#### "A Proposed Monetary Regime for Small Commodity-Exporters: Peg the Currency in Terms of the Export Price" Jeffrey Frankel

#### "The Role of Sterilized Intervention in Exchange Rate Stabilization Policy"

Michael Hutchison

Discussion by Kenneth N. Kuttner Federal Reserve Bank of New York

Stabilizing the Economy: What Roles for Fiscal and Monetary Policy? CFR/IIE Conference, 11 July 2002

#### Disclaimer

"The views expressed here are solely those of the author, and are not necessarily those of the Federal Reserve Bank of New York, or the Federal Reserve System."

### Introduction and summary

- How should small open economies manage their exchange rates?
- These papers present two slightly contrarian views:
  - Frankel: commodity-producing countries should peg their currencies to the relevant commodities.
  - Hutchison: sterilized intervention may have a role to play in stabilizing the exchange rate.

#### "A Proposed Monetary Regime for Small Commodity-Exporters: Peg the Currency in Terms of the Export Price"

Jeffrey Frankel

## Frankel's insight

- With a commodity-backed currency, the vagaries of the commodity market will affect your terms of trade.
- If you're a small commodity exporter, you have to accept those market vagaries, and deal with them as best you can.
- Linking the terms of trade to the commodity price helps deal with those vagaries.

### A minimal model

- Home country produces two goods: nontradables and a commodity (coffee).
- It exchanges coffee for tradables, which are consumed along with nontradables.
- Coffee price is exogenous.
- Full employment + equilibrium in nontradables market  $\rightarrow P_N/P_T$ .



## **Response to fall in coffee price**

- Increase in  $P_N/P_C \rightarrow$  reallocation away from coffee production, towards nontradables.
- A decline in  $P_N/P_T$  (more expensive imports) is required to restore equilibrium.



### Where's the money?

- The price of the currency unit has no role here all prices are relative.
- Why, then, does it matter what the currency is pegged to?
- It comes down to whether the exchange rate does the adjusting, or the price level.

## To peg to the dollar...

- The dollar peg:
  - The value of the currency is fixed at 1 peso/\$.
  - If the market price of coffee is \$1/lb, then the peso price of coffee is 1 peso/lb.
  - If the market price drops to \$0.50/lb, and the exchange rate remains fixed,  $P_N/P_C$  will rise to 2.
  - "Old"  $P_N / P_T \Rightarrow$  internal imbalance,  $P_N$  must fall to restore equilibrium.

#### ...or to to coffee?

- The coffee peg:
  - The value of the currency is fixed at 1 peso/lb.
  - If the market price of coffee is \$1/lb, then the exchange rate will be 1 peso/\$.
  - If the market price drops to \$0.50/lb, then the exchange rate will depreciate to 2 pesos/\$.
  - Since  $P_T = e P_T^*$ ,  $P_N / P_T$  falls proportionally.
  - "Hard-wired" accommodation.

## So the logic is:

- Some peg is needed for monetary discipline.
- Absent nominal rigidities, any peg will do.
- But nontradables' prices are probably sticky, and slow to adjust.
- A commodity peg minimizes the need for adjustment in the price of nontradables.

# How would the nominal exchange rate behave in this regime?

- Suppose:
  - The pesos/lb price of coffee is fixed, and
  - The \$/Ib price of coffee is given by history.
- Counterfactual nominal exchange rate = constant ÷ \$/lb market price.
- Volatility, but no trend depreciation.

## Columbia's exchange rate under a coffee peg



# Commodity price counterfactuals for currency pegs

• Frankel looks at the volatilities of the pesos/lb nominal market price, and the real price:

pesos/lb  $\div$  pesos/(local goods)  $\times$  \$/(US goods)<sub>base year</sub>

- Nominal price volatility usually would have been lower under \$ (or ¥ or DM) pegs.
- *Real* price volatility would have been *higher*.
  - Presumably due to positive correlation between pesos/lb and pesos/(local goods)...
  - Comparability of CPI baskets across countries?

# Export performance under alternative pegs

- Real exchange rate counterfactuals:
  - Commodity peg: fix pesos/lb, take pesos/(local goods) as given.
  - Currency peg: use real prices in \$, ¥ or DM terms, take pesos/(local goods) as given.
- Use plausible elasticities for export demand.
- Results: commodity peg helps, just when it should.

