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CONNECTIONISM AND THE DYNAMICAL
APPROACH TO COGNITION

8.1 Are We on the Road to a Dynamical Revolution?

We saw in chapter 1 that connectionism has its roots in the 1940s, when ideas about
the nervous system, computation, and intelligence came together synergistically. We
briefly traced the path from formal neurons to perceptrons and noted that events
in the 1960s led to a period in which these neural network models became over-
shadowed by symbolic models of intelligence. With the rise of connectionism in the
1980s neural networks regained prominence, and for two decades the two approaches
have each sought to dominate cognitive science.

This is part of a larger story. The energetic collaborations of the 1940s had
multiple, sometimes intertwined strands, of which the best known is an emphasis on
feedback and control in the cybernetics of Norbert Wiener and others. This required
attention to the dynamics of change in time, an aspect of the functioning of systems
which has often been ignored by connectionists (though not by Stephen Grossberg
and his group, who continued to advance network research during the period when
symbolic models were dominant; see Grossberg, 1982). In an even broader context,
the dynamics of complex physical systems have been mathematically describable at
least since Newton (building on work by Galileo) formulated his three laws of
motion and developed the calculus to gain the ability to predict specific planetary
configurations. New geometrical approaches to dynamics by Poincaré in the late
nineteenth century prepared the way for the rise of Dynamical Systems Theory
(DST) in the twentieth century. Initially applied primarily to physical phenomena
such as eddies in a stream (Landau, 1944), by the 1980s DST was being extended to
motor coordination by Michael Turvey, Peter Kugler, and J. A. Scott Kelso (see
Kelso, 1995) and by the 1990s to the development not only of coordinated activity
but also more cognitive capacities (see the 1994 book by Esther Thelen and Linda
Smith). Although the mathematics of nonlinear dynamical systems can be daunting,
DST has spawned compelling graphics that help to provide an intuitive grasp of key
concepts (among the suggested readings at the end of the chapter, see especially the
copiously illustrated introduction by Abraham and Shaw, 1992).

The idea that cognition is dynamic and can best be understood using the tools of
DST attracted increasing attention across the 1990s but is still somewhat of a fron-
tier outpost in cognitive science. Much of the excitement was conveyed in Mind as
Motion, a 1995 book originating in a 1991 conference which brought together many



236 CONNECTIONISM AND THE DYNAMICAL APPROACH TO COGNITION

of the pioneering modelers. The editors, Robert Port and Timothy van Gelder,
wanted to convince a broad audience that DS'T' has revolutionary implications for
cognitive science. In an introductory chapter they characterized cognitive science as
wedded to what they call the computational approach (i.e., symbolic modeling) and
called for a change, contending that “dynamical and computational systems are
fundamentally different kinds of systems, and hence the dynamical and computa-
tional approaches to cognition are fundamentally different in their deepest founda-
tions” (van Gelder and Port, 1995, p. 10). Further, they portrayed the emergence of
the dynamical approach in cognitive science as a Kuhnian revolution:

The computational approach is nothing less than a research paradigm in Kuhn’s classic
sense. [t defines a range of questions and the form of answers to those questions (i.e.,
computational models). It provides an array of exemplars — classic pieces of research
which define how cognition is to be thought about and what counts as a successful
model. . .. [TThe dynamical approach is more than just powerful tools; like the com-
putational approach, it is a worldview. The cognitive system is not a computer, it is a
dynamical system. It is not the brain, inner and encapsulated; rather, it is the whole
system comprised of nervous system, body, and environment. The cognitive system is
not a discrete sequential manipulator of static representational structures; rather, it is a
structure of mutually and simultaneously influencing change. Its processes do not take
place in the arbitrary, discrete time of computer steps; rather, they unfold in the real
time of ongoing change. . . . The cognitive system does not interact with other aspects
of the world by passing messages or commands; rather, it continuously coevolves with
them. . .. [T]o see that there is a dynamical approach is to see a new way of conceptu-
ally reorganizing cognitive science as it is currently practiced. (van Gelder and Port,
1995, pp. 2—4)

If computational and dynamical worldviews are poles apart, connectionism occupies
a somewhat more ambiguous territory in between. Highly interactive networks,
such as Boltzmann machines, are dynamical systems of considerable interest in
principle. In practice, they are hard to use and hard to analyze even with the
availability of DS'T tools. Feedforward networks have made the greatest inroads
into cognitive science, in part due to their tractability, but the only aspect of this
architecture that is dynamical is the adaptation of weights during learning. Most
connectionist models, even interactive ones, carry some symbolic/computational
baggage and therefore are not the best poster children for van Gelder and Port’s
revolution. We see a somewhat different future, in which connectionist modeling
can benefit from both computational and dynamical approaches and can sometimes
even combine them within the analysis of a single network.

