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Abstract

This note explains the scoring rule that was chosen for the Royal Sta-
tistical Society�s �Crystal Ball�competition, 2010.

1 The scoring rule in brief

For each of the questions in the competition, contestants need to specify an
estimate and a standard deviation to represent their judgements about an un-
known quantity. After the deadline for competition entries, the true value of
the quantity will become known for each question. The scoring rule then gives
a score to each contestant for each question, and the contestant�s total score is
the sum of their scores on the various questions. The winner(s) will be decided
on the basis of contestants�total scores, with low scores being better than high
scores.

1.1 The rule ...

The rule for scoring a contestant for a given question depends on their estimate
t, their standard deviation s, the true value x and a further value �s (to be
explained later). Speci�cally, the score has three components �

S = S1 + S2 + S3 ;

where the components are

S1 =

�
x� t
s

�2
;

S2 = 2:5
p
5 exp

(
�2
�
x� t
s

�2)
;

S3 =

�
x� t
�s

�2
:

Although the �rst and third components are very similar, the di¤erence between
using s and �s in the denominator is important.
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The purpose of this note is to explain in detail how this scoring rule was
chosen, why it was chosen in preference to other possible rules, and what the
basic properties of this rule are. In principle, it is not really necessary for con-
testants to know the detail. Their task is simply to judge the uncertain quantity
in each question as accurately as possible through their stated estimates, and to
express the accuracy that they claim realistically through their stated standard
deviations. However, this presupposes that the scoring rule is fair, and another
purpose of this note is to reassure potential contestants on that matter.

1.2 ... may be fair ...

A fair scoring rule should reward (by giving low scores to) the contestants who
perform the stated task well, i.e. to those who (a) are able to make good esti-
mates, and (b) can assess realistically how good their estimates are. An unfair
scoring rule would e¤ectively reward people for doing something other than the
stated task. If, for instance, better scores could be obtained by deliberately
under-estimating the uncertain quantities, then this would not be a fair rule.
We should remember that luck inevitably plays some part in such a compe-

tition. Any one of the uncertain quantities could produce a really unexpected
or odd value x. The best contestant might be beaten by someone luckier, who
gave a poor estimate which just happened to coincide with a freak outcome. A
fair rule will be one for which the contestant who best ful�ls the stated task will
get the best (lowest) scores on average, in the long run.
Our chosen rule is intended to be fair in this sense, and much of the detail

in this note is about demonstrating this.

1.3 ... but ...

Having said that, the objective is not actually to get the best possible score
on average, in the long run. The objective is to beat the other contestants.
Suppose that you are a good judge of these quantities but you suspect you are
not the best. You are going to need some luck to win, and to give rein to that
luck you might choose to make riskier judgements. In what we have called a
fair rule you will minimise your score in the long run by trying to carry out
the task as speci�ed, honestly and accurately specifying your estimates t and
their standard deviations s, but it may be possible (through careful study of
the rule) to increase your chances of actually winning the competition by doing
something di¤erent (such as deliberately under-estimating the quantities).
Although it may be possible to gain an advantage in this way, remember that

on average any such strategy will produce worse scores and we very much hope
that contestants will enter into the spirit of the competition and enjoy tackling
the task just as it is stated �give your best estimates and your best judgements
(in the form of your standard deviations) of how good those estimates are.
Only readers actually interested in the technical detail need read further!
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2 Another proper scoring rule

To introduce ideas for the scoring rule S, we �rst discuss the formal de�nition of
what we have hitherto called a fair scoring rule, and then introduces a simpler
rule.

