1.35 263 1.48 293 1.61
A versus C 854 4.80 380 2.14 452 2.48
B versus C 883 4.96 409 2.31 491 2.69
A versus B versus C 989 5.55 526 2.96 618 3.39
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3.4. Analysis of classification error for use of marijuana in the past year
3.4.1. Evidence of inconsistent reporting
It is well known that the various indicators of drug use in the NHSDA questionnaire are
inconsistent (see, for example, Cox et al. (1992)). In Table 2 we show the rate of disagreement
among all combinations of the three indicators. This rate is computed as the unweighted
proportion of observations in the off-diagonal cells of the cross-classification table for the
variables in each combination. Thus, Table 2 shows the extent of the inconsistencies by year
among the three indicators. The disagreement rate for A versus B varies around 1.50%
whereas the rate for C versus A or B is considerably higher, particularly in 1994 where the
disagreement rate among all three measurements is 5.55%.

Since indicator C is a composite of many questions, one plausible hypothesis for a high
rate of inconsistency with C is that C is the more accurate indicator (i.e. a gold standard) and
disagreement with C is an indication of classification errors in the other two measurements.
In support of this argument, estimates of use of marijuana in the past year are highest for C,
which suggests greater accuracy since the use of marijuana tends to be underreported in the
NHSDA (see, for example, Turner et al. (1992) and Mieczkowski (1991)). As we shall see,
this hypothesis can be explored by using an LCA of the three measurements A, B and C.

3.4.2. Modelling the error in use of marijuana in the past year
In our analysis, rather than including a term in the model for the survey year and fitting a
single model to the data pooled across years, separate LCA models were fitted to each year of
the NHSDA. This was done for various reasons. First, we can use the comparison of the best
fitting models for each year as an indicator of validity of the model. Since there were no major
design changes for the NHSDA from 1994 to 1996, the error structure in the data should be
the same for all three years. Thus, the failure of a well fitting model from one year to fit the
data from another year would be evidence of an invalid model. Second, a separate analysis
facilitated the interpretation of comparisons of the LCA estimates with the official NHSDA
estimates which are also computed separately for each year. Third, the indicator C was
different in 1994 from that in the other two years so this complexity would have to be handled
somehow in the pooled data models. Finally, we have encountered some convergence prob-
lems with LCA estimation software when the number of parameters in the models is quite
large. For the pooled data set, the models would have contained up to 400 parameters.
Although some loss of precision in the estimation will result by using a separate analysis for
each year, this is not a problem given the large data sets that we are analysing for each year.

Using the three indicators of use of marijuana in the past year, a wide range of latent class
models was explored to identify the ÔbestÕ model for producing estimates of classification
error. Following Lin and Dayton (1997), three criteria were applied to select the best model
as follows.

(a) The model should be identifiable.
(b) The likelihood ratio v2 p-value for the model should be greater than 0.01, indicating

that the model fits the data reasonably well.
(c) The Bayesian information criterion BIC defined as L2 ) log(N) degrees of freedom

should be the smallest among all competing models.

Identifiability of the models was verified by using the sufficient condition suggested by
Dayton and Macready (1980) that the variance–covariance matrix for the parameters should
be of full rank. Note that the p-value criterion in equation (2) is more liberal than the
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minimum 0.05 p-value that is typically used for model selection. This is because, with over
18000 observations for each year, the power of the v2-test using a p-value of 0.05 is quite
high, which could result in overparameterization of the model. The less stringent 0.01 p-value
allows a consideration of models with expected cell probabilities that may only differ trivially
from the observed data while satisfying the other selection criteria. Criterion (c) provides for
the most parsimonious model that fits the data. Lin and Dayton (1997) found that this
criterion is most appropriate for comparing models when large sample sizes are involved as in
the present case.

The types of model considered in our analysis were limited to simple extensions of the
basic latent class model given by equation (4) with grouping variables defined by age (G), race
(R) and sex (S). The fit statistics for equation (4) and its four extensions for all three years
are provided in Table 3. Also provided in Table 3 is the fit of the same models to a revised
version of the 1994 data that will be explained subsequently. The following is a description of
the models that were used in the analysis.

Table 3. Model diagnostics for alternative classification error models by year

Model Degrees of
freedom

Number of
parameters

L2 p-value BIC

1994 data
Model 0: {GRSX, AX, BX, CX} 138 54 199.24 0.0005 )1151
Model 1: same as model 0 + {AG, BG, CG,
AR, BR, CR, AS, BS, CS}

120 72 82.96 0.9960 )1092

Model 2: same as model 1 + {AB, BC} 118 74 72.11 0.9997 )1083
Model 3: {GRSX, GAX, GBX, GCX, RAX,
RBX, RCX, SAX, SBX, SCX}

102 90 63.61 0.9990 )935

Model 4: same as model 3 + {AB, BC} 100 92 57.25 0.9998 )921

1995 data
Model 0: {GRSX, AX, BX, CX} 138 54 252.20 0.0000 )1098
Model 1: same as model 0 + {AG, BG, CG,
AR, BR, CR, AS, BS, CS}

120 72 90.38 0.9799 )1084

Model 2: same as model 1 + {AB, BC} 118 74 89.77 0.9753 )1065
Model 3: {GRSX, GAX, GBX, GCX, RAX,
RBX, RCX, SAX, SBX, SCX}