## Limitations of the approach

- The counterfactuals assume no change in path of domestic price level, pesos/(local goods).
  - Commodity peg will probably have a big impact on the CPI — especially through tradables' price.
- Perhaps more useful to analyze the behavior of  $P_N/P_T$  under alternative pegs.
  - Should display negative correlation with  $P_N / P_C$ .
  - Assume PPP for tradables...
  - Some rudimentary model needed nontradables.

### **Other reservations**

- Frankel's prescription applies cleanly to the "pure" case in which no tradables (other than the commodity) are produced locally.
- Commodity-induced exchange rate fluctuations would affect domestic tradables production.
- What is the optimal degree of accommodation in this case less than one-for-one?
- Under what conditions (e.g., min export share) would a commodity peg dominate a dollar peg?

## Hard peg issues

- A commodity peg might mitigate exchange rate misalignments, making the peg more viable...
  - But is there any reason to believe a commodity peg would be immune to speculative attack?
- How do you create a commodity-backed currency in practice?
  - Hold physical coffee bean reserves (for example), and be willing to exchange them for currency?

## Why not an inflation target?

- Terms of trade fluctuations present a challenge to IT, but this can be addressed by:
  - using a relatively long targeting horizon, and
  - appropriate use of escape clauses.
- Examples:
  - The Bundsbank raised its inflation goal in 1979 in response to the oil price shock.
  - − South Africa in 2001-02: low gold price  $\rightarrow$  depreciation  $\rightarrow$  missed inflation target.

#### "The Role of Sterilized Intervention in Exchange Rate Stabilization Policy"

Michael Hutchison

### **Hutchison's conclusions**

- Sterilized exchange rate intervention *is* effective, at least in the very short term...
- But the the Chiang Mai initiative is too limited to effectively stabilize exchange rates.

## Sterilized intervention: could it be effective?

- Three possible transmission channels:
  - Portfolio balance effects
  - The "classical" signaling channel (information about future monetary policy)
  - The "information signaling hypothesis" (monetary authority's private information about fundamentals)

## Sterilized intervention: *is* it effective?

- Two kinds of empirical evidence:
  - Time series analysis: yields weak (at best) evidence for the efficacy of sterilized intervention.
  - Event study method: yields relatively strong evidence that sterilized intervention *is* effective.
    - Fatum & Hutchison (2001).
- Why the different conclusions?

## The time series approach

- Hutchison: time series techniques are "problematic." Why?
  - Sporadic nature of intervention does not violate classical statistical assumptions.
  - Standard time series estimators should "work."
- Illustration: has BOJ intervention been effective?
  - Time series analysis of official intervention data (weekly frequency, 1991-2001).

## Time series evidence for Japan

#### results of Granger causality tests

Dependent variable = net \$ purchases

| net \$ purch |        | $\Delta$ exch rate |        | $\Delta$ exch  |         |
|--------------|--------|--------------------|--------|----------------|---------|
| lag 1        | lag 2  | lag 1              | lag 2  | R <sup>2</sup> | p-value |
| 0.17         | 0.13   | -0.017             | -0.007 | 0.09           | 0.006   |
| (2.04)       | (1.69) | (2.49)             | (1.82) |                |         |

 $\Rightarrow$  strengthening  $\neq \rightarrow \$$  purchases

Dependent variable =  $\Delta$  exch rate

| net \$ purch |        | $\Delta$ exch rate |        |       | net \$ purch |
|--------------|--------|--------------------|--------|-------|--------------|
| lag 1        | lag 2  | lag 1              | lag 2  | $R^2$ | p-value      |
| 0.35         | 0.73   | -0.072             | -0.049 | 0.01  | 0.382        |
| (0.80)       | (1.33) | (1.26)             | (0.90) |       |              |

 $\Rightarrow$  \$ purchases  $\rightarrow$  no measurable effect on ¥

## The event study approach

- Fundamental difficulty: the timing and duration of interventions are endogenous.
  - Victory is declared when the exchange rate turns around — even if not caused by intervention.
  - This will tend to exaggerate the effects of intervention.
- Nonparametric definition of "success" may find an effect, even when it is *quantitatively* small.

## **Policy implications**

- Why do we care about the very short-term exchange rate movements generated by sterilized intervention?
- Is there any evidence to suggest sterilized intervention really can "burst a bubble"?

## Conclusions

- Both papers challenge conventional wisdom on exchange rate policy.
- Frankel's novel proposal may be worth considering for some countries — but much more work is needed.
- Hutchison's careful analysis suggests rethinking sterilized intervention's role (or lack thereof) in stabilization policy.