2.1 Proper scoring rules

Suppose that you have a probability distribution for some unknown quantity
X and are asked to give some summary p of that distribution. We distinguish
between your actual value p and the value q that you state in response to being
asked for p. After you have given the response q and the true value X = x of the
unknown quantity becomes available, you will receive a score L(q; x). We will
suppose that, as with our score S, lower scores are better. Before X becomes
known, you do not know what score you will receive, but your expected score
is �L(q) = E fL(q;X)g. The scoring rule is called proper if, no matter what
your actual distribution may be for X, you will minimise your expected score
by stating a value q that equals your actual value p, i.e.

min
q
�L(q) = �L(p) :

So a scoring rule is proper if you get the best score on average by honestly
stating what is asked for. This is what we have called a fair rule in the previous
section, but �proper�is the usual technical term.
A simple example of a proper scoring rule is when p is the expected value

of X, p = E(X). Then consider the score L(q; x) = (x� q)2. This is called the
quadratic score, and it is easy to prove that it is proper. First note that

�L(q) = E fL(q;X)g = E
�
(X � q)2

	
= E(X2)� 2qE(X) + q2

= E(X2)� 2qp+ q2 = (p� q)2 + E(X2)� p2

= (p� q)2 + V ar(X) :

This is obviously minimised by setting p = q.
More generally, if p = Efg(X)g for some function g(�), then the scoring rule

L(q; x) = fg(x)� qg2 is proper.

2.2 Quadratic rule for the Crystal Ball competition

We can easily get a proper scoring rule now for the Crystal Ball competition by
noting that we are asking for t = E(X) and s2 = V ar(X) = E(X2)� t2. So we
are equivalently asking for E(X) and E(X2). So the following will be proper

Lq(t; s; x) = (x� t)2 + (x2 � s2 � t2)2 :

The expected value of this score with respect to the contestant�s distribution of
X will be minimised by setting t = E(X) and s2 + t2 = E(X2), which is the
task we are setting them.
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So if this is a proper scoring rule, why did we instead choose the more
complicated score S?
The score has two components, one penalising poor assessment of t and

the other penalising poor assessment of s. We have simply added the two
components together above, but we could equally well have weighted them by
a formula like

Lwq (t; s; x) = wt(x� t)2 + ws(x2 � s2 � t2)2 :

The score would clearly still be proper, but the weights allow us to give more or
less emphasis to one component versus the other. This is important because the
competition is primarily one of prediction and so t is somewhat more important
than s. We would not want the winner to win because of accurately assessing
uncertainty whilst being a poor estimator, so the second component should not
dominate the score.
But it is hard not to have the second term dominating, because it e¤ectively

concerns the fourth power of x (or s or t), while the �rst term is only second
power. It will be hard to balance the two for any given question. In general, a
score that increases according to the fourth power as x becomes further from t
is very stringent in the way it penalises poor assessment.
Furthermore, we want to balance the scores across the various questions, so

that all have more or less equal importance in forming the contestant�s total
score. When the answers to the questions will be of quite di¤erent magnitudes,
this will again be di¢ cult. The problems of weighting the components of the
score, both within and between questions, is the principal reason for looking for
another scoring rule.
A lesser, but still real, concern is the asymmetry of this rule. Under-

estimating x by a given amount does not lead to the same penalty as over-
estimating it by the same amount.

3 Interpretation of S

We begin our study of the proposed scoring rule S by looking at its general
behaviour in order to understand its three components, and to see why it is
preferred to the quadratic score.
We can see that the third component is the quadratic score (x�t)2 weighted

by being divided by �s2. The expectation of this component is minimised by
setting t = E(X), and one way to look at the role of �s is simply as determining
a weight for this third component.
The �rst component has the same formula except that the contestant�s own

standard deviation s replaces �s. It is also a quadratic score that is minimised
on average by t = E(X), but that is no longer its only purpose because it works
in conjunction with the second component.
The second component, S2, is more complex. Notice that it is just a function

of S1 = (x � t)2=s2, but it is actually a decreasing function of this quadratic
function. So while S1 increases with distance of x from t we �nd that S2
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decreases. The reason for this is to penalise poor speci�cation of s. This is
not as simple as the second quadratic term in sq, but it has the bene�t of not
tending to dominate. S2 is never larger than 2:5

p
5, the value it has when t = x.