102 90 51.42 1.0000 )947

Model 4: same as model 3 + {AB, BC} 100 92 51.22 1.0000 )927

1996 data
Model 0: {GRSX, AX, BX, CX} 138 54 244.46 0.0000 )1110
Model 1: same as model 0 + {AG, BG, CG,
AR, BR, CR, AS, BS, CS}

120 72 155.46 0.0163 )1022

Model 2: same as model 1 + {AB, BC} 118 74 139.83 0.0831 )1018
Model 3: {GRSX, GAX, GBX, GCX, RAX,
RBX, RCX, SAX, SBX, SCX}

102 90 111.95 0.2354 )889

Model 4: same as model 3 + {AB, BC} 100 92 107.19 0.2933 )874

1994 revised data
Model 0: {GRSX, AX, BX, CX} 138 54 212.08 0.0000 )1139
Model 1: same as model 0 + {AG, BG, CG,
AR, BR, CR, AS, BS, CS}

120 72 105.00 0.8336 )1069

Model 2: same as model 1 + {AB, BC} 118 74 96.08 0.9308 )1059
Model 3: {GRSX, GAX, GBX, GCX, RAX,
RBX, RCX, SAX, SBX, SCX}

102 90 75.27 0.9782 )923

Model 4: same as model 3 + {AB, BC} 100 92 64.95 0.9974 )914
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(a) Model 0: {GRSX, AX, BX, CX} is essentially equation (4) with the GRSX-effect
representing the variation in the true prevalence rate by age, race and sex, and AX, BX
and CX representing the classification error in the indicators which is assumed not to
vary by age, race and sex.

(b) Model 1: the first-level extension of model 0 is the addition terms that reflect variation
in the indicator error rates by age, race and sex. The simplest way to introduce this
error variation is by the addition of nine two-factor interactions: AG, BG, CG, AR,
BR, CR, AS, BS and CS.

(c) Model 2: at the next level of complexity (in terms of the number of parameters) terms
that reflect possible correlations between the indicators (i.e. local dependence) are
added. This can be accomplished by adding the interactions AB and BC to model 1.
Note that the AC-interaction is missing, which suggests that the correlations follow a
Markov process, i.e. the third indicator, C, does not depend on the first, A, when
conditioned on the second, B.

(d) Model 3: {GRSX, GAX, GBX, GCX, RAX, RBX, RCX, SAX, SBX, SCX} is a more
complex representation of the variation in the indicator error rates by age, race and
sex, extending the two-factor interactions of model 1 to three factors. However, the
assumption of local independence is preserved.

(e) Model 4: replaces the local independence assumption of model 3 by a Markov
correlated error assumption through the addition of terms AB and BC.

All the models contain the term GRSX which is referred to as the ‘structural’ part of the
model. It postulates that the use of marijuana in the past year, X, varies across the cells of
the GRS-table. Although more parsimonious representations of the variation in X in the
population may fit the data, our focus is on the terms of the model involving A, B and C,
referred to as the ‘measurement’ part of the model. For modelling the measurement error,
there is not much to be gained in trying to reduce the number of parameters used to describe
the structure of X.

Model 0 represents the simplest error structure for the indicators A, B and C. It postulates
that the error rates for A, B and C do not depend on age, race or sex. Skipping models 2 and
3 for the moment, model 4 postulates that error rates depend on the grouping variables. The
terms GAX, GBX and GCX reflect the variation in the error terms AX, BX and CX by the
levels of G. Likewise, RAX, RBX and RCX and SAX, SBX and SCX model the variation in
the error terms by race and sex respectively.

Model 1 reflects a type of dependence of the error terms on the grouping variables but not
the full dependence represented in model 4. To see this, consider the simple case where we
wish to model pajxf, where the grouping variable F has two levels. It is shown in Appendix B
that for any number of groups the model {AX, AF} implies that the product of the odds of
making a false positive error times the odds of making a false negative error are constant
across the groups, i.e. /f hf ¼ c0 where /f is the odds of a false positive result in group f, hf
is the odds of a false negative result in group f and c0 is a constant. For this to occur requires
that a group responding to an item with a higher false positive error probability also responds
to the item with a lower probability of a false negative error and vice versa to maintain a
constant /f hf across the levels of the grouping variable F.

An indicator that always classifies an individual as a drug user would have hf ¼ 0 and
/f ¼ 1. Likewise, an indicator that always classifies an individual as a non-user would have
hf ¼ 1 and /f ¼ 0. Therefore, it is not uncommon for indicators to tend to classify
respondents erroneously more in one direction than in the other.
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Examples of an indicator where the pair (/f, hf) exhibits a negative correlation across
groups are also encountered quite often in practice (see for example, Biemer et al. (2001)).
For example, consider the question ‘Have you used marijuana in the last 12 months?’.
Interpretations of this question may vary in the population depending on factors such as
education, age and cultural differences. As an example, younger respondents may tend to
interpret the term ‘use’ incorrectly as ‘regular use’ whereas those in older age groups may feel
(correctly) that any use, casual or otherwise, constitutes use of marijuana. In this case,
younger age groups could exhibit a lower false positive error and higher false negative odds
whereas the older age group could exhibit the opposite effect. Thus, the product of two error
probability odds, hf /f , could still be constant across the two groups even though the error
rates may vary across the groups.

