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9.1 Robots and the Genetic Algorithm

9.1.1 The robot as an artificial lifeform

In previous chapters we have seen that connectionist networks are adept at recogniz-
ing patterns and satisfying soft constraints. The pattern-recognition capability is
useful for a variety of tasks, including visual perception, categorization, language,
and even logical reasoning. The constraint-satisfaction capability can serve an equally
diverse range of functions, such as controlling motor behavior, making decisions,
and solving such classic problems as finding optimal routes for a traveling salesper-
son. A single network can combine both capabilities. For example, sensory informa-
tion presented on an input layer can be interpreted on hidden layers as indicating the
location of an object in a room. This information can then be used to generate
appropriate motor commands on an output layer. A network like this knows how to
locate and move to an object in a room – a simple but essential sensorimotor achieve-
ment. If yoked to a mechanical body and provided with a learning procedure, this
sensorimotor network yields a very interesting device: a robot that can use experi-
ence to improve its own functioning. We have already encountered some elements of
such a device in section 8.3.1, where the robot controllers designed by Beer (1995)
were our first encounter with a newly emerging research area known as artificial life
or A-Life. In the current chapter we will sample other exemplars of this line of
research and consider benefits, limitations, and implications.

For connectionist modelers, embodying networks in robots can be envisioned as
bringing some appealing benefits:

• If learning can be made to rely on consequences produced in the environment by
the robot’s actions, these embodied networks will learn much more naturally
than the usual stand-alone networks provided with predetermined input–output
pairings by a teacher.

• Placing networks in robots can be viewed as distributing the tasks of cognition
beyond the internal cognitive systems (the networks) by coupling them to an
environment. Sharing the cognitive burden in this way ought to reduce the load
on the networks themselves (Clark, 1997a).
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• Confronting the practical problems involved in making a robot perceive and act
in an environment reminds us that these sensorimotor abilities are foundational
to other cognitive performance. In real organisms, perception and action are major
foci of early development and become effective, though still primitive, relatively
quickly. In both phylogeny and ontogeny, systems seem to redeploy already-
existing systems rather than building completely new ones, so it seems plausible
that basic perceptual and motor systems provide computational frameworks which
can be re-utilized in the evolution and development of higher cognitive capac-
ities. (This essentially Piagetian point is modified, but not necessarily abandoned,
by more recent investigators who would add certain conceptual, mnemonic, and
other abilities to the inventory of foundational systems.)

This attractive picture has not yet been realized in its entirety. First, as always,
advantages must be weighed against disadvantages. Building robots and training
networks in them is expensive, in terms of both hardware and training time. More-
over, the fledgling attempts of a network to control the movements of a robot may
produce serious damage to the physical robot. Some researchers sidestep these dis-
advantages, at the cost of weakening the advantages as well, by creating computer
models in which simulated robots receive input and feedback from a simulated
environment. Beer (1995) went even further by using the simulated robot body itself
as the only environment in which the controller network functioned. (Recall that he
used the simulated body’s leg angle as the only source of sensory input to the net-
work.) A second variation on the above picture pursued by many robot researchers,
including Beer, is using simulated evolution as a method of developing networks in
addition to (or in place of) learning.

One obvious advantage of the simulated evolution strategy is that it overcomes an
unrealistic feature of most connectionist simulations: the networks start with random
weights and must learn everything from scratch. Evolution can produce networks
whose weights are fairly well adapted to their tasks prior to any experience. A second
advantage is that the network architecture itself (not just the weights) can be allowed
to evolve. Simulated evolution may even produce useful network configurations that
would not be discovered by human designers (Harvey, Husbands, and Cliff, 1993).

9.1.2 The genetic algorithm for simulated evolution

Studies of simulated evolution generally rely on some version of the genetic algo-
rithm, which was developed by John Holland (1975/1992) to explore the nature of
adaptive systems (also see the textbook by Goldberg, 1989). Holland sought to
simulate three processes that are critical to biological evolution: an inheritance mech-
anism that can produce offspring that resemble their parents, a procedure for intro-
ducing variability into the reproductive process, and differential reproduction. In
the standard picture of biological evolution, the inheritance mechanism involves
chromosomes (composed of genes), variability is achieved when genes recombine
(an advantage of sexual reproduction) or mutate, and differential reproduction is
caused by natural selection. (Alternatives to this standard picture have been pro-
posed; for example, Gould and Lewontin, 1979, claim that differential reproduction
sometimes is due to developmental constraints rather than external selection forces
operating on the organism.)
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In the genetic algorithm, strings of symbols play the role of chromosomes, opera-
tions such as recombination and mutation of these symbols are employed to intro-
duce variation when the strings reproduce, and the fitness function governs selective
reproduction by determining which strings are successful enough to be allowed to
reproduce. The genetic algorithm applies recursively to produce a succession of gen-
erations. In each generation the most successful strings are selected to be parents, a
new generation of strings is created by copying them (recombining or mutating the
copies to introduce new variability), the offspring in turn undergo appraisal of their
fitness, and those selected become parents of yet another generation. For example,
in simulated evolution of an immune system (Forrest, Javornik, Smith, and Perelson,
1993), the evolving strings encode antibodies, and the fitness function evaluates how
well each such string matches a specific antigen (represented by a string that does
not evolve). In the case of connectionist networks (e.g., Belew, McInerney, and
Schraudolph, 1991), a simple choice is to evolve strings of connection weights, but
more interesting simulations are discussed below.

The new research area of artificial life is not limited to explorations of real and
simulated robots and the evolution of networks to control them. Its general goal is to
understand biological systems and processes. Its method is simulation, usually by
means of computer programs. It can be carried out at a variety of levels (from
individual cells or neural circuits to organisms to populations) and timescales (from
that of metabolic processes to ontogenesis to phylogenesis). Robots are artificial
organisms that operate at the timescale of individual actions or action sequences;
networks are artificial nervous systems within these organisms and operate at the
timescale of propagation of activation across connections or layers of connections.
Artificial life researchers have investigated these plus much more. Before presenting
a few specific studies of network controllers for robots, we will take a brief look at
other research strategies in artificial life and how they have been applied in exploring
very simple abstract organisms.

9.2 Cellular Automata and the Synthetic Strategy

Artificial life is related to biology somewhat as artificial intelligence (AI) is related to
psychology. Psychology focuses on cognitive processes and behavior exhibited by
actual organisms, whereas AI separates cognitive processes from their realization in
living organisms. AI researchers have done this by constructing computer systems
that function intelligently. Likewise, biology focuses on carbon-based life on earth,
whereas artificial life separates the processes of life from their carbon-based realiza-
tion. Like AI, artificial life relies on computers, but this time to simulate living
systems and their evolution. Since behavior and cognitive processes are among the
activities of living systems, the boundary between artificial life and AI is not rigid.