S2 is needed speci�cally to penalise over-large values of s. With S1 and S3
alone, the rule is clearly not proper because the contestant can send S1 to zero
by making s extremely large. So S1 encourages large values of s and it is the role
of S2 to penalise this in such a way as to make the rule proper. The coe¢ cient
2:5
p
5 is just the value needed to ensure the rule is proper (at least for a speci�c

case, to be explored in more detail below).
Note that this shows that it is much simpler to balance the components in

S than to balance the quadratic score. First, the balance between S1 and S2
has been set to achieve a proper rule (and, as we shall see, the value 2 in the
exponent in S2 has been chosen to ensure that the penalty for poor s is not
too large). Second, we shall also see that to a large extent the balance between
these two components and S3 is not critical. As x moves far from t the score
only grows quadratically, not as the fourth power.
The balance between questions is not di¢ cult to achieve. S1 and S2 are au-

tomatically balanced by using the contestant�s own s. An error by plus or minus
one standard deviation, for example, gives the same value of these two compo-
nents for any question. We need to choose �s appropriately to each question,
and a way of doing that will be described in the following development.
Finally, S is symmetric in x � t, so that an under-estimate gives the same

score as an over-estimate by the same amount.

4 Propriety

We now consider whether S is indeed a proper scoring rule. Suppose that the
contestant states values t0 and s0 as mean and standard deviation, while the
contestant�s true values of these are t and s. we wish to show that E(S) is
minimised by setting t0 = t and s0 = s. We �nd the expectations of the �rst
and third components of S easily.

E(S1) = E

�
(X � t0)2
s02

�
= (s0)�2

�
(t0 � t)2 + s2

	
;

E(S3) = E

�
(X � t0)2

�s2

�
= �s�2

�
(t0 � t)2 + s2

	
:

However, we cannot evaluate the expectation of the third term so easily because
it depends on the shape of the contestant�s distribution of X, not simply on t
and s.

4.1 Normal distribution

We begin by assuming that the distribution is normal, so that the contestant�s
actual distribution for X is N(t; s2). Then we can evaluate E(S3) and it is
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helpful to take a more general case. Let S2 = a expf�b(x � t0)2=s02g, where
for the moment a and b are arbitrary positive constants. Then some standard
manipulations give

E(S2) = E
�
a expf�b(x� t0)2=s02g

�
=

as0p
s02 + 2bs2

exp

�
�b (t

0 � t)2
s02 + 2bs2

�
:

Hence

E(S) =
�
(s0)�2 + �s�2

	�
(t0 � t)2 + s2

	
+

as0p
s02 + 2bs2

exp

�
�b (t

0 � t)2
s02 + 2bs2

�
:

To minimise this with respect to t0 and s0, we di¤erentiate with respect to both
variables:

@E(S)

@t0
= 2

�
(s0)�2 + �s�2

	
(t0 � t)� 2 abs0(t0 � t)

(s02 + 2bs2)3=2
exp

�
�b (t

0 � t)2
s02 + 2bs2

�
;

@E(S)

@s02
= �(s0)�4

�
(t0 � t)2 + s2

	
+

abs2

s0(s02 + 2bs2)3=2
exp

�
�b (t

0 � t)2
s02 + 2bs2

�
+4

ab2s0(t0 � t)2
(s02 + 2bs2)5=2

exp

�
�b (t

0 � t)2
s02 + 2bs2

�
:

The �rst clearly equals zero at t0 = t, and the second is zero at t0 = t and s0 = s
if and only if

(1 + 2b)3=2 = ab :

So we now impose the constraint that a = (1 + 2b)3=2=b. In our actual scoring
rule, a = 2:5

p
5 and b = 2, which satis�es this constraint (and of course this is

where the coe¢ cient 2:5
p
5 comes from).