Now, turning to models 2 and 4, the interpretation of the terms AB and BC has been
discussed in detail in Hagenaars (1988). For example, consider the differences between two
logistic models for the probability pbjxa

BjXA: {BX} and {BX, BA}. The former model postulates
that the errors in A and B are locally independent. However, the residuals (i.e. the differences
between the observed and predicted frequencies) from this model may indicate a tendency for
positive residuals for the (1, 1) and (2, 2) cells of the AB-table and negative residuals for
the (1, 2) and (2, 1) cells. This situation suggests a greater propensity for B to be positive
or negative given that A is positive or negative respectively. This additional propensity is
absorbed by the BA-term in the latter model.

The differences between the models considered in our study can be summarized as follows.
Model 0 postulates that the false positive and false negative error probabilities do not vary by
groups. Model 3 postulates essentially unconstrained variation in the error probabilities
across groups and model 1 postulates variation in the error probabilities across groups while
the product, /f hf, is constrained to be constant. Model 2 and model 4 add the local
dependence assumption to models 1 and 3.

These five models were applied separately for each of the three years for the full NHSDA
data set. The maximum likelihood solutions were estimated by using the lEM software
(Vermunt, 1997) which employs an EM algorithm similar to that suggested by Goodman
(1974). The model fitting process does not take into account the complex sampling design of
the NHSDA with regard to clustering and unequal probability sampling effects. As a result,
models are more easily rejected since the reported p-values are likely to be smaller than the
actual p-values for the tests.

As seen from Table 3, model 0 does not describe the data for any year. Model 1 fits the
data well, satisfies criterion (c) and is identifiable for all three years. Models 2 and 4, which
add the correlated error terms, also fit the data very well; however, the models do not satisfy
criterion (c). Moreover, the difference in L2 (the likelihood ratio v2-statistic) between models
1 and 2 is significant for 1994 and 1996, whereas it is not significant for 1995. This is im-
plausible since the surveys were essentially the same for all three years. Another important
consideration is that interpreting the differences in the estimates among the years would be
made easier by using the same model for all three years. Therefore, model 1 was accepted for
all three years and this model was selected for the subsequent analysis.

Thus we see that, for the data for use of marijuana in the past year, the local dependence
models did not fit the data as well as those postulating locally independent errors. This
somewhat surprising result suggests that responses to the three indicators are not affectedmuch
by social desirability or other external factors that could influence the respondent to deny their
drug use throughout the interview consciously and consistently. Nor is there strong evidence
that the response processes which respondents used are sufficiently similar across the indicators
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to produce errors that are significantly correlated. Rather, response errors for the indicators
appear to behave independently and are more likely to arise from such factors as confusion
generated by the wording of the questions or differences in the interpretation of the questions.

This latter explanation also may explain the presence of the indicator-by-grouping variable
interaction terms in the best model. Problems of comprehension and interpretation of the
questions may be related to the demographics of the respondents in such a way that false
negative error rates vary inversely with the false positive error rates across the groups. For
example, groups that adopt a broader interpretation of the question may tend to respond
positively, and thus have a higher false positive error rate, whereas groups adopting a narrower
interpretation may tend to respond negatively, resulting in a higher false negative error rate.

These patterns of response error may be quite different for questions about more
stigmatized and strictly outlawed drugs such as cocaine and heroin or for questions regarding
the current use of illegal drugs rather than use in the past year. For these the tendency
deliberately to deny use may be greater, which will induce more local dependence among the
indicators. Thus, model 2 or 4 may emerge as the best model for describing the error in more
sensitive questions on drug use.

In the next two sections, we present the model 1 estimates of the classification error rates
for each indicator, first for the total population and then by the age, race and sex. We
compared these estimates with estimates derived from models 2–4 and found that they differ
somewhat from the estimates which we report, particularly at the group level. However, the
major findings that are reported here do not depend on the choice of model.

3.4.3. Total population level estimates of classification error
Table 4 shows the estimated classification error rates (expressed as percentages) for the total
population, for all three years including a revised 1994 data set, denoted by 1994¢. This data
set is identical with the 1994 data set for indicators A and B but differs importantly for
indicator C as described below. Standard errors, which are provided in parentheses, assume
simple random sampling and do not take into account the unequal probability cluster design
of the NHSDA. Consequently, they may be understated.

Several key points can be made from these results.

(a) The false positive rates for all three indicators are very small across all three years
except for indicator C in 1994 where it is 4.07%: more than four times that of the other
two measurements.

Table 4. Comparison of estimated percentage classification error by indicator 

True Indicator of use Classification errors (%) for the following data sets:
classification in past year

1994 1994¢ 1995 1996

Yes (X ¼ 1) Recency ” no (A ¼ 2) 7.29 (0.75) 6.93 (0.72) 8.96 (0.80) 8.60 (0.79)
Direct ” no (B ¼ 2) 1.17 (0.31) 1.18 (0.31) 0.90 (0.28) 1.39 (0.34)
Composite ” no (C ¼ 2) 6.60 (0.70) 7.18 (0.72) 5.99 (0.67) 7.59 (0.74)

No (X ¼ 2) Recency ” yes (A ¼ 1) 0.03 (0.02) 0.03 (0.02) 0.01 (0.01) 0.08 (0.02)
Direct ” yes (B ¼ 1) 0.73 (0.07) 0.76 (0.07) 0.78 (0.07) 0.84 (0.07)
Composite ” yes (C ¼ 1) 4.07 (0.15) 1.23 (0.09) 1.17 (0.08) 1.36 (0.09)

 Standard errors are given in parentheses.
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(b) The false negative error rates vary from 6.93% (1994¢) to 8.96% (1995) for the recency
indicator A, from 5.99% (1995) to 7.59% (1996) for the composite indicator C and
only from 0.90% (1995) to 1.39% (1996) for the frequency indicator B.