In what follows we will introduce some basic dynamical concepts and tools in
section 8.2; describe how the simplest concepts have been utilized in four areas of
network research in 8.3; and describe how the concept of chaos has been utilized in
two network models in 8.4. Then in 8.5 we return to philosophical issues raised by
van Gelder and Port. From their overall claim that classic connectionism occupies
an untenable halfway position between the computational and dynamical approaches,
we move to more specific arguments concerning explanation (countered by Bechtel)
and representation (countered by Clark and Wheeler). The counter-arguments lead
towards a more inclusive cognitive science, and in 8.6 we discuss a controversial
version offered by philosophers Terrence Horgan and John Tienson. Let us start,
then, by introducing some concepts and tools from the mathematical core of the
dynamical approach: dynamical systems theory (DST).



CONNECTIONISM AND THE DYNAMICAL APPROACH TO COGNITION 237

8.2 Basic Concepts of DST: The Geometry of Change
8.2.1 Trajectories in state space: Predators and prey

If a picture is generally worth a thousand words, in the case of dynamical systems
theory each picture is worth at least ten times that many: among DST’s innovations
is the adroit use of geometrical representations to help conceptualize how systems
change. The simplest picture is a plot of the states traversed by a system through
time, that is, the system’s trajectory through state space. The trajectory is a continu-
ous curve if the system is defined in real time, or a sequence of points in discrete
time. Each dimension of state space corresponds to one variable of the system, and
each point in the space corresponds to one of the possible states of the system. For
systems with one continuous variable, the state space is a range of values on one
dimension (e.g., the frequency of a tone; the height of a person; the firing rate of a
neuron; the population size of a species in its habitat). The trajectory of a pure tone
is a regular oscillation between two values (if a time dimension is added to the plot,
a sine wave is obtained). A trajectory for height starts with an infant’s height at birth
and rises (irregularly) over time.

To move up to a two-dimensional state space, the most obvious way is to consider
an additional variable; for example, you can visualize your child’s growth by graphing
height and weight on orthogonal axes and plotting a point each week; connecting the
points approximates the child’s trajectory through height-weight space in real time.
Another way of moving up to a two-dimensional state space is to examine the same
variable for two different individuals (or neurons, populations, network units, etc.).
Keep adding more, and you end up with a high-dimensional system. For example,
the activation values across a 90-unit output layer in a feedforward connectionist
network can be represented as a single point in a 90-dimensional state space — each
unit’s activation is treated as a separate variable of the system. If the network is
feedforward, its response to an input is one point in the space. If it is interactive, the
changing activation values are represented as a sequence of points — that is, as a
trajectory through activation state space — but the outcome may be similar since
some trajectories simply converge on a point and remain there.

A two-dimensional state space is much easier to visualize than a 90-dimensional
one, so we will use the case of two species in a predator—prey relationship to illus-
trate some key concepts (the case is described by Ralph Abraham and Christopher
Shaw, 1992, pp. 82-5). The classic account was proposed independently by Alfred
James Lotka (1925) and Vita Volterra (1926). Our first picture, figure 8.1(a), shows
several variations on an idealized cyclic trajectory (also called a periodic trajectory) in
the state space for number of prey (horizontal axis) and number of predators (ver-
tical axis); it was inspired by periodicity in the population sizes of different species
of fish in the Adriatic Sea. T'o understand the cyclic changes in population size, four
parts of the outermost curve (labeled I-1V) can be considered separately. (See below
for discussion of the whole family of curves.) When there are relatively few of both
predators and prey, the number of predators declines for lack of food while the
number of prey increases for lack of predators (region I). The increase in prey,
though, provides a more ample food source for the predators, and beyond a transi-
tion point, the number of predators will begin to increase along with the number of
prey (region II). But the increase in predators results in increased consumption of
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Figure 8.1 Possible trajectories through state space for interacting predator and prey
populations: (a) cyclic trajectories (no attractor); (b) point attractor with spiraling transient;
(c) cyclic attractor with spiraling transients beginning at points inside and outside of it.

prey, so after another transition point the number of prey declines while predators
continue to increase (region III). But eventually the shrinking prey population leads
to starvation for predators and both predators and prey decline in population (region
IV). When the number of predators becomes sufficiently low, the number of prey
will begin to increase again (region I). And so forth: in principle, each population’s
size is predicted to oscillate (move between two extremes) forever, with the same
period (elapsed time) on each cycle. The prediction derives from the Lotka—Volterra
equations, in which the rate of change of each population depends on the current
number of prey (x) and predators (y) as well as the values of the control parameters

(A, B, C, and D):
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t
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t

To obtain a cyclic trajectory using these equations, an appropriate set of para-
meter values must be identified (not all values will produce such a trajectory).! As
shown in figure 8.1(a) for one such set of values, the equations then yield a family of
concentric closed curves around a central equilibrium point. Within that family, the
particular curve — ranging from no oscillation at the center to the extreme population
swings of the largest-diameter circle — depends upon the initial values of x and y.
Once the system embarks on one of these trajectories, it will repeat it indefinitely —
unless perturbed by some change outside the system. For example, unusually high
temperatures may increase the predators’ mortality rate, D, and also affect repro-
duction and predation rates, reflected in A-C.