9.2.1 Langton’s vision: The synthetic strategy

Christopher Langton is perhaps the person most responsible for having brought a
body of research together under the label “artificial life” (partly by organizing a five-
day Artificial Life Workshop at Los Alamos in 1987). He emphasizes the idea that
artificial life, like AI, adopts a synthetic approach to understanding the evolution
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and operation of living systems: researchers build simulated systems out of already-
identified components and see what emerges from their operation. In contrast,
biologists (and psychologists) primarily take the analytic approach of decomposition
and localization in their investigations of naturally occurring systems: starting with a
real organism, they figure out what component processes are involved in its func-
tioning and where in the system each process is carried out. Langton writes:

Artificial Life is simply the synthetic approach to biology: rather than take living things
apart, Artificial Life attempts to put things together. . . . Thus, for example, Artificial
Life involves attempts to (1) synthesize the process of evolution (2) in computers, and
(3) will be interested in whatever emerges from the process, even if the results have no
analogues in the natural world. (Langton, 1996, p. 40)

Langton’s third point follows from what it means to adopt a synthetic strategy.
Elementary processes, characteristics, rules, or constraints are first identified by
following an analytic strategy in particular species or bodily systems. Once identi-
fied, however, they can be put together strategically. For example, an artificial life
researcher may build abstract organisms – hypothetical beings that are intended to
simulate life at a certain level (the organism) and degree of complexity (usually low)
but are not necessarily intended to represent any particular species. The designer
can experiment with these abstract organisms by subjecting them to simulated evolu-
tion, placing them in a variety of simulated environments, changing certain rules or
processes, varying values of parameters, and so forth.

As useful as the synthetic strategy has been in both AI and artificial life, not all
investigators would agree with Langton that it is defining of their field. Some view
their artificial systems first and foremost as models of some actual system. In AI, for
example, the competing pulls between analysis and synthesis can be seen in the
fact that some computer programs are constructed to play chess like a human and
others are constructed to play chess well. Currently, the programs that play chess
well enough to sometimes defeat grand masters do so by following search trees
much more deeply than is possible for their human opponents. The computer and
human are fairly well matched in skill, but differ in their means. At what point is the
difference so great that the program no longer qualifies as an exemplar of a synthetic
investigation into intelligence and instead should be viewed simply as a feat of
engineering? And how can good use be made of both the (relatively analytic) pro-
gram that seeks to closely simulate human processes and the (relatively synthetic)
program that is only loosely inspired by them?

We can see how the same tension between analysis and synthesis appears in
artificial life research by considering Reynolds (1987). To simulate flocking behavior,
he constructed a simple model environment and a number of simple, identical arti-
ficial organisms (boids). In a given simulation run, the boids were placed at different
random starting locations in the environment. All moved at the same time but each
boid individually applied the same simple rules: match your neighbors’ velocities;
move towards their apparent center of mass; and maintain a minimum distance from
neighbors and obstacles. Viewing the boids’ movements in the aggregate, they ex-
hibited flocking behavior – an emergent behavior in which, for example, the group
would divide into subgroups to flow around both sides of an obstacle and then
regroup. Note that boids are so sketchily drawn that they can stand in for fish as well
as birds. Reynolds’s work is probably best viewed as a rather abstract investigation into
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achieving global behavior from simultaneously acting local rules (synthetic strategy),
but it could arguably be viewed instead as an initial step towards obtaining a realistic
simulation of behaviors observed in several actual species (analytic strategy).

Despite this tension, the synthetic and analytic strategies share the same ultimate
goal: to understand the processes of life. This goal imposes its own constraint that
the abstract beings must have some grounding in important characteristics of real
beings, a grounding that is provided by biologists who have observed the behavior
of particular species. The results of synthetic research, in turn, will sometimes sug-
gest new avenues for analytic research. For example, a study like that of Reynolds
(relatively synthetic) could suggest particular variables to measure in real birds
(purely analytic), and the results might contribute to a more detailed, realistic com-
puter model (relatively analytic). The same interplay of research strategies can be
observed in investigations of such activities as perception, food-finding, mating,
predation, and communication, all of which have been studied by artificial life
researchers as well as biologists in the field. (For an overview of such studies as well
as many other kinds of research and issues in artificial life, see the volume edited by
Langton, 1995.)

9.2.2 Emergent structures from simple beings: Cellular automata

Perhaps the most abstract studies in artificial life are those involving cellular automata
– formal systems that were conceived by the Polish mathematician Stanislas Ulam.
A cellular automaton (CA) consists of a lattice (a network of cells in which only
neighbors are connected) for which each cell is a finite automaton – a simple formal
machine that has a finite number of discrete states and changes state on each time-
step in accord with a rule table (sometimes called a state transition table). A CA is
defined in part by the size of its neighborhoods. For example, in a one-dimensional
CA (a row of cells) the neighborhood of each cell might be the cell itself plus two
cells on each side. For each possible configuration of states in a neighborhood there
is a rule stipulating the updated state of the target cell on the next time-step. (This
should sound familiar: the CA is the same kind of device as a coupled map lattice,
used in van Leeuwen et al.’s model of shifting perceptions in section 8.4.2, except
that each unit in a CML takes continuous states via the logistic equation rather than
the discrete states of a finite automaton.)

The operation of a CA can be illustrated using a one-dimensional array of ten
cells, each of which can take just two states: off or on. We can stipulate that a neigh-
borhood includes only the cell itself and one cell to each side, and that the leftmost
and rightmost cells count as neighbors to each other. Then there will be just eight
possible kinds of neighborhoods (eight different configurations of states for a cell and
its neighbors). For each of them we enter a rule in the table to show which state its
target cell should enter on the next time-step. Using the numerals 0 for off and 1 for
on, here is one rule table:

cell and neighbors at t 111 110 101 100 011 010 001 000
cell at t + 1 0 1 1 0 1 0 0 1

The behavior of any CA is determined solely by the initial pattern of states across its
cells and its rule table. For our example, suppose that at time-step 0 the states
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Figure 9.1 A simple outcome of using the rule table in the text. A one-dimensional cellular
automaton with ten cells is shown at time-step 1 (top) and at two successive time-steps.
Empty cells are on; shaded cells are off.

Figure 9.2 More complex outcomes obtained using the same rule table. Each panel
shows a one-dimensional cellular automaton with 200 cells at 200 time-steps; each row
displays the state of each cell on one time-step. In panel (a) the initial pattern had just
one cell on, whereas in panel (b) the initial pattern had half of the cells on (randomly
selected). Figures 9.1 and 9.2 were generated using the cellular automata simulator at
http://alife.santafe.edu/alife/topics/ca/caweb/.

happen to form an alternating pattern in which every other cell is on, as shown in
figure 9.1. Just two of the eight rules will be relevant for this simple case. Each on
cell (shaded) is flanked by neighbors that are off (empty), so at time-step 1 it will
turn off (010 → 0); and each off cell is flanked by neighbors that are on, so at time-
step 1 it will turn on (101 → 1). The first three time-steps are displayed; clearly
this array will keep switching between the on–off–on–off– . . . and the off–on–off–on–
. . . patterns indefinitely.

A great variety of patterns across time can be obtained – many of which are more
complex than this repeated switching between two alternating patterns – even with-
out changing to a new rule table. For example, trying two different initial patterns
with a larger CA (one row of 200 cells) yields two quite different patterns through
time as shown in figure 9.2. (Starting with time-step 0 at the top, each line repres-
ents the pattern at the next time-step; the displays were made square by ending at
time-step 200.) An initial pattern with just one cell on generates the interesting
display on the left; one with half the cells on generates the more chaotic display on
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the right. These results were obtained using the CA simulator at http://alife.santafe. edu/
alife/topics/ca/caweb/. You can use it to create other CAs (differing in size and rule
tables) and explore how different initial patterns change through time.