(c) Across all four data sets, the same general results hold, i.e. substantial false negative
rates for A and C, low false negative rates for B and low false positive rates for A, B
and C except as noted in (b).

The large false positive rate for C in 1994 suggests that the high inconsistency rate
between C and the other two indicators is due to classification error in C and not classi-
fication error in the other two indicators as hypothesized earlier. To investigate further, the
questions comprising C for 1994 were compared with those in 1995 and 1996 to identify
changes in the questionnaire that might explain this finding. The primary difference between
1994 and 1995 or 1996 is the change in question 7 after 1994 (see Appendix A). For 1994,
the instructions for question 7 were quite complicated and the response task (mark a
response in column B for each yes in column A) could have been confusing to many
respondents. After 1994, this question was replaced by other questions that do not suffer
from this problem. Therefore, it is plausible that question 7 is the primary cause of the high
false positive rate for C in 1994.

To test this hypothesis, a new indicator was created, denoted by C ¢, by deleting question 7
from indicator C. This new indicator replaced C in the revised data set denoted by 1994¢ and
the five models described above were refitted to these data. The last six rows of Table 3 show
the fit statistics and, again, model 1 was selected by the selection criteria. The error parameter
estimates from this model are in Table 4 under the 1994¢ column.

Note that the false positive rate for C using the revised 1994 data set dropped to 1.23%
from 4.07%. Thus, our hypothesis that item 7 is the cause of the high false positive rate for C
in 1994 is confirmed. To verify the LCA result, we checked the consistency of C ¢ with A and
B for 1994 and found it to be similar to that for C versus A and B in 1995 and 1996. We
conclude that question 7 is the cause of the poor agreement of C with A or B in 1994 and,
thus, in our subsequent analysis, we shall evaluate the error rate in C ¢ using the 1994¢ data set
as well as in C. (After reviewing this report, an NHSDA staff member (Rachel Caspar)
confirmed that item 7 in 1994 was dropped because many respondents were incorrectly
completing the item and, on the basis of interviewer reports, experienced much difficulty in
understanding the item.)

In addition to the large false positive rate finding in point (a), the small false negative rate
for B noted in (b) was also quite unexpected. Why should the false negative rate for B be so
much smaller than for A? We looked for an explanation in the statement of the survey
questions for A and B. Indicator A is based on the question ÔHow long has it been since you
last used marijuana or hashish?Õ whereas indicator B asks ÔOn how many days in the past 12
months did you use marijuana or hashish?Õ. For A, respondents who use the drug on only a
few days must admit to Ôusing marijuanaÕ which would classify them in a group (Ômarijuana
usersÕ) to which they may think is inappropriate since they used the drug so infrequently.
However, for B, respondents can report their frequency of use and, thus, some respondents
who deny using marijuana in the past year for the recency question (A) may admit to using
the drug on 1 or 2 days on the frequency question (B).

Thus, we hypothesized that respondents who responded falsely to the recency question
but answered honestly to the frequency question are the infrequent users. To test this
hypothesis, responses for the frequency question were cross-classified by the A-classification.
Our hypothesis would be confirmed if a disproportionate number of respondents who were
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classified as ÔNo use in the past 12 monthsÕ by indicator A and ÔYes, use in the past 12
monthsÕ by indicator B are light users who responded Ô1 to 2 daysÕ to the frequency question.

The results of this analysis are reported in Table 5 and are consistent with this theory.
Among respondents answering ÔNo past year useÕ for A and ÔPast year useÕ for B, 58.62%
(weighted) answered in the 1 to 2 days category for the frequency question. Compare this
with only 15.66% in the 1 to 2 days category among people who were consistently classified
as users by both indicators.

This analysis demonstrates the utility of LCA for identifying problems with a ques-
tionnaire. In addition, the causal analysis investigating findings (a) and (b) above provides
evidence of the validity of the latent class estimates.

3.4.4. Estimates of classification error for demographic domains
Next, we examine the model 1 estimates of the classification error probabilities by sex, race or
Hispanicity and age domains for each indicator. Estimates by sex are presented in Table 6,
race or Hispancity in Table 7 and age in Table 8. The entries in Tables 6–8 are false positive
(corresponding to the rows ‘true’ ” ‘yes’ and ‘observed’ ” ‘no’) and false negative (corres-
ponding to the rows ‘true’ ” ‘no’ and ‘observed’ ” ‘yes’) probability estimates with their
simple random sampling standard errors.