Another way to get different trajectories is to change the equations. In fact, later
researchers found that the Lotka—Volterra equations alone are unrealistic (e.g., they
make no provision for competition among prey or predators for limited resources).
One kind of revision to the system of equations adds “ecological friction” (by ana-
logy to the physical friction that brings a pendulum asymptotically to rest by damp-
ing its oscillations). Figure 8.1(b) shows how this produces a very characteristic
DST state space plot. The illustrative trajectory now has two parts. The point
attractor at the center (also called the limit point) is stable — if exactly these predator
and prey population sizes are attained, the system is in equilibrium and will remain
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in that state. Thus, the attractor is the stable part of the trajectory, and can be viewed
as describing the long-term behavior of the system. The curve that leads to the
attractor is a transient, the part of the trajectory that the system traverses as it moves
from its initial state towards equilibrium. The spiraling transients in this system
reflect a story similar to the one we told for sections I-1V of the outer cycle in figure
8.1(a), except that here the system approaches the equilibrium point as the oscilla-
tions in population size diminish in amplitude. When the transient spirals towards a
point like this, the system is a damped oscillator and the point attractor is also called
a focal point.

Crucially, trajectories from many different initial states will converge on the same
focal point: for various initial numbers of predators and prey, the populations will
approach this point of equilibrium along an appropriate, spiraling transient. In fact,
it is primarily the convergence of nearby trajectories to this equilibrium point that
qualifies it as an attractor (cf. the equilibrium point in figure 8.1(a), which is not an
attractor); and it is specifically a point attractor (limit point) because the subset of
state space to which the trajectories converge (the limit set) consists of just one point.
The set of all initial states whose trajectories converge on this attractor is its basin of
attraction (generally a region of state space but possibly the entire space). The state
space — also called phase space — filled with the possible trajectories of this system is
its phase portrait. In figure 8.1(b) this was reduced, for display purposes, to a repres-
entation of the point attractor (by convention, a small solid circle) and one typical
trajectory. For systems with multiple attractors (and perhaps other special features,
such as repellors, saddle nodes, and the separatrices that may form boundaries be-
tween basins), a larger number of trajectories or special display conventions are
needed to convey the essentials of the phase portrait.

This is a good place to pause and note that considerable idealization is involved in
using even the modified system of equations to model changes in the population
sizes of two species in a predator—prey relationship. First, the real-life populations
are not a closed system; as already mentioned, external factors such as ocean tem-
perature can affect parameter values. Second, here as in many other dynamical
systems (those classified as dissipative), convergence is asymptotic — the state of the
system approaches the attractor as time approaches infinity. Beyond the formal
nature of this characterization, it also assumes a continuity that cannot be attained in
population dynamics. Each birth or death brings a discrete change in the value of x
or y. At best these values will jiggle around in the vicinity of the equilibrium point as
individuals are born and die. This leads to another notion that is worth making
explicit: even if the system could reach true equilibrium, what is stable is the value
of two collective variables. Out in the Adriatic Sea, individual fish are still giving
birth and dying, eating or being eaten. Trajectories of change in the lives of indi-
vidual fish are not inconsistent with lack of change in the size of their two populations.

A phase portrait that is somewhat more realistic for the Adriatic case (though still
idealized) can be obtained by making one more revision to the system of equations.
Figure 8.1(c) shows a cyclic attractor (also called a periodic attractor or limit cycle)
along with a few of the possible transients. This is a form of stable behavior that at
least involves movement — the state of the system endlessly cycles around in state
space rather than remaining at a single point as in (b). But the comparison to portrait
(a) is even more informative. The circle in the middle of (c) looks the same as one
of the circles in (a), but the dynamics producing it are quite different. As a cyclic
attractor, it is the stable part of a variety of trajectories rather than a single trajectory.
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That is, in (c) many different starting points all converge on the same circle (that is
why it is called an attractor), whereas in (a) the starting point is already part of the
circle and determines its diameter.” (Note that although both of these cycles are
circles, in other systems they might be any sort of closed curve; we will see much
odder-shaped limit cycles in figure 8.3(a).) Examining (c) more closely, it can be
seen that a trajectory that begins with many predators and many prey and another
that begins with very few predators but almost as many prey both have transients
that converge on the limit cycle; that is, the long-term behavior of both trajectories
is the same. T'rajectories with transients inside the limit cycle also converge on it; in
the one exemplar shown in (c), the trajectory begins near a point repellor (a point
from which trajectories diverge — the opposite of an attractor — shown conventionally
as a small hollow circle) and spirals out to converge on the limit cycle. Thus, the
basin of attraction is extensive.