However, this solution will only be a minimum if the matrix of second deriva-
tives is positive de�nite. The second derivatives are readily found and evaluating
them at t0 = t and s0 = s (and imposing the condition that (1 + 2b)3=2 = ab)
gives the matrix �

2�s�2 0
0 s�4f1 + (b� 1)=(1 + 2b)g

�
;

which is clearly positive de�nite when b > 0, and in particular in our case where
b = 2.
This have proved that there is a minimum at (t0 = t; s0 = s), where the

minimum expected score is found to be

E(S)min = 3 + b
�1 + s2=�s2 :
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However, it is possible that this is not the minimum. In particular, we can
see the role of the third component (which has played essentially no part in
the above proof, except to ensure that the second derivative with respect to t0

is positive) if we consider letting both t0 and s0 become large together so that
(x� t0)2=s02 ! 1. Then we get E(S1 + S2)! 1+ b�1(1 + 2b)3=2e�b, and this is
always less than 3 + b�1. The third component prevents the contestant getting
a better expected score by making both t0 and s0 large. Further exploration has
indicated that (t0 = t; s0 = s) is indeed the minimum for E(S) provided �s � 2s.

4.2 Other distributions

We have not shown that S is a proper scoring rule for all possible distributions,
just for the normal distribution. However, the expectation of S2, which is the
part which depends on the shape of the contestant�s distribution for X, should
in general be similar to the formula above. S2 is symmetric around x = t0, and
this should mean that the expectation is relatively una¤ected if the distribution
of X is asymmetric. Also S2 decays rapidly towards zero, and so is insensitive
to the tail probabilities.
It is possible that if, for instance, a contestant were to formulate beliefs

about X in, say, a gamma distribution and numerically evaluated E(S) over a
range of t0 and s0 that some small improvement could be made on the expected
score by setting t0 6= t and/or s0 6= s. However, this hardly seems a realistic
approach and we remain con�dent that the proposed scoring rule is suitable for
its purpose.

4.3 Choice of b

The choice of b = 2 was made again with a view to balance between the �rst
score component (which is primarily concerned with t0) and the second (which
penalises large s0). At b = 2, the range of possible values of S2 is from 0 to
2:5
p
5 = 5: 59, while the expected value is 2:5. This compares with values of

S1, which range from 0 to in�nity, with an expected value of 1. Larger values
of b seem to give S2 too little in�uence because it too rapidly decays to zero,
while smaller values give S2 too much weight. This choice will be reviewed in
the light of the results of the �rst Crystal Ball competition, and may change if
the competition is run again in future.

5 Setting �s

The �nal unresolved question is how to set �s. Its value should be the same
for all contestants, but can (and should) vary from one question to another.
As indicated above, �s should not be too large relative to a contestant�s s, and
indeed small values give more emphasis to getting the estimate t close to the
actual x, which must be the main focus of the competition.
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Our proposal is to set it, for each question, equal to the lower quartile of
s values given to that question in the sample of contestants. This is another
choice that will be reviewed in the light of experience in the �rst Crystal Ball
competition.

6 Summary

The proposed scoring rule has been carefully chosen with a view to (a) being
fair (i.e. proper), to the extent that it is possible to show this, (b) not giving
too much emphasis to the assessment of s, and (c) being able to adjust weights
to give all questions more or less equal value in the total score.
The scoring rule may not be unconditionally proper, but there seems to

be little scope for distorting choices of t and s to get better expected scores.
Anyway, the nature of the competition is that contestants win not be just getting
their best possible scores on average but by beating other contestants. So even
if the scoring rule was unconditionally proper there would still be some limited
scope for improving winning chances by riskier choices of t and s.
Within the spirit of a competition which is supposed to be fun for contestants

and observers alike, such nuances seem to be unimportant. We believe that the
chosen scoring rule will do a good job of rewarding those who honestly and
accurately assess their expectations and standard deviations for the uncertain
quantities.
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