Indicator A is particularly important to the NHSDA since it is a key question in the newly
redesigned instrument that was introduced in 1999. Focusing on the corresponding section of
Tables 6–8, we see the following for indicator A:

(a) no significant differences in error rates between males and females for all three years;
(b) no significant differences in error rates between the Hispanics, blacks and whites or

other demographic groups—however, across years (except for 1994¢), the estimates for
blacks and Hispanics are slightly larger than those for whites or other;

(c) except for 1995, no significant differences in error rates between the four age groups
and no pattern of non-significant differences were observed—in 1995, the false nega-
tive error rate for the 35 years and older age group was significantly higher (p < 0.05)
than for the other age groups.

Table 5. Distribution of reported days of use in the past year by recency
of use in the past year: 1994–1996 NHSDAs 

Number of days used
marijuana in past year
from frequency question

% reporting no
use in past year on
recency question

% reporting use
in past year on
recency question

More than 300 5.84 10.00
201–300 0.96 5.54
101–200 0.93 9.06
51–100 1.45 10.01
25–50 2.96 10.50
12–24 4.76 11.95
6–11 6.06 11.76
3–5 18.41 15.51
1–2 58.62 15.66

Total 100.00 100.00

 Based on 53715 responses.
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Table 6. Estimated classification probabilities and standard errors by sex for indicators A, B and C 

Classification Group Estimated probabilities for the following indicators and data sets:

True Observedà Indicator A Indicator B Indicator C

1994 1994¢ 1995 1996 1994 1994¢ 1995 1996 1994 1994¢ 1995 1996

Yes No Males 7.28 (0.94) 6.69 (0.90) 8.35 (1.05) 7.96 (0.95) 1.03 (0.30) 1.01 (0.29) 0.68 (0.23) 1.17 (0.31) 6.04 (0.67) 6.54 (0.74) 4.98 (0.67) 6.39 (0.72)

(X ¼ 1) (I ¼ 2) Females 7.29 (1.29) 7.37 (1.28) 9.85 (1.39) 9.75 (1.44) 1.42 (0.44) 1.49 (0.46) 1.22 (0.42) 1.78 (0.48) 7.61 (0.90) 8.31 (1.05) 7.47 (1.02) 9.77 (1.14)

No Yes Males 0.04 (0.02) 0.04 (0.02) 0.02 (0.01) 0.09 (0.03) 0.87 (0.11) 0.94 (0.11) 1.03 (0.12) 1.04 (0.12) 4.71 (0.24) 1.46 (0.13) 1.50 (0.13) 1.72 (0.14)

(X ¼ 2) (I ¼ 1) Females 0.04 (0.02) 0.03 (0.02) 0.01 (0.01) 0.07 (0.02) 0.61 (0.08) 0.60 (0.08) 0.56 (0.08) 0.67 (0.19) 3.51 (0.19) 1.04 (0.10) 0.88 (0.09) 1.06 (0.10)

 Standard errors are given in parentheses.
àI denotes either the indicator A, B or C.

Table 7. Estimated classification probabilities and standard errors by race for indicators A, B and C 

Classification Group Estimated probabilities for the following indicators and data sets:

True Observedà Indicator A Indicator B Indicator C

1994 1994¢ 1995 1996 1994 1994¢ 1995 1996 1994 1994¢ 1995 1996

Yes No Hispanic 9.34 (3.02) 8.77 (2.91) 11.08 (3.32) 10.84 (3.16) 1.02 (0.35) 0.99 (0.35) 1.20 (0.48) 1.89 (0.72) 7.44 (1.14) 8.08 (1.67) 6.28 (1.49) 9.65 (1.91)

(X ¼ 1) (I ¼ 2) Black 7.53 (2.19) 6.40 (2.00) 12.58 (2.83) 10.16 (2.31) 0.61 (0.21) 0.59 (0.19) 0.51 (0.20) 1.06 (0.35) 7.54 (1.07) 7.51 (1.35) 8.73 (1.80) 9.01 (1.54)

White or
other

7.05 (0.84) 6.84 (0.83) 8.23 (0.93) 8.09 (0.89) 1.27 (0.36) 1.28 (0.36) 0.92 (0.32) 1.40 (0.37) 6.37 (0.71) 7.03 (0.77) 5.55 (0.73) 7.14 (0.78)

No Yes Hispanic 0.03 (0.02) 0.02 (0.02) 0.01 (0.01) 0.06 (0.03) 0.90 (0.25) 0.94 (0.25) 0.64 (0.21) 0.67 (0.20) 3.75 (0.47) 1.15 (0.23) 1.08 (0.24) 1.09 (0.22)

(X ¼ 2) (I ¼ 1) Black 0.03 (0.02) 0.04 (0.02) 0.01 (0.01) 0.06 (0.03) 1.40 (0.28) 1.52 (0.29) 1.33 (0.29) 1.18 (0.26) 3.74 (0.42) 1.27 (0.22) 0.77 (0.17) 1.18 (0.21)

White or
other

0.04 (0.02) 0.04 (0.02) 0.01 (0.01) 0.08 (0.02) 0.62 (0.07) 0.63 (0.07) 0.72 (0.08) 0.82 (0.08) 4.15 (0.17) 1.25 (0.09) 1.24 (0.09) 1.42 (0.10)

 Standard errors are given in parentheses.
àI denotes either the indicator A, B or C.
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Table 8. Estimated classification probabilities and standard errors by age for indicators A, B and C 

Classification Group
(years)

Estimated probabilities for the following indicators and data sets:

True Observedà Indicator A Indicator B Indicator C

1994 1994¢ 1995 1996 1994 1994¢ 1995 1996 1994 1994¢ 1995 1996

Yes No 12–17 4.91 (1.62) 4.53 (1.52) 7.23 (1.69) 10.57 (2.02) 1.76 (0.62) 1.74 (0.59) 1.52 (0.55) 2.27 (0.66) 6.88 (0.93) 7.70 (1.31) 6.31 (1.10) 10.02 (1.48)

(X ¼ 1) (I ¼ 2) 18–25 8.19 (1.31) 7.64 (1.25) 7.14 (1.25) 8.88 (1.28) 0.71 (0.22) 0.68 (0.21) 0.29 (0.10) 0.74 (0.23) 5.23 (0.67) 5.20 (0.77) 4.11 (0.66) 5.26 (0.74)

26–35 8.29 (1.62) 8.15 (1.57) 7.88 (1.58) 8.00 (1.59) 0.90 (0.29) 0.93 (0.29) 0.44 (0.17) 1.13 (0.36) 5.37 (0.69) 4.74 (0.72) 4.78 (0.79) 6.62 (0.97)

>35 6.51 (1.40) 6.24 (1.36) 13.92 (2.02) 7.34 (1.53) 1.69 (0.52) 1.74 (0.52) 1.71 (0.60) 2.00 (0.61) 9.31 (1.06) 11.61 (1.36) 9.55 (1.28) 10.44 (1.29)

No Yes 12–17 0.05 (0.03) 0.05 (0.03) 0.02 (0.02) 0.06 (0.02) 0.59 (0.18) 0.64 (0.18) 0.49 (0.16) 0.64 (0.19) 4.71 (0.49) 1.40 (0.24) 1.39 (0.24) 1.30 (0.21)

(X ¼ 2) (I ¼ 1) 18–25 0.03 (0.02) 0.03 (0.02) 0.02 (0.02) 0.07 (0.03) 1.42 (0.28) 1.56 (0.29) 2.41 (0.36) 1.82 (0.32) 5.88 (0.51) 1.98 (0.27) 2.09 (0.29) 2.34 (0.30)

26–35 0.03 (0.02) 0.03 (0.01) 0.02 (0.01) 0.08 (0.03) 1.08 (0.20) 1.09 (0.20) 1.41 (0.23) 1.17 (0.21) 5.70 (0.43) 2.16 (0.26) 1.72 (0.23) 1.85 (0.23)

>35 0.04 (0.02) 0.03 (0.02) 0.01 (0.01) 0.09 (0.03) 0.53 (0.07) 0.54 (0.07) 0.37 (0.06) 0.62 (0.08) 3.18 (0.17) 0.81 (0.08) 0.83 (0.08) 1.08 (0.09)

 Standard errors are given in parentheses.
àI denotes either the indicator A, B or C.
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The next two sections of Tables 6–8 present the corresponding results for indicators B and
C. The notable findings are as follows:

(a) for both indicators, no significant differences in error rates between males and females
for all three years;

(b) black respondents have a higher false positive error rate for indicator B than do whites
or Hispanics;

(c) members of the 35 years and older age group have a higher false negative error rate for
indicator C than do those in other age groups;

(d) for both indicators B and C, the false positive error rates were higher for members of
the 18–25 and the 26–35 years age groups and the false negative error rates for these
two age groups are lower than for the other two age groups.

Since we would not expect a large difference in classification error by sex, the null findings
for this variable for all three indicators is plausible. The findings of the higher false negative
and lower false negative error rates for the 35 years and older age group, particularly for
indicator C, fit the pattern hypothesized in the previous discussion of the interpretation of
group-by-indicator interactions for model 1. It is plausible that the 35 years and older group
could have very different interpretations of some drug use questions than the younger age
groups have. For example, a person who smoked marijuana in the past year but did not
inhale the smoke may indicate no use of marijuana in the past year. (Recall President
Clinton’s response to this question several years ago.) A greater tendency to interpret the
drug use questions narrowly in this manner for the 35 years and older age group would lead
to the differences by age shown in Table 8.

3.4.5. Estimates of prevalence
Finally, we compared three types of prevalence estimates of the use of marijuana in the past
year for all three years produced by model 1. Table 9 provides the results for 1996; the results
for 1994 and 1995 are similar. The first column of estimates in Table 9 is based on the recency
question; the second column of estimates is based on model 1 in Table 3 which essentially
adjusts the recency estimates for false negative and false positive classification errors; the
third set of estimates corresponds to the official NHSDA estimates based on indicator T
described in Section 3.3. Table 9 contains overall estimates (first row) as well as estimates by
race or ethnicity, age and sex domains.

Because the recency question is biased downwards by a substantial false negative error, we
expect the estimates based on A to be uniformly lower than the model-based estimates.
Further, since the NHSDA estimates are biased upwards because of the false positive error in
A and B, we expect the estimates based on T to be uniformly higher than the model estimates.
This ordering of the three sets of estimates is apparent in the 1996 results as well as for the
other two years not shown in Table 9.