8.2.2 Bifurcation diagrams and chaos

Some systems exhibit behavior that is more complex than in figure 8.1. In addition
to the possibility of multiple attractors and other special features, there exist un-
stable trajectories which appear random despite following a deterministic path (i.e.,
the trajectory never repeats itself, but from any given point in the state space there
is an algorithm that determines the next point). Perhaps more dramatically than
necessary, this is called a chaotic trajectory. When the (infinite number of) possible
chaotic trajectories of a system exhibit the characteristics of an attractor, the system
is said to have a chaotic attractor. In particular, trajectories that begin near each
other in the (infinitely large) limit set of the attractor will tend to diverge (a charac-
teristic known as sensitive dependence on initial conditions), while trajectories that
begin in the limit set’s basin of attraction will converge on it. Chaotic attractors tend
to be topologically complex. One of the simpler examples starts with the doughnut-
shaped torus, which can be thought of as offering an infinite number of cyclic
trajectories. A system with a torus attractor in its phase portrait will exhibit quasi-
periodic behavior (continuously circling the torus but not repeating any particular
cycle). However, the behavior becomes unstable for a torus in a very high-dimen-
sional space: the system samples various cyclic trajectories along the surface of the
torus, jumping from one to the next at irregular intervals. This unstable sampling of
cycles is a chaotic trajectory. And this glimpse of a complex field of mathematics will
have to suffice here.

Chaotic behavior is one innovative concept of DST; another is the importance of
parameter values in whether a system exhibits that behavior. Even simple nonlinear
systems may exhibit phase transitions (rapid shifts from one phase portrait to
another) when the value of one or more control parameters changes slightly. For
example, a single difference equation may produce a single point attractor, a cyclic
attractor (limit cycle), or a chaotic attractor for x depending on the value of one
control parameter A. The rapid transition in dynamics, brought about by a small
but critical change in the parameter, is referred to mathematically as a bifurcation.
The simplest example (from which the general term derives) is a pitchfork bifurca-
tion, wherein a single point attractor splits in two. To explain and illustrate this
concept, we will use a bifurcation diagram to display the varied behavior of a well-
studied type of system defined in discrete time. It is specified by the logistic equa-
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tion (which should not be confused with the logistic activation function introduced
in chapter 2):

X1 = Axt (1 - xt) (3)

where x is a variable with range 0<x<1 and A is a control parameter from the range
0<A<4. The subscripts ¢ and ¢ + 1 index successive time-steps %, ;, t,, t;, and so
forth; any value x,,; depends in part on the value x, on the previous time-step. We
can begin by simply examining the sequence of values taken by x (its trajectory)
when A is fixed, as it is generally assumed to be for a given system. Here is the
calculation of the first five points of the trajectory when A = 3 and the initial state
x,=0.5:

x,=3x%x0.5%x0.5=0.75
x,=3x0.75%x0.25=0.5625
x3=3x%0.5625x0.4375=0.7383
x,=3%x0.7383 x0.2617 = 0.5796
x5 =3 x0.5796 x 0.4204 = 0.7310

It can be seen even from these few points that the system is behaving as a damped
oscillator (its behavior through much but not all of the stated range). It is conver-
ging on a point attractor at 0.6667 and the transient is a discrete version of the
continuous spiral in figure 8.1(b). That is, it alternates between high and low values
rather than spiraling between them. (In both cases, since the oscillation is damped,
the high and low values themselves keep changing as the system converges on the
attractor.) If a different initial value of x is used, the high and low values may begin
further apart or closer together but will converge on the same attractor value of
0.6667.

From all this detail about the trajectories of x when A = 3, the only information
needed for the bifurcation diagram is the value of the point attractor, 0.6667. In
general the bifurcation diagram for the logistic equation shows, for values of A
within some range, the stable (long-term) values that x may attain. The transients
one would obtain from different initial values of x are ignored; only the stable value
or values to which they converge are plotted. A single stable value is the simplest
outcome, and that is how this equation behaves when A is between 0 and 3.

Figure 8.2 shows the bifurcation diagram for values of A between 2.6 and 4.0.
This catches some of the simple part of the range. The first bifurcation (a pitchfork)
appears just beyond A = 3 where x’s stable long-term behavior suddenly switches to
an alternation between two values (that is, the point attractor is replaced by a
periodic attractor with periodicity of 2). These values (the prongs of the fork) drift
further apart as A increases, but what matters most is that the dynamics are qualitat-
ively different before vs. after the point of transition, which is called a bifurcation
point. Just beyond 3.4 another bifurcation point is reached, and the system’s period-
icity increases to 4.