Cellular automata need not be limited to a single dimension. One of the best-
known exemplars is the Game of Life, developed by John Conway (see Gardner,
1970) and used in many screensaver programs. In the Game of Life a computer
screen is divided into a large grid of squares. Initially, some squares are shaded
(alive) and the rest are empty (dead). Each square has eight neighbors (including
those on the diagonals). As time proceeds different squares come alive or die depend-
ing on two simple rules:

• If a square is dead on one time-step but has exactly three immediate neighbors
that are alive, it comes alive on the next time-step; otherwise, it stays dead.

• If a square is alive on one time-step and has exactly two or three immediate
neighbors that are alive, it remains alive on the next time-step; otherwise, it dies.

(Stating these rules in English efficiently summarizes the formal rule table for the
512 configurations that are possible for this size of neighborhood.) The Game of
Life attracts attention due to the variety of shapes that can develop. For example,
gliders are patterns which move across the screen. Figure 9.3 exhibits a glider
which, after every fourth time-step, has moved one square down and one square left;
in the intervening steps it transmogrifies into a variety of other forms. Since these
shapes and movements are not prespecified in setting up the CA, they are generally
construed as emergent structures (as were the movements of flocks of boids in the
Reynolds study).

9.2.3 Wolfram’s four classes of cellular automata

Different rule tables can yield very different activity, leading Stephen Wolfram
(1984) to develop a general classification of cellular automata. Using CAs slightly
more complex than those above (by increasing neighborhood size to two rather than
one cell per side), exemplars of all four Wolfram classes can be found.

• Class I automata enter the same state (e.g., all dead or all alive) from almost any
starting configuration, usually in just a few time-steps. If the second line of the
rule table in 9.2.2 contained only 0s, then no matter how many squares were

t=0 t=1 t=2 t=3 t=4

Figure 9.3 A glider in the Game of Life (see text for the rules used to generate it). On
every fourth time-step the original shape is restored, but has moved one square left and one
square down.
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initially alive, they would all become dead on time-step 1 and remain dead. In
DST terms, the system settles on a point attractor (limit point).

• Class II automata form at least one nonhomogeneous pattern (e.g., some squares
are alive and others are dead). Typically the system, once beyond any transient
patterns, exhibits periodic behavior. That is, it repeatedly cycles through the
same sequence of patterns (if the cycle length is zero it will settle to a single static
pattern). In DST terms, the system has a periodic attractor (limit cycle). Figure
9.1 provides a simple example.

• Class III automata are disordered rather than orderly. They exhibit quasi-
random sequences of patterns which (were it not for their finiteness) correspond
to what is known as chaos in DST. The display on the right side of figure 9.2
appears chaotic or near-chaotic.

• Class IV automata are the most interesting. They exhibit complex behaviors
(e.g., expanding, splitting, recombining) that may be interpreted as realizations
of self-organization or computation. Some dynamicists call this complexity in
contrast to chaos. The Game of Life exemplifies this class (see figure 9.3), and
van Leeuwen et al.’s coupled map lattice (section 8.4.2), though not a CA,
shows comparable behavior when parameter values are chosen so as to produce
intermittency.

9.2.4 Langton and λλλλλ at the edge of chaos

Christopher Langton (1990) proposed that different values of a parameter, λ, would
tend to correspond to different Wolfram classes. Although he explored two-dimen-
sional CAs with 8 states, in our simpler examples λ is simply the proportion of rules
in the rule table that have a 1 in the second row; it indicates the potential for cells to
be on at the next time-step. Langton identified key ranges of values by conducting a
Monte Carlo exploration (that is, he generated and ran a large number of CAs
varying in λ and initial patterns). There was a great deal of variability in the results,
but he sought to capture “average behavior” by calculating several statistics across
the CAs tested at each λ. With very small λ, Class I automata tend to occur; when
raised towards 0.2, Class II automata emerge. With λ in a range of approximately
0.2 to 0.4, the complex Class IV automata predominate, but as it is raised to values
surrounding 0.5 order breaks down and chaotic Class III automata become pre-
dominant. Langton referred to the range in which λ tends to produce Class IV
automata as critical values that are at the edge of chaos and proposed that these CAs
could be used to perform interesting computations. Since the distributions in fact
overlap considerably, a value of λ in the critical range can only suggest that a
particular CA is likely to exhibit Class IV behavior; independent evidence would be
needed to actually classify it.

The interest in Class IV CAs goes beyond the fact that they can create interesting
novel patterns; Langton inspired other researchers to explore their usefulness for
computation and problem solving. Norman Packard (1988) focused on a rule table
that had earlier been found to perform a useful (though approximate) computation.
If more than half of the automaton’s cells were on initially, usually all of its cells
turned on eventually (requiring many time-steps, in which the configurations used
to determine state updates included three neighbors on each side). If more than half
were off initially, usually all of its cells turned off eventually. If about half were on
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and half off, its eventual configuration was less predictable. Hence, it acted as a fairly
reliable detector of which state predominated in its own initial pattern – a global
property captured via local computations. Packard’s innovation was to use a genetic
algorithm to evolve additional rule tables that could perform this task. Since the first
row of the table has a fixed ordering of neighborhoods for a given number of states
(he used 2) and neighbors (he used 3 on each side), CAs could be evolved using
genotypes that explicitly represented only the states on the next time-step (the 27 =
128 binary digits in the second row of the the table). A simpler example of a
genotype can be obtained from the rule table in section 9.2.2, which has just 8 binary
digits due to the smaller neighborhood size:

0 1 1 0 1 0 0 1

The fitness function was provided by the success of the many CAs that evolved (i.e.,
whether they correctly determined that the initial proportion of active cells was
greater than or less than 0.5). Packard was especially interested in the fitness of rule
tables with λ in Langton’s region of complexity (centered around 0.25 or, on the
other side of the chaotic region, around 0.80). He found that they indeed (on aver-
age) were best suited to perform the computation.

Packard interpreted his findings as supporting Langton’s proposal that interesting
computations (class IV automata) emerge in the critical region he identified for λ.
However, there is more to the story. A research team at the Santa Fe Institute
(Melanie Mitchell, James Crutchfield, and Peter Hraber, 1994) later evolved CAs to
perform the same computation, but used a more standard implementation of the
genetic algorithm. Contrary to Packard, they found that rule tables with λ values not
far from 0.5 performed best and provided a theoretical argument as to why this
would have to be the case. While granting that some interesting CAs such as the Game
of Life do have λ values in the range Langton identified, they offered their findings
as an existence proof against “a generic relationship between λ and computational
ability in CA” and concluded there was “no evidence that an evolutionary process
with computational capability as a fitness goal will preferentially select CAs at a special
λc [critical λ] region.” They did not, however, deny that relatively simple CAs are
characteristic at the extremes of the λ range nor did they evaluate rule tables for other
kinds of computation in that paper. In their more recent work (e.g., Crutchfield,
Mitchell, and Das, 1998), this team has continued simulated evolution studies of CAs
but have focused on applying a computational mechanics framework and a variety of
refined quantitative analyses to obtaining “a high-level description of the computa-
tionally relevant parts of the system’s behavior” (p. 40). This leaves Langton’s in-
triguing proposal about λ as a possible evolutionary dead-end in understanding CAs.

We will end our brief discussion of cellular automata here; it should have given
the flavor of the more abstract end of artificial life research. We must skip over a
great deal of work in the mid-range of biological realism and complexity, leaving
Reynolds’s boids as our one example. The rest of the chapter will focus on the
evolution of connectionist networks rather than CAs, beginning in section 9.3 with
networks that simulate simple food-seeking organisms (which learn as well as evolve)
and progressing in 9.4 to network controllers for robots (which develop phenotypes
as well as evolve). Robot controllers were our entry point to the science of artificial
life in sections 8.3.1 and 9.1, and we look at one additional robot project in 9.5.
Finally we return to philosophical issues and implications in 9.6.
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9.3 Evolution and Learning in Food-seekers

9.3.1 Overview and study 1: Evolution without learning

If you wish to use networks to control sensorimotor behavior in artificial organisms
more complex than cellular automata, how do you get a network that does a good
job? A talented designer may quickly arrive at a network that works well for a
particular environment and task, but what if some aspect changes? Including a
learning procedure has been the traditional way to make networks adaptive. Arti-
ficial life research using the genetic algorithm suggests that simulated evolution is
another route to adaptivity that is worth exploring. We have already been intro-
duced to the intersection between connectionist networks and artificial life tech-
niques in the work of Beer (section 8.3.1). Here we see how including both kinds of
adaptivity in networks simulating simple food-seeking organisms has produced a
better understanding of how learning across the lives of organisms can actually have
an impact on the evolutionary process. This line of research began with Hinton and
Nowlan (1987) and was further pursued by Ackley and Littman (1992) and by
Stefano Nolfi and his collaborators. We will sample it in this section by presenting
two simulation studies on abstract organisms (Nolfi, Elman, and Parisi, 1994), and
then in section 9.4 we will track Nolfi’s move to related work with robot controllers
(Nolfi, Miglino, and Parisi, 1994).

Nolfi, Elman, and Parisi (hereafter called NolfiEP) invented simple abstract or-
ganisms that evolved and learned to traverse a landscape with scattered food sites.
Each of these food-seekers was simulated using a very simple connectionist network
which encoded and linked a limited repetoire of sensations and motor behaviors.
Each network’s architecture was fixed but its connection weights were adjusted in
the course of learning and evolution. It had four input units: two sensory units
encoded the angle and distance of the nearest food site, and two proprioceptive units
specified which action the organism had just performed. These two kinds of informa-
tion were sent through the network’s seven hidden units in order to determine
which action would be performed next, and the decision was encoded on two output
units. After applying a threshold, there were just four possible actions: turn right
(01), turn left (10), move forward one cell (11), or stay still (00). NolfiEP’s first
simulation (study 1) used this architecture for all of its networks. In a second simu-
lation (study 2; see section 9.3.2), two additional output units were added whose task
was to predict the next sensory input. The expanded version of the network is
shown in figure 9.4, but we will begin with study 1 and the network without the
prediction units.

There is another difference between the two studies. In study 1, improvements in
food-finding behavior were achieved exclusively by simulated evolution. The main
goal was to show that purposive behavior could be sculpted from initially random
behavior by applying a genetic algorithm across generations. In study 2, there was
another source of change in addition to evolution: learning was used across the
lifespan of each organism to modify three of the four sets of connection weights.
Here the main goal was to explore how learning and evolution might interact.

An initial population of 100 organisms was created for study 1 by randomly
assigning weights to the connections in 100 otherwise identical networks (four input
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Next action
Predicted

angle/distance

Previous action Angle/distance

Figure 9.4 The network used by Nolfi, Elman, and Parisi (1994) to simulate abstract
food-seeking organisms. Each large arrow is a complete set of connections between units.
The three shaded arrows indicate which layers and connections made up the network used
in study 1: based on sensory information and the organism’s previous action, the next
action is determined. The additional output units for predicting the next sensory inputs
were added to the network in study 2.

units, seven hidden units, two output units). Each organism lived for 20 epochs,
during which it navigated its own copy of a 10 cell × 10 cell environment in which
10 of the 100 cells contained food. In each epoch it performed 50 actions in each
of 5 environments (differing in which cells were randomly assigned to contain food);
at the end of its life the number of food squares it had encountered was sum-
med. Organisms in this initial generation tended to perform poorly. For example, a
typical trajectory in one of these environments, as indicated by the dotted line in
figure 9.5, included just one food encounter. Nonetheless, the 20 organisms who
happened to acquire the most food were allowed to reproduce. Reproduction was
asexual (five copies were made of each organism), and variation was introduced
by mutation (in each copy, five randomly chosen weights were altered by a randomly
chosen amount). By the tenth generation, the organisms had evolved sufficiently
to find many more food squares, with more gradual improvement thereafter. The
solid line in figure 9.5 shows a typical path traversed by an organism in the fiftieth
(last) generation. In contrast to the earlier path, this one looks purposive. NolfiEP
emphasized the importance of achieving lifelike, goal-directed behavior by means
of a lifelike, evolutionary process. While acknowledging certain simplifications in
their method (e.g., asexual copying of complete networks rather than sexual re-
production with crossover of the genetic codes governing the construction of net-
works), they found simulated evolution to be a successful and biologically plausible
tool for developing networks. They particularly appreciated the biological plausibil-
ity of this technique compared to the standard network development technique
of supervised learning. Nature provides variation and selection but no explicit
teachers.
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Figure 9.5 Typical trajectories through the 10 × 10 environments of the model organism
in Nolfi, Elman, and Parisi’s (1994) study 1. The dotted line is a trajectory for a model
organism in the first generation; it encountered just one food site. The solid line is a
trajectory for a model organism in the fiftieth generation, which encountered six food sites.

O50

O1

9.3.2 The Baldwin effect and study 2: Evolution with learning

Are any roles left, then, for learning? Nolfi and Parisi (1997) discussed three. At the
very least, learning augments evolution by permitting adaptations to environmental
changes that occur too quickly for an evolutionary response. Learning also enables
flexibility, because behavior can be determined by more information than could be
encoded in the genome. However, in both of these roles, learning is essentially an
add-on that enhances individual performance but does not interact with the evolu-
tionary process. More intriguing is the possibility of a third role for learning: to
guide evolution. This idea was given its most direct and extreme interpretation in
Lamarckian evolution – the discredited nineteenth-century claim that acquired char-
acteristics become directly incorporated in the genome and can be inherited in the
next generation. A more indirect way for learning to have an impact on evolution
was first suggested by James Mark Baldwin (1896). The basic idea is that successful
learners will also be successful breeders, and this source of selection will subtly push
evolution in an appropriate direction; across many generations, the genome itself
will move towards variations that originally relied on learning. This Baldwin effect
has been accepted for decades as consistent with a contemporary Darwinian frame-
work, but was often overlooked or misinterpreted. However, Hinton and Nowlan
(1987) revived interest by achieving the effect in connectionist networks undergoing
simulated evolution and sketching a neat computational interpretation of this here-
tofore obscure corner of evolutionary theory. They limited their investigation to an
extreme case in which only one specific set of weights could render the organism
adapted, and all others were maladaptive.

Study 2 in NolfiEP explored how learning could guide evolution by expanding on
both the simulations and the computational interpretation pioneered by Hinton and
Nowlan. They first added two output units to the original network architecture, as
we already have seen in figure 9.4. These units were designed to predict the sensory



294 NETWORKS, ROBOTS, AND ARTIFICIAL LIFE

outcome of making the movement encoded on the other two output units – that is,
the new angle and distance of the nearest food site. The other major design decision
was to make the weights of the connections leading into these new units modifiable
by backpropagation. If learning has been successful, the predicted angle/distance
should be the same as the actual angle/distance presented to the input units on the
next time-step. This allowed for a learning scheme in which the desired or target
output pattern need not be supplied by an external teacher, because it is available
from the environment as soon as the organism makes its intended movement. That
is, the difference between the predicted and actual angle/distance of the nearest food
is used as the error signal for learning. Because backpropagation allocates error back
through the network, this scheme modifies the weights for all connections except
those linking the hidden units to the two original output units for the next action
(which have no way of getting a desired action for comparison). Nolfi et al. applied
this learning procedure during the life cycle of each organism, and organisms were
selected for reproduction in the same manner as in study 1: at the end of each gen-
eration’s lifespan, the 20 organisms who found the most food were allowed to repro-
duce. The offspring were created by copying and mutating the original weights of
the parents, not those acquired by learning. Hence, there was no Lamarckian inher-
itance of acquired characteristics.

NolfiEP were investigating whether learning might play a useful role in guiding
evolution, and their results indicated that it could. Learning during the lifetime of
the organisms led to much better performance in later generations – by a factor of
two compared with non-learning lineages – even though the descendants could not
benefit directly from that learning. NolfiEP’s explanation of how selective reproduc-
tion and learning interact to produce better organisms in this situation is that learning
provides a means for determining which organisms would most likely benefit from
random mutations on their weights. An organism that gains from learning is one with
a set of initial weights which, if changed somewhat, produce even better results. That
would tend to put the good learners into the group selected (based on good perform-
ance) to reproduce. By comparison, an organism that does not gain from learning is
one whose weights are such that small changes will not produce any benefits. That
organism may have found a local minimum in weight space (see figures 3.1 and 3.3).
If so, small changes in weights – whether produced by learning or evolutionary
changes – will not bring further benefits. Hence, including learning in the life
histories of the organisms yields information that permits the evolutionary devices
of variation and selection to operate more effectively. NolfiEP’s work provides a
novel explanation of the Baldwin effect by obtaining it in networks that evolve.

There is another aspect of the interaction between learning and evolution that is
noteworthy. Evolution imposes needs on the organism, and learning has improved
the organism’s ability to satisfy those needs. While labeling the task food searching is
simply an interpretation, since the organism gains nothing from the food squares in
this simplified simulation, nonetheless, the task of visiting certain squares is im-
posed on the organism by the selection procedure. The fact that learning to predict
the environment serves to promote this end is behavioral evidence that visiting food
squares has become the goal for the organisms. The activation patterns on the
hidden units can be viewed as providing representations of the environment. In the
learning task these representations enable the organism to better predict its future
sensory input; in the evolutionary task, they permit it to better secure food. Since
learning one task (predicting the future appearance of the environment) enhances
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performance on the other (finding and acquiring food), the representations must
carry information that is relevant to both tasks.

We can understand how this might be possible by considering a situation in which
the nearest food location is at an angle of 90º. This is information that should lead
both to a decision to turn right and to an expectation that after one does, the food
will be at approximately 0º. Both the outputs specifying actions and those predicting
future angle/distance of food depend upon grouping the input patterns into similar-
ity groups. This is a function served by the hidden units, so the same similarity
groups will be available to subserve both tasks. It is in this way that learning to
perform one task can facilitate an organism’s performance of another task.

9.4 Evolution and Development in Khepera

9.4.1 Introducing Khepera

Ideally, the interaction of evolution and learning would be studied in a less abstract
organism than the food-seekers just discussed. Two of the above investigators joined
with another collaborator to take a step forward in complexity by developing net-
works to control a tiny mobile robot called Khepera (Nolfi, Miglino, and Parisi,
1994; hereafter called NolfiMP). As shown in figure 9.6, it was equipped with
physical sensors and motor mechanisms and hence could navigate an actual environ-
ment (a 60 × 35 cm arena with walls and a small circular target area). For practical
reasons, though, NolfiMP developed the control networks using a simulation of the
robot in its environment. (In other studies they addressed the question of how such
simulations could be applied to developing controllers for real robots; see below.)

Khepera has a diameter of 55 mm (about 2 inches) and is supported by two wheels
and two teflon balls. Each wheel is driven by a small motor that allows it to rotate
forwards or backwards. Khepera also has eight pairs of sensors. The light sensors
can detect lit-up areas at a range of distances, and the infrared sensors can detect
obstacles (objects or walls) in close proximity by bouncing their own light off them.
As diagrammed in figure 9.6, there are six front and two rear pairs of sensors. They
influence Khepera’s movements by means of whatever internal control network is
provided. An engineer could quickly design such a network, but then Khepera
would be just another robot (one with little practical skill) rather than a simulated
lifeform. The real interest is in watching the control networks emerge via lifelike
processes of simulated evolution and learning, in pursuit of an ultimate goal of
better understanding real evolution and learning. NolfiMP’s decision to use a simu-
lated rather than physical robot added another degree of removal from this ultimate
goal, but it allowed them the freedom to make some other aspects of their study
more complex than would otherwise be practicable.

NolfiMP prepared for their simulation by using the physical robot to generate
a pool of sensory inputs and a pool of motor outputs. That is, first they placed
Khepera in different orientations and locations in the physical arena, producing a
systematic sample of states on its sensors in which the walls and target area would be
seen from different angles and distances. Then they gave Khepera’s two motors
different combinations of commands and recorded its movements. The resulting pools
of information were used in constructing a simulated world in which the task was to
move towards the small target area in the arena. Simulated evolution and learning
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Figure 9.6 The Khepera robot and a diagram showing the locations of its sensors. The
filled circles represent the infrared sensors used to detect objects, while the open circles
represent light sensors.
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interacted to develop networks which adaptively linked the sensory and motor pat-
terns so as to perform this target-seeking task. (Given a different task, the same
sensory inputs would get linked differently, though still systematically, to motor
outputs – the robot might avoid the target area rather than seek it, for example.)

9.4.2 The development of phenotypes from genotypes

NolfiMP’s primary innovation in this particular study was to develop a more bio-
logically realistic model of how a genotype (the design specifications inherited in the
genes) figures in the development of a phenotype (the actual organism that results
from applying those specifications). In previous studies using networks as artificial
organisms, the genotype specified a single phenotypic network. If the network then
changed its architecture or weights due to learning in its environment, the genotype
played no further role in guiding the resulting series of phenotypes. NolfiMP, in con-
trast, made the genotype active throughout the life of the organism. Because both
genotype and environment influenced the developing network (a series of phenotypes),
the same genotype could manifest itself differently in different environments.

In order to create this more biologically realistic genotype–phenotype relation-
ship, NolfiMP used “genes” (structure-building instructions) to produce “neurons”
(units) with “axons” (potential connections) that gradually grew into a “nervous
system” (neural network). Key points in this process are illustrated in figure 9.7 and
described below. The full set of genes – the genotype – ensures that each nervous
system is limited to feedforward connections and has a maximum of 17 internal
neurons (hidden units, which may be arranged in a maximum of 7 layers), 10
sensory neurons, and 5 motor neurons. Whether a given neuron becomes part of the
mature nervous system (i.e., becomes functionally connected within a path from
sensory to motor neurons) is determined by the interaction of the robot’s genotype
and its experiences.

The genotype contains a separate block of genes for each of the 32 possible
neurons. Some of the genes specify basic information about the neuron: its location
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in a two-dimensional Euclidean space (suggestive of a vertical slice through a cor-
tical column in a real brain), the weight on any connections to units above it, and its
threshold or bias. Additionally, each sensory neuron has a gene specifying to which
sensor it is to be connected and whether it detects ambient light or obstacles, and
each motor neuron has a gene specifying whether it should be connected to the
motor for the left or right wheel. (If more than one motor unit is connected to a
given motor, the behavior of the motor is determined by averaging the activations of
these units.) Finally, the most interesting genes code for the growth of axons that
may connect to other neurons.

Carrying out the basic instructions produces up to nine layers of neurons; the
nascent network in figure 9.7(a) has 21 neurons in eight layers. Those in the outer
layers are connected to the robot’s sensors (at bottom; not shown) or motors (at top;
not shown), but initially none of the neurons are connected to other neurons. The
genes that encode growth give each neuron the potential to send out an axon which
may branch up to four times. One gene specifies the length of each branch and
another specifies the angle at which it branches. Realizing this potential depends on
experience. The rest of figure 9.7 shows the consequences of applying these instruc-
tions and experiential constraints:

Figure 9.7(b): Depending upon the genetic instructions, the branching can yield a
sweeping arborization extending up through several layers (e.g., that of the leftmost
sensory neuron) or instead can yield arborizations that are narrower and/or shorter.
Not all neurons send out an axon, however; this is governed by the expression
threshold gene in interaction with experience. If this gene’s value is 0, an axon will
sprout immediately (maturation with no need for learning). Otherwise, it specifies a
threshold value for the variability of the neuron’s last ten activation values, which
must be exceeded for an axon to sprout. Once axonal growth has begun, a new
uncertainty arises: whether any of the branches will contact another neuron. If so, a
connection is established.

Figure 9.7(c): The details of axonal branching are omitted and each connection is
indicated by a straight line. Some of the connections are nonfunctional, however,
because they do not lie on a path extending all the way from the sensory to the motor
layer.

Figure 9.7(d): The isolated connections and neurons are omitted, leaving the func-
tional part of the neural network. In this example, it includes just two sensory

Figure 9.7 An evolved network controller for the Khepera robot at four stages of
development: (a) the initial 21 neurons; (b) the growth of branching axons; (c) the network
after it has been pruned to leave only the connections where the axon had made contact
with another neuron; (d) the functional network. Adapted from Nolfi, Miglino, and Parisi
(1994).
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neurons (one of each type), four internal neurons in three different layers, and two
motor neurons. It is the outcome of the joint activity of genes and environment in a
single organism within a single generation. We refer to this as “learning” to distin-
guish it from evolution, but the word is a crude shorthand for a complex process by
which a genotype in an environment creates a developmental series of phenotypes in
which maturation and learning are intertwined.

9.4.3 The evolution of genotypes

Along with NolfiMP, we next turn our attention to evolution. To cultivate a popu-
lation of simulated robots, they employed a strategy very similar to that used to
cultivate food-seekers in the previous simulation. They began with 100 randomly
generated genotypes, each of which was used to obtain one simulated Khepera. Each
such robot lived for 10 epochs of 500 actions each; in each epoch, both the robot and
the target area were placed in random locations in the arena and the robot produced
actions that moved it through the arena. Under the joint influence of its genotype
and the inputs it received through its sensors, the robot developed a specific net-
work architecture and assignment of connection weights. The robot’s fitness was
determined in each epoch by its ability to reach the target area; it was calculated by
summing the value of 500−N across all 10 epochs, where N is the number of actions
the robot needed to reach the target the first time in an epoch. The 20 robots who
achieved the greatest fitness in a given generation reproduced, creating 5 copies of
their genotype (varied by random mutations). NolfiMP also alternated between “light”
and “dark” environments. In even generations the robots were placed in an environ-
ment in which a light illuminated the target area; in odd generations the light was
left off, thus reducing the usefulness of the light sensors.

By examining the best 20 individuals in each generation, NolfiMP were able
to show that the robots exhibited considerable increases in fitness (between three-
and four-fold) over the first 50 to 100 generations if analysis was limited to the
even-numbered generations (light environment). Odd-numbered generations (dark
environment) showed a much shallower fitness function (only a two-fold increase).
NolfiMP then set out to evaluate the distinctive effects of learning in the two kinds
of environment by examining mature phenotypes of the control network. To do this
they allowed two clones with the same highly evolved genotype to develop in light
and dark environments and compared the two networks that resulted (see figure
9.8). While there are some clear similarities between the networks produced by the
same genotype, there are also impressive differences. The network that developed in
the light environment came to rely on three infrared sensors and two light sensors,
while the network that developed in the unlighted environment relied only on (the
same) three obstacle sensors. There were also quite different patterns of connection
from sensory neuron 2 to the motor neurons.

9.4.4 Embodied networks: Controlling real robots

We have been speaking of evolution and learning in many generations of robots, but
recall that this was actually a simulation study that did not use the actual environ-
ment and physical robot after obtaining samples of its sensory and motor events.
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Figure 9.8 Two evolved network controllers cloned from the same genotype. The
controller on the left is from a robot that developed in a light environment, whereas
the controller on the right is from a robot that developed in a dark environment. Beneath
each controller is a depiction of the sensors that were active in each case.
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Could a network developed by such simulation techniques be inserted into the
physical robot and succeed in controlling it? Nolfi, Floreano, Miglino, and Mondada
(1994) explored this question by evolving controllers using (a) real robots and envir-
onment, (b) simulated robots and environment, and (c) a hybrid strategy in which
controllers developed for simulated robots were inserted into real robots for the last
30 of a total of 330 generations. The robots again were Khepera, but the environ-
ment and tasks were a little different than those of Nolfi, Miglino, and Parisi and the
networks were simpler and did not learn. In the hybrid study, performance tempor-
arily declined immediately after the network was transferred into a real robot, but
then quickly recovered. They noted several ways in which the simulation procedure
differed from the real one, and recommended the hybrid strategy as offering an
efficient way to get effective controllers.

This last study brings us a step closer to reality. Unlike many artificial organisms,
Khepera is embodied. Though its controllers exist as computer code, the robot itself
has a physical body that registers light and takes actions in an actual arena. Sampling
these physical events lent a degree of realism to NolfiMP’s computer simulation of
Khepera, but only by hooking the controller network into an actual robot would
completely realistic connections between particular sensory and motor patterns get
made. When a real Khepera makes a move, it will vary slightly from the planned
movement and what is seen next will depend upon the actual movement. By evol-
ving networks in real robots and environments, we assure that they must cope with
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constraints and variation that cannot be perfectly simulated. Work of this kind pro-
vides grounding for those studies that use simulated or hybrid strategies for evolving
controllers.

Nonetheless, many aspects of life are still merely simulated in the studies using
actual robots. The robot is itself a silicon model of a hypothetical organic being. Its
controller simulates a real nervous system, the evolution of its controller simulates a
simplified version of biological evolution, and its learning procedures are intended
to simulate key properties of learning in real organisms. Langton’s synthetic
approach to understanding life brings tradeoffs between realism and the degree to
which the investigator can manipulate the components of interest and interpret the
results. The various studies by Nolfi and his colleagues make different choices about
those tradeoffs, and the investigations of cellular automata are even more extreme in
their preference for manipulability over realism. There is something to be learned
from each of them, and more to be learned from comparing them.

9.5 The Computational Neuroethology of Robots

We have not yet discussed one of the major benefits of using artificial neural networks
as robot controllers: investigators can analyze the behavior of their components in
much the same manner as neuroscientists use cellular recordings to analyze the
activities of individual neurons in real brains. This enables researchers to discover
the mechanisms that determine the behavior of the robot in its environment. Such
robot studies are part of the field of computational neuroethology, a term coined by
Dave Cliff (1991). The corresponding studies of living organisms are situated in the
parent field of neuroethology. (A complete account of the nomenclature and range of
studies comprising computational neuroethology would be much more complex; for
example, Randall Beer independently coined the term in presenting his studies of
artificial insects, as did Walter Heiligenberg for his computer models of real animals.)

To exhibit the potential of this approach, Cliff, Harvey, and Husbands (1997)
reported on studies they conducted on networks evolved to control robots moving
about in rooms. The robot, the room, and for that matter the network (as usual)
were simulated. The robot specifications include a cylindrical shape and three wheels
– two in the front which drive it and one in the rear to provide stability. Each of the
wheels can turn at five different speeds: full forward, half forward, off, half reverse,
and full reverse. The robot has six tactile sensors: bumpers in front and rear and
whiskers positioned partway forward and partway back on each side. It is also
equipped with two photoreceptors, whose direction of view and angle of receptivity
are under evolutionary control. The architecture of the controller networks was
evolved through a variation on the genetic algorithm, with an evaluation procedure
based on the ability of the robot to move rapidly to a predesignated part of its
environment. This placed an emphasis on evolution of the photoreceptors to guide
behavior. (No learning procedure was incorporated in these simulations.)

The networks that Cliff et al. evolved in this manner are rather complex, with
many backward as well as forward connections. They noted that the networks were
very different (better) than what would be created by a human engineer. To simplify
the networks for purposes of analysis they removed from consideration all redundant
connections and units with no outputs. (The genome itself determined which connec-
tions were actually present, in contrast to Nolfi et al.’s inclusion of developmental
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processes for that purpose as described in section 9.4.2.) They then performed the
equivalent of multi-cell recording in real animals – that is, they recorded the activa-
tion level of a number of units (in fact, all of them) while the robot performed the
activity of interest. To further simplify analysis, they eliminated from consideration
those units that were largely inactive during the behavior. This still left a relatively
complex network, but one much reduced from the original and in which it was
possible to provide a (still complex) description of the flow of activation. To give the
flavor, we quote just one portion of the analysis of one robot controller: “Initially,
relatively high visual input to unit 6 excites unit 2, which inhibits unit 12, so units 12
and 13 stay inactive. Meanwhile, the effects of visual input arriving at unit 11 give a
low-radius turn. Eventually, the robot turns towards the (dark) wall and the visual
input falls, so unit 2 no longer inhibits units 12” (Cliff, Harvey, and Husbands,
1997, p. 140). They then commented on how such analysis is similar in character to
the analysis one would give of a biological nervous system:

The task of analysing an evolved neural-network robot controller is similar to the task
of analysing a neuronal network in a real animal. The techniques we have employed
bear some resemblance to those used in neuroethology, and they give broadly similar
results: a causal mechanistic account of the processes by which perturbations in the
system’s inputs give rise to alteration in the system’s outputs. That is, the internal
mechanisms of the agent are not treated as a black box, and so it is possible to under-
stand how the observed behaviour is generated. (pp. 149–50)

In addition to a mechanistic analysis focusing on individual units, Cliff et al. also
developed a quantitative dynamical analysis that revealed how one controller net-
work, which turned out to be successful in many environments other than the one in
which it was evolved, developed dynamical attractors which governed the network’s
behavior. Like Beer’s analysis, this combination of mechanistic and dynamical ana-
lysis has the kinds of advantages we discussed in section 8.5.3. Because the analysis
involved a much larger network, though, it is harder to extract a higher-level de-
scription of the mechanism.

9.6 When Philosophers Encounter Robots

The various research programs that we have surveyed in this chapter – most of
which used the genetic algorithm to evolve cellular automata or network controllers
for robots – fall broadly under the rubric of artificial life. Like the more established
sciences, artificial life has attracted the attention of philosophers. Most see it as
raising new philosophical questions (or new variations on traditional philosophical
questions), but at least one (Daniel Dennett) sees it as offering a new method for
addressing philosophical questions.

9.6.1 No Cartesian split in embodied agents?

For many who have cast a philosophical eye on work in artificial life, one of the most
notable features is the emphasis placed on embodying cognitive agents and locating
them in environments. For Wheeler (1996), this challenges one of the fundamental
Cartesian splits – that between mind and world – that modern cognitivists have
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tended to accept. The other Cartesian split – Descartes’ radical mind–body dualism
– is rejected by both artificial-life and cognitive researchers, who generally agree that
the mind is simply the activity of the brain. Thus, the axis on which the two clusters
differ is that the mind is isolated from the world in cognitivism but coupled to the
world in artificial life.

To pursue this distinction, cognitivists view the mind as involving operations over
internal representations and develop models of this abstract kind of thinking with-
out giving serious consideration to the ongoing activities of the host organism in its
environment. They assume that some sort of interface to sensory transducers and
motor effectors will provide links to the environment, but that incorporating these
links is not crucial to developing a good cognitive model. In contrast, artificial-life
researchers take as their starting point an organism situated in an environment.
The primary function of internal processes is to use sensation to control action, so
the Cartesian separation of mental processes from worldly events is avoided. If more
abstract processes develop, it is assumed that their form and functioning would be
influenced by the more basic sensorimotor processes; they would not be studied in
isolation. Moreover, insofar as the internal control systems constantly engage with
the physical body and environment (e.g., by receiving new sensory input as a result
of moving the body), the last vestiges of the Cartesian scheme are overcome. Instead
of a Cartesian scheme, Wheeler suggests that such artificial life embodies a
Heideggerian perspective wherein agents begin by being actively engaged with their
world through skills and practices; whatever cognitive reflection occurs, it is grounded
in this activity.

9.6.2 No representations in subsumption architectures?

For roboticist Rodney Brooks (1991), pursuing this program has generated some
fresh ways of thinking about the mind’s architecture. He builds a separate control
system for each task a robot must perform; each is a hard-wired finite state machine
which Brooks calls a layer (a very different use of the term than in connectionism).
For example, in his simplest robot the first layer specializes in avoiding obstacles,
the second layer generates wandering (randomly determined movements), and the
third layer generates exploration (moving towards a particular location). Each layer
is a complete system extending all the way from sensation to action and is capable of
acting alone. Typically, however, they can be active simultaneously; minimal circuitry
between layers manages when one layer will suppress another, or sometimes calcu-
lates a compromise direction of movement. Brooks calls this a subsumption architec-
ture, and it follows from deciding to decompose activities horizontally by task rather
than vertically by function. A function such as visual perception may be carried out
separately and differently within several layers of the system; there is no overall,
shared vision module in the sense either of Fodor or of traditional AI. This means
there are no central representations. Even within a layer, information is accessed
from the real world as needed, obviating the need to construct and keep updating an
internal model of the world. Brooks argues, moreover, that the states of the various
registers of the finite state machine constituting each layer do not even qualify as
local representations: they do not involve variables or rules, and individual states do
not have semantic interpretations (rather, the whole layer is grounded in the world it
moves in).
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Critics, however, are dubious of the ability of such a system to simulate all or even
most forms of intelligent behavior (Brooks himself suggested that it will suffice for
97 percent). Kirsh (1991), for example, allowed that it could suffice for an activity
such as solving a jigsaw puzzle. A person might look at the shape required at a
particular gap and compare it to the shapes of available pieces, and might attempt to
physically position each of the pieces in the gap if necessary; the task requires
minimal cognitive activity and no complex models. But he argued that a host of
important activities cannot be accomplished through such direct linkages to the
environment – activities that require: (1) predicting the behavior of other agents;
(2) taking into account information not presently available (e.g., precautionary activ-
ities to produce or avoid future outcomes); (3) taking an objective, not an egocentric
point of view (e.g., obtaining advice from other agents); (4) problem-solving prior to
action; and (5) creative activities (e.g., writing poetry).

The objections raised by Kirsh (and similarly by Clark and Toribio, 1994) seem
telling against extreme antirepresentationalist positions such as that of Brooks and
some others engaged in the artificial life movement. But what if a Brooks-style
architecture were used as the starting point for a new system responsive to Kirsh’s
objections? Its designers could build sensorimotor controllers specialized for various
activities in the world as a foundation, but then add the capacity to reason and solve
problems in ways that partially decouple the internal system from the environment.
Such a system could develop plans and strategies that enabled it to respond more
effectively to situations that arose, and thereby enhance its evolutionary prospects
(for a suggestion along these lines, see Grush, 1997a).

9.6.3 No intentionality in robots and Chinese rooms?

One attractive consequence of starting with an embodied system acting in the world
is that whatever cognitive, representational processes are built on top of that will
have their representations grounded in the world. Researchers taking this kind of
hybrid approach might thereby hope to overcome the problem of accounting for
intentionality in AI systems that was posed by John Searle (1980). The term inten-
tionality refers to the character of linguistic utterances or thoughts as being about
something and in that respect having meaning (e.g., the thought that John Searle
teaches at Berkeley is about the actual person John Searle). Searle makes his case
against AI systems by offering his Chinese Room thought experiment, in which a
person or machine simulates the behavior of a speaker of Chinese using Chinese
characters to engage in a written interaction. The simulation is accomplished by
repeatedly consulting a handbook of rules for manipulating the Chinese characters
as formal symbols (i.e., shapes with no meaning). Searle contends that the person or
machine engaging in such symbol manipulation, because they do not understand the
Chinese characters they are responding to or producing, does not have the (inten-
tional) thoughts of the real Chinese speaker being simulated. If embodied artificial
life systems are elaborated so as to develop representations that stand in for aspects
of the environment with which they are interacting, then, unlike the purely formal
system operating in Searle’s Chinese room, these representations might be credited
as exhibiting intentionality.

Beyond those projects using actual robots as embodied artificial organisms, much
of the research in artificial life relies on simulation techniques. Even Nolfi, Miglino,
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and Parisi’s (1994) work on evolving network controllers for Khepera relied upon
off-line samples of the actual robot’s experiences (a kind of simulation). If control-
lers for simulated robots are viewed as employing representations in their hidden
layers (which Brooks might deny but many others would assert), Searle’s objection
would seem to arise again – the representations are completely formal and lack
content. If indeed the network controllers evolved in such simulations turn out to
be virtually equivalent to those evolved in real robots, on one view, this draws into
question the intentionality of the representations in the real robots as well. This is
likely the view Searle would adopt, since he uses the Chinese Room thought experi-
ment to demonstrate, by contrast, the causal powers of real brains in producing
intentional states. But an alternative interpretive stance on the simulated controllers
would regard their internal states as representations insofar as they evolved in
response to the evolutionary and learning conditions imposed by their simulated
environment (the similarity to controllers evolved for real robots would be due to
similarities in those conditions). We cannot hope to settle here the issues concerning
the intentionality of representational states that develop in simulated and real robot
controllers. However, this aspect of robotics clearly exemplifies how artificial life
research can engage long-standing philosophical concerns.

9.6.4 No armchair when Dennett does philosophy?

Perhaps the most radical suggestion about artificial life is Daniel Dennett’s (1995)
proposal that it offers not just a new domain that philosophers can pounce upon and
subject to their usual methods of analysis and criticism; more interestingly, it can
provide a new method for doing philosophy itself. One of the traditional methods, as
just illustrated by Searle’s Chinese Room, is to pose thought experiments. The
philosopher generates interesting circumstances (often fanciful or contrary-to-fact,
but regarded as diagnostic) and reasons about their likely consequences. The results
generally are far from definitive; philosophers with different intuitions, biases, and
other limitations arrive at different consequences. Dennett suggests that building
artificial life simulations offers an improvement upon this method, because it offers
a way for elaborate thought experiments to be not merely created but also rigorously
tested. If what the philosopher imagines can be realized (implemented) in the design of
an artificial life simulation, then running the simulation will reveal the consequences.
Philosophers inspired to add this technique to their toolkit will be able to break new
ground in posing and testing ideas. As one example, Dennett points to the question
of how a complex phenomenon like cooperation might emerge. If a philosopher’s
tentative answer can be realized in an artificial life simulation which indeed produces
cooperative behavior (e.g., that of Ackley and Littman, 1994), this should be a more
convincing way to evaluate the proposal than to reason about why the tentative
answer might or might not succeed (the time-honored, perhaps time-worn, arm-
chair method of doing philosophy). A similar issue that Dennett indicates might
lend itself to investigation through artificial life modeling is whether highly purposive
intentional systems with beliefs and desires might evolve gradually from simpler
automata. The further the method is stretched beyond its biological roots, the wider
is the range of traditional philosophical issues that can be opened to new insights.

We have touched on several ways in which successful simulations are likely to help
advance philosophical inquiry; of these, Dennett’s rethinking of thought experiments
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probably has the greatest implications for philosophy as a discipline. However, it
can be expected that many philosophers will respond to simulation results by ques-
tioning whether the apparent cooperative behavior or intentionality are real instan-
tiations of these constructs, or are pale imitations of uncertain consequence. Do the
simplifications and abstractions involved in any simulation compromise the epistemic
status of its outcome? Many rounds of argument could emerge from a skeptical
comment of this kind, and they would remind us that simulation or any other new
method would only augment, not replace, reasoning and debate as a way of doing
philosophy.

9.7 Conclusion

The networks we discussed in previous chapters had been hand-crafted by humans
and employed to solve problems that had been encoded by human designers on their
input units. In this chapter we have explored early efforts to expand the scope of
connectionist research so as to avoid these two constraints. By installing networks
into robots as controllers, they are not restricted to what the researcher wants them
to learn; they incorporate the regularities in an actual environment whatever those
turn out to be. The genetic algorithm provides a way of evolving network designs;
these evolved designs may turn out to be far more brain-like than those created by
human designers if their early promise is realized. The final point considered here
was that the lines of research discussed in this chapter are also ripe for philosophical
analysis, both by raising philosophical questions such as whether the representations
developed in embodied robot controllers achieve genuine intentionality and by offer-
ing a vehicle for carrying out philosophical thought experiments.
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