This analysis indicates that the population level estimates from the NHSDA are, on
average, between 0.7 and 0.9 percentage points higher than the corresponding model-based
estimates. However, for some subgroups, the difference may be as high as 1.5 percentage
points. The national level estimates based on the single recency question are between 0.5 and
0.6 percentage points lower than the corresponding model-based estimates. At the subgroup
level, the difference may be as high as 1.9 percentage points. Thus, the consequence of
assuming no false negative results as for the recency prevalence estimator or no false positive
results as for the NHSDA estimator can be substantial for some domains.
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One reason why the NHSDA estimator may be preferred over the model-based estimator
despite its upward bias is that it may at least partially compensate for false negative errors
which are not accounted for by the LCA. For example, respondents who use marijuana yet
deny with probability 1 each time that the question is asked in the survey (so-called certain
deniers) are not accounted for in the false negative probability estimates. Our limited
simulation studies to date indicate that the bias in the false negative error estimates may be
substantial when the proportion of users who are certain deniers exceeds 15%; however,
more study is needed to understand this effect fully. Still, it is possible that the NHSDA
estimator is less biased than the model-based estimator when the consistent denier bias is
considered.

It is also possible that the patterns of false positive bias for population subgroups of
interest are very different from the patterns of certain denier bias for these subgroups. For
example, if we assume that false positive error occurs as a result of the complexity of the
questionnaire and its difficulty, then the population subgroups that are most prone to false
positive bias are low literacy populations and individuals who are careless in completing the
NHSDA answer sheets regardless of age, race, sex, etc. By using the false positive error to
compensate for the certain deniers, the tacit assumption is that the same population
subgroups that inadvertently answer that they used marijuana when they did not are the
same groups that deny their use consistently. Although it may be true that the use of
marijuana is higher for some groups who have low literacy, to base a bias adjustment on
the assumption that false positive and consistent denial patterns are similar is highly
questionable.

4. Discussion

LCA methods have considerable potential for providing more valid estimates of self-
reported drug use; however, we see even greater potential for exploiting these methods for

Table 9. Comparison of recency, latent class model and NHSDA prevalence
rates for the use of marijuana in the past year, for 1996 

Domain Prevalence rates (%) for the following indicators:

Recency Latent class model NHSDA

Total 7.16 (0.19) 7.75 (0.20) 8.60 (0.35)

Race or ethnicity
Hispanic 5.72 (0.55) 6.36 (0.59) 7.04 (0.44)
Black 8.79 (0.62) 9.72 (0.66) 11.09 (0.65)
White or other 7.11 (0.21) 7.65 (0.22) 8.43 (0.45)

Age (years)
12–17 11.27 (0.72) 12.54 (0.76) 12.99 (0.78)
18–25 20.40 (0.83) 22.34 (0.86) 23.85 (1.08)
26–34 9.44 (0.53) 10.19 (0.55) 11.33 (0.54)
>35 2.94 (0.16) 3.08 (0.17) 3.76 (0.34)

Sex
Male 9.55 (0.31) 10.29 (0.33) 11.38 (0.58)
Female 4.95 (0.22) 5.41 (0.23) 6.02 (0.31)

 Standard errors are given in parentheses.
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identifying problems in the design of questionnaires and the wording of questions. The
problems in the questionnaire identified in this paper would have been much more difficult
to discover by using other means of analysis. For example, the inconsistency analysis of
Table 2 suggests that, for the 1994 NHSDA, indicator C is considerably more inconsistent
with the other two measurements of the use of marijuana in the past year. However, it is
not apparent that the problem is due to false positive error in indicator C and/or false
negative error in the other two indicators. The LCA estimates of false positive and false
negative error for the three indicators quickly and unequivocally identified the problem as
false positive error in C.

Similarly, an analysis of the inconsistencies for indicators A and B clearly demonstrates
a problem for one of the two indicators, but it is not apparent that the source of the
inconsistency was the response of low frequency users to the recency question. LCA quickly
led us to suspect that indicator A was the source of the inconsistency. This led to a further
investigation using a more traditional analysis which uncovered the source of the problem.
These analyses are illustrative of the utility of LCA for indicating problems in the execution
of surveys.

Because the three indicators in our analysis are all obtained in one interview, we had
expected a strong correlation between the errors in the indicators, yet this was not so. Even
this null finding is interesting in that it suggests the absence of social desirability influences on
responses to questions on the use of marijuana in the past year in the NHSDA. However, we
expect that local dependence models will be quite important for the analysis of embedded
indicators of more stigmatized drug use behaviours.

It should be noted that the NHSDA is currently undergoing a redesign and a conversion
to computer-assisted self-interviewing (CASI). Questions on drug use that were in use before
1999 have been revised in the CASI version, so the problem identified for the recency
question and the potential biases that are associated with the former NHSDA estimation
approaches are not directly applicable to the post-1999 NHSDA design. In the CASI
implementation, the marijuana sequence uses a ÔgateÕ question that asks respondents whether
they have ever used marijuana in their entire lifetimes. Only those who respond positively to
this gate question are asked more detailed questions about their use of marijuana and
recency. The analytical techniques described in this paper could provide a means for
evaluating the error in the new design and determining whether the gains in accuracy
expected from CASI administration are realized.

Appendix A: Definition of indicators A, B and C for 1994, 1995 and 1996

A.1. Indicator A for all three years—the recency-of-use question
From NSHDA answer sheet 3:

How long has it been since you last used marijuana or hashish?