At a value of A beyond 3.6 a different kind of bifurcation begins to develop, one in
which the attractor ceases to be periodic and becomes chaotic. The darkened region
is a rough representation of the fact that x is taking a nonrepeating sequence of
values. The value at each time step is deterministic since it is generated by equation
(3), but each value is a new one. The new phase portrait contains a chaotic attractor,
which changes form as the value of A increases. Interestingly, there are even values
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Figure 8.2 Bifurcation plot of the logistic function (1) for values of A between 2.6
and 4.0. For values of A less than 3.0 the function settles into a point attractor. Above
3.0 it bifurcates into a two-point attractor, than a four-point attractor, and so forth.
Beyond 3.6 it enters a chaotic regime punctuated by periodicity within narrow ranges.

of A beyond the initial bifurcation to chaos for which x will once again exhibit
simple periodicity. The values of x comprising each sequence show up in figure 8.2
as little lines within otherwise white bands near A = 3.6, 3.7, and 3.8.

8.2.3 Embodied networks as coupled dynamical systems

Now we can return to the assumption that A is a constant for a given system. This
actually applies only if the system is an autonomous dynamical system — one that is
unaffected by any other system. If so, trajectories through the state space can be
specified in terms of equations (frequently nonlinear) which simply relate the vari-
ables of the system. Often, however, a system will be influenced by factors outside its
boundaries (e.g., if we construe planet Earth as a system, variation in the sun’s radiant
energy is an external factor influencing this system). A nonautonomous dynamical
system is one in which the values of one or more parameters vary due to external
influences.

The dynamics get especially interesting if two systems are nonautonomous be-
cause they are coupled, with the states of each system influencing the values of
parameters or variables in the other system across time. Thus, when the cognitive
system is construed as a dynamical system, it may be further construed as coupled
with other dynamical systems involving the organism’s body and environment. In
carrying out even a simple activity such as tapping a pencil, there may be reciprocal
relations among three systems: the firing of neurons (brain), the movements of the
fingers (body), and the tapping of the pencil against a surface (environment). This is
the sort of interaction among brain, body, and environment that might best be
modeled by construing them as coupled dynamical systems. (One can also construe
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coupled dynamical systems as a single, autonomous dynamical system, but at a cost
of complexity. Considerations of tractability often dictate treating the systems as
separate, with each affecting the other by determining the values of some of its
parameters.)

Dynamicists often celebrate coupling as a much more powerful and useful way of
thinking about the interactions between the cognitive system and its environment
than is offered by traditional perspectives. Both symbolic and connectionist modelers
have found it difficult to advance beyond the “boxes in the head” models which
began to replace stimulus—response models in the 1960s. This legacy includes a
static characterization of the environment (e.g., the fixed corpus that provides input
patterns to a network) and a cognitive model that acts with no further reference to
the environment once an input is received. The input is operated upon (with interim
results passed from one processor to another) and the result is sent out of the system
as an output. For example, the DISCERN system (chapter 7) has a sequence of
processing modules, each of which performs its own transformation on the input it
receives and sends output to the next module (and, when the last module has
completed its work, back out to the world). Most of DISCERN’s modules are
simple recurrent networks, but this allows only a very limited type of interactive
processing (no settling dynamics, and connections remain within the bounds of the
module). None of the modules has loops out to the environment and back or a means
of changing its own operations in sync with ongoing changes in the environment.
Interactive network designs offer some potential as tools to implement such loops,
but in the absence of correspondingly complex characterizations of the environment
(e.g., in terms of coupled dynamical systems) they do not overcome the limitations
of traditional input—processing—output architectures.

Dynamicists are much more inclined to focus on the multiple ongoing inter-
actions between the cognitive system and its environment, and some have already
begun adapting the notion of coupling and other tools of DS'T to this ambitious
project. In so doing, they have become natural allies of a diverse community of
researchers who emphasize situated and embodied cognition. Rejecting the idea that
one can study cognition solely as a set of processes occurring within an agent, these
theorists focus on the interactions between cognitive operations and such external
structures as the instruments in an airplane cockpit (Hutchins, 1995). Cognitive
science has become increasingly receptive to this view and to the use of DS'T as a
source of sophisticated tools for modeling more fine-grained transactions amongst
the brain, body, and world — a trend celebrated by Andy Clark in the subtitle of his
1997 book, Being There: Putting Brain, Body, and World Together Again.

8.3 Using Dynamical Systems Tools to Analyze Networks

In applying dynamical systems tools to connectionist networks, one must decide
which variables of the system to represent. In the case of connectionist networks, the
two most plausible choices are the weights on connections (viewing learning as a
trajectory through weight space) or the activation values of units (viewing process-
ing as a trajectory through activation space). We begin with some examples in which
state-space plots have been used to analyze trajectories through activation space. Of
particular interest are the displays of attractors in phase portraits.
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8.3.1 Discovering limit cycles in network controllers
for robotic insects

Randall Beer (1995; see also Beer, 1997) has made effective use of state space plots
to analyze connectionist networks designed to be coupled to a model insect in order
to control its leg movements. The model insect has six legs, each with a foot at one
end and a joint connecting it to the body at the other end. Each leg has three
effectors: one raises or lowers the foot, and the other two apply opposing torques at
the joint which combine to move the leg forward or backward. Each leg also has a
single sensor that tracks the angle of the joint. The insect lives as a computer
simulation, though it could also be embodied in a robot. Its walking is controlled by
a 30-unit recurrent network composed of 6 subnetworks. The subnetwork control-
ling each leg consists of five units that are fully interconnected. Three are output
units (motor neurons) which send instructions to the leg’s three effectors, and two
are connected only to the output units and to each other (interneurons). Each unit
also receives weighted input from the leg’s sensor, completing a loop between the leg
and its controller network. That is, the dynamical systems of the body and the
control network are coupled. Additional connections between subnetworks assure
that the sensory information and motor activity of the six legs are coordinated.

With this basic architecture as a starting point, several different controller net-
works with task-adapted weights on their connections were created using a genetic
algorithm procedure (see section 9.1). The fact that the weights were obtained by
simulated evolution rather than learning is not crucial here; Beer’s focus was on the
dynamics of the systems once they had those weights. To contrast autonomous with
nonautonomous dynamical systems, he manipulated access to sensory feedback.
Coupled networks evolved with full access to input from the joint angle sensors (the
network and the body were nonautonomous dynamical systems because each re-
ceived input from the other); autonomous networks evolved with the sensors turned
off (the body, still controlled by the network, was nonautonomous; but the network,
lacking feedback, generated its own states autonomously); and mixed networks evolved
with the sensors sometimes on and sometimes off.

All networks eventually could make the model insect walk employing the “tripod
gait” characteristic of fast-moving six-legged insects: the front and back legs on one
side would move in synchrony with the middle leg on the opposite side. While one
set of three feet was swinging, the other set would remain on the ground, providing
support. However, the three sets of networks fared differently when challenged in
further testing. The coupled networks exhibited fine-tuned control of walking, but
performed poorly if the sensors were turned off; they had evolved circuits that were
dependent on a constant flow of sensory input and could not generate an appropriate
sequence of states when forced to function autonomously. The autonomous networks
produced walking in a stereotyped tripod gait regardless of whether sensory input
was now made available; they autonomously cycled through the same sequence of
states and had no means of incorporating a new, external variable to generate a
modified sequence. The mixed networks worked as well as the coupled networks
with sensory input, but could also function autonomously when input was removed.

To more closely examine these differing dynamics, Beer began with the relative
simplicity of the autonomous networks and narrowed his focus to a single five-unit
subnetwork controlling what he posited was a single-legged insect. Beer sought to
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Figure 8.3 'T'rajectories in motor space for two of Beer’s (1995) network controllers for a
model insect. Successive activation values are plotted for the foot, backward swing (BS),
and forward swing (FS) motor neurons in the subnetwork controlling one leg. (a) The
autonomous network (sensor off) produces a limit cycle. When the activation values are
in the upper back corner the foot is down and the network is in a stance phase; when
activation values are in the lower front corner, the network is in a swing phase. (b) The
coupled network (sensor on) exhibits a roughly similar trajectory, but it is produced by
moving between two point attractors.

understand how the network controlled the leg’s movement. He found that the five-
dimensional state space for this simplified control system exhibited a limit cycle,
which is projected into a three-dimensional motor space in figure 8.3(a). When sent
to the effectors, this repetitive sequence of motor neuron activation patterns propels
the leg repeatedly through a one-legged version of the tripod gait. For example,
when the control network is in the state at the lower right front corner (the middle of
the swing phase), the insect’s foot is raised and leg is swinging forward while the
torso remains still. In the state at the upper left rear corner (the middle of the stance
phase), the foot is on the ground and the leg is still; the backward-swing torque is
transmitted to the torso, propelling it forward. The shift from one phase to another
depends upon reversing the relative dominance of the forward swing neuron (FS)
and backward swing neuron (BS) as well as the activity of the foot neuron (values above
0.5 instruct the foot to be down); on each cycle there is one such shift into a swing
phase and another into a stance phase. Following the trajectory from the rear to front
corner, the relative dominance is shifting from the backward swing neuron (BS) to
the forward swing neuron (FS); from the front to rear corner, the opposite shift occurs.

When the same kind of analysis is applied to a coupled network (one that evolved
with the leg-angle sensor turned on), the results are superficially similar. Figure
8.3(b) shows that a limit cycle fairly similar to the one in figure 8.3(a) is obtained,
and it produces essentially the same gait in the insect. The underlying dynamics are
quite different, however. The leg angle is now variable, rather than taking a constant
value of zero. Because the sensor supplies a stream of leg-angle values to the network,
each point on the limit cycle has its own instantaneous trajectory. Most of these
trajectories terminate in one of two point attractors, which are superimposed on the
state space plot as solid circles. For example, each point on the leftmost portion of
the limit cycle has a trajectory that terminates in the stance attractor (top circle). For
the lowest of these points the trajectory to that attractor is relatively long, but as the
network’s states advance up the limit cycle the instantaneous trajectories get shorter.
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Eventually the stance attractor is reached and the network remains in that state for a
time. However, the state is one that produces forward motion of the body, which
gradually changes the leg angle; under the leg-angle sensor’s influence, the stance
attractor disappears and the swing attractor appears. (Additional, unstable attractors
make a brief appearance during the transition.) Now the state of the network pro-
gresses along the rightmost portion of the limit cycle in accord with a sequence of
instantaneous trajectories terminating in the swing attractor.

While more interesting than the dynamics of the autonomous network, the reli-
ance on sensory feedback to make the appropriate attractor appear has a price. If the
coupling is broken by turning the sensor off, the network will get stuck on one
trajectory leading to the stance attractor and, once it reaches that state, will have no
way to move out of it. The insect will stand forever. The mixed network avoids this
fate because its instantaneous trajectories are based on limit cycle attractors rather
than point attractors. Not only does it not get stuck if input is removed; it exhibits
an adaptive “functional plasticity” as its trajectories dynamically adjust to the flow of
sensory feedback. For example, when Beer intervened by making the sensory input
change more slowly than normal (as would happen if the insect’s legs were longer),
the mixed controller network became entrained by the sensory signal, slowing its
own cycle to remain in phase. Beer (1995, p. 203) remarked: “The likelihood of
anyone designing such a flexible and compact leg controller by hand is probably
rather low.” To continuously adjust to a changing environment, he finds the “messy”
design of intermittently coupled dynamic systems more promising than the modular
designs of engineers.

If Beer’s study had been run purely as a network simulation, without the DST
analysis, there would have been no plotting of limit cycles and instantaneous traject-
ories, no understanding of the role of attractor dynamics, and no explanation of
why the constantly coupled network fails to function properly when the sensor is
turned off but the intermittently coupled (mixed) network does. In the next section
we show that DST is equally important for attaining a deeper understanding of a
quite different class of models: layered interactive networks trained to simulate
reading aloud. This more differentiated, cognitive task elicits the development of
multiple point attractors.

8.3.2 Discovering multiple attractors in network models of reading

We saw in chapters 2 through 5 that feedforward networks can be used for a variety
of tasks involving pattern recognition (e.g., assignment to semantic categories) and
pattern transformation (e.g., past-tense formation). A simple way to add interactivity
to such networks is to add recurrent connections between pairs of output units.
Lateral inhibition produces dynamical interaction, in which even a small advantage
in initial activation value can become a large difference as the system settles. The
disparity in activation values between two units at time ¢ is one determinant of the
disparity in their inhibitory effects on each other at time ¢ + 1, with the more active
unit suppressing the less active unit via its stronger inhibitory signal. We saw lateral
inhibition at work in the Jets and Sharks simulation in section 2.1, McClelland and
Rumelhart’s 1981 word-recognition model in section 4.1.2, and (along with lateral

excitation) in the lexical and episodic memory modules of DISCERN in sections 7.5
and 7.7.



CONNECTIONISM AND THE DYNAMICAL APPROACH TO COGNITION 247

SEMANTICS
(word meanings)

68 Sememe units
in 18 groups
interconnected within groups

60 Clean-up units
(Hinton and Shallice only)

HINTON AND
SHALLICE'S
1991 MODEL

40 Hidden units Hidden units

61 Phoneme units
in 3 groups
fully interconnected

Grapheme units ,
in 3 or 4 groups (see text) PLAUT ET AL.'S
1996 MODEL

not interconnected \ /
ORTHOGRAPHY \
(spelling of written words) 100 Hidden units

Figure 8.4 An overall framework for lexical processing adapted from Seidenberg and
McClelland (1989). Those pathways that had been implemented by 1996 are in shown in
boldface: the pathway from orthography to phonology (Plaut et al., 1996: filled arrows) and
the pathway from orthography to semantics (Hinton and Shallice, 1991: hollow arrows).
Neither model included the full set of feedforward and feedback connections of the original
framework. Plaut et al. left out the hidden-to-grapheme feedback connections and Hinton
and Shallice obtained interactivity by adding clean-up units rather than feedback
connections. The models also differed in how they specified their grapheme units (see text).

PHONOLOGY
(pronunciation of spoken words)

In dynamical terms, we can say that such networks have multiple attractors and,
when provided with an input, follow a trajectory in activation space that converges
on the most appropriate one. In a network that learns to sort input patterns into four
categories, for example, each of the four categories may develop its own point
attractor in the activation state space for the output units. As long as the initial
response to an exemplar is a pattern that falls into the basin of attraction for the
appropriate category, the repeated revisions of each output unit’s activation will
gradually bring the pattern arbitrarily close to the desired pattern for that category
(i.e., the system follows a trajectory that converges on the point attractor).

Interactive networks that develop multiple basins of attraction (attractor networks)
have played a key role in a research area with a long and contentious history:
accounting for how humans read. Figure 8.4 shows an overall framework for lexical
processing adapted from Seidenberg and McClelland (1989), in which specialized
groups of units (including groups of hidden units) interact with each other. To
model reading, input is provided to the orthographic units. If the goal is to read
aloud, then the system must generate a phonological output. If the goal is to under-
stand the word, then it must retrieve a semantic interpretation. (Usually humans do
both while reading aloud — they interpret the text as they pronounce it.) Since all of
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the interactions between groups of units are bidirectional in this overall framework,
semantics can influence a phonological output and phonology can influence a semantic
interpretation. In practice, it has been difficult to implement the full framework (but
see section 10.2.3.3 for a rough approximation to the interaction between semantics
and phonology that was advantageous in a model of surface dyslexia). Here we focus
on more limited models in which only one of the pathways involved in reading was
extracted and examined in isolation. Specifically, Hinton and Shallice (1991) modeled
the pathway from orthography to meaning (large unfilled arrows) and Plaut,
McClelland, Seidenberg, and Patterson (1996) modeled the pathway from ortho-
graphy to phonology (large solid arrows). The number of units and other details in
figure 8.4 refer to these two simulations. The units at the end of each pathway were
completely or partly interconnected as indicated, with the result that multiple point
attractors developed in those groups of units.

8.3.2.1 Modeling the semantic pathway Hinton and Shallice’s (1991) network runs
vertically through figure 8.4. As we will discuss in chapter 10, they planned to lesion
the network to simulate errors made by individuals with deep dyslexia when read-
ing aloud (most frequently semantics-based errors such as PEACH — “apricot”).
Because the pathway from orthography to semantics appears to play a prominent role
in this disorder, Hinton and Shallice isolated it for study. (They assumed that the
pathway from semantics to phonology, which is needed to complete the reading-
aloud task, functioned with little error and was not crucial in simulating this particu-
lar disorder.) In their intact model of this pathway, 28 grapheme units encode a
word’s orthography (i.e., its spelling or visual form) and send activation through a
hidden layer to 68 sememe units. As described below, there are interactive connec-
tions within this last layer and between it and a layer of clean-up units; aided by
attractor dynamics, the semantic layer settles into the pattern corresponding to the
word’s meaning. There is no further interactivity, though: the connections specified
in figure 8.4 from orthography to hidden units and from hidden units to meaning
were unidirectional rather than bidirectional in this particular model.

Hinton and Shallice trained the network on a corpus of 40 three- and four-letter
words across 1,000 epochs of backpropagation. Each written word (indicated by
upper case; e.g., MUD) could be given a localist, position-specific encoding using
binary grapheme units. Position 1 (linguists call it the onset) had 11 consonant units,
position 2 (vowel) had 5 vowel units, position 3 had 10 consonant units, and position
4 had optional E or K (positions 3 and 4 are both part of the coda which follows the
vowel in some but not all syllables of English). The word meanings (indicated by
lower case; e.g., mud) were limited to five semantic categories (animals, foods, body
parts, indoor and outdoor objects) and were represented using semantic roles appro-
priate to those categories. For each role a group of sememe units was designated
(sometimes called an ensemble or assembly of units), and activation of one unit pro-
vided a localist encoding of how that role was filled in a particular word meaning.
For example, units 9-15 formed an ensemble for encoding color, with one unit each
for white, brown, green, transparent, etc. Representing the meaning of one word
involved activating approximately 15 units, which could include multiple units from
a given role ensemble (e.g., lime has two fillers for the taste role: sweet and strong).

The challenge for the model is that visually similar words (e.g., MUD and MUG)
need to be mapped on to dissimilar meanings (e.g., role:filler sememes for the
meaning mud include hardness:soft and location:on-ground and those for mug
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include hardness:hard and location:indoors), whereas visually different words
(MUD and BOG) need to be mapped on to similar meanings. But their network
does not treat the spelling of a word as an arbitrary pointer to its meaning, Hinton
and Shallice noted, because networks most naturally develop weights that map
similar inputs to similar outputs (that is why networks are good at generalization).
Extra work is needed to overcome this tendency. Hinton and Shallice therefore
employed interactive connections to move the initial semantic patterns towards the
more distal desired patterns and to form point attractors at these locations. During
learning, changes in the weights on the interactive connections created appropriate
basins of attraction in semantic space. Similar-looking words initially