A ” ‘yes’ if either Ôwithin the past 30 daysÕ or Ômore than 30 days but within past 12 monthsÕ; A ” ‘no’
if otherwise.

A.2. Indicator B for all three years—the frequency-of-use question
From NHSDA answer sheet 3:

Now think about the past 12 months from your 12-month reference date through today. On how
many days in the past 12 months did you use marijuana or hashish?

B ” ‘yes’ if the response is 1 or more days; B ” ‘no’ otherwise.
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A.3. Indicator C for 1994—the composite question
From NHSDA answer sheet 16:

1. As you read the following list of drugs, please mark one box beside each type of drug to indicate
whether you have used that drug during the last 12 months.
2. As you read the following types of drugs, please mark one box beside each type of drug to indicate
whether you had a period of a month or more during the past 12 months when you spent a great deal
of time getting the drug, using the drug, or getting over its effects.
3. As you read the following list of drugs, please mark one box beside each type of drug to indicate
whether you have used that kind of drug much more often or in larger amounts than you intended during
the past 12 months.
4. As you read the following types of drugs, please mark one box beside each type of drug to indicate
whether you have built up a tolerance for the drug so that the same amount of the drug had less effect
than before during the last 12 months.
5. As you read the following list of types of drugs, please mark one box beside each type of drug to
indicate whether you have often been under the effects or after-effects of that kind of drug in situations
where your physical safety was threatened (such as driving a car or motorcycle, using heavy machinery,
or swimming) during the past 12 months.
6. As you read the following list of types of drugs, please mark one box beside each type of drug to
indicate whether your use of that drug has caused you to have problems with your family or friends,
problems at work, school, or with the police, or any emotional or psychological problems during the past
12 months.
7. As you read the following list of types of drugs, please mark one box beside each type of drug. On
each line under Column A, mark the ‘‘YES’’ box on the left if you wanted to cut down or stop using
that drug in the past 12 months. Mark the ‘‘NO’’ box on the right if you did not want to cut down or
stop using that drug or if you did not use that drug during the past 12 months.

For each ‘‘Yes’’ box you mark in Column A, please indicate in Column B whether you were able
to cut down on or stop your use of that drug every time you wanted to during the past 12
months. Mark the ‘‘YES’’ box in Column B if you were able to cut down on or stop your use of
that drug every time you wanted to during the past 12 months. Mark the ‘‘NO’’ box if you were
unable to cut down or stop your use of that drug when you wanted to during the past 12
months.

C ” ‘yes’ if either questions 1, 2, … or 7 answered ‘yes’; C ” ‘no’ otherwise.

A.4. Indicator C for 1995 and 1996—the composite question
From NHSDA answer sheet 14 (1995) or answer sheet 16 (1996) (questions 1–4 are identical with those
for indicator C for 1994):

5. As you read the following list of types of drugs, please mark one box beside each type of drug to
indicate whether your use of that drug has often kept you from working, going to school, taking care of
children, or engaging in recreational activities during the past 12 months.
6. As you read the following list of types of drugs, please mark one box beside each type of drug to
indicate whether your use of that drug has caused you to have any emotional or psychological
problems—such as feeling uninterested in things, feeling depressed, feeling suspicious, feeling paranoid,
or having strange ideas during the past 12 months.
7. As you read the following list of types of drugs, please mark one box beside each type of drug to
indicate whether your use of that drug has caused you any health problems—such as liver disease,
stomach disease, pancreatitis, feet tingling, numbness, memory problems, an accidental overdose, a
persistent cough, a seizure or fit, hepatitis, or abscesses during the past 12 months.
8. As you read the following list of types of drugs, please mark one box beside each type of drug to
indicate whether, during the past 12 months, you have wanted or tried to stop or cut down on your use
of that drug but found that you couldn’t.

C ” ‘yes’ if either questions 1, 2, … or 8 answered ‘yes’; C ” ‘no’ otherwise.
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Appendix B: Classification error rates for the model {AX, AF}

In this appendix we show that, for estimating the probability P(AjXF) where X is a dichotomous latent
variable, A is a dichotomous indicator of X and F is a grouping variable with f levels, the model {AX,
AF} implies that /fhf is constant for all f, where /f is the odds of a false positive error and hf is the odds
of a false negative error.

Let

kxf ¼ log ( pa¼1jxf
�
pa¼2jxf ): (7)

When x ¼ 2, kx¼2,f is the log-odds of a false positive error and, when x ¼ 1, )kx¼1, f is the log-odds
of a false negative error. It therefore follows that

kx¼2,f ÿ kx¼1,f ¼ log ( pa¼1jx¼2, f
�
pa¼2jx¼2, f )þ log ( pa¼2jx¼1, f

�
pa¼1jx¼1, f )

¼ log (/f )þ log ( hf ) (8)

where /f is the odds of a false positive error and hf is the odds of a false negative error. Now, the model
{AX, AF} for pajxf implies that

kxf ¼ xþ xX
x þxF

f (9)

for logistic regression variables x, xX and xF. Thus,

kx¼2, f ÿ kx¼1, f ¼ xþ xX
2 þxF

f ÿ (xþ xX
1 þxF

f )

¼ xX
2 ÿxX

1

¼ k0 , say, (10)

where k0 is a constant for all f. Therefore, it follows from equation (8) that /f hf is constant for all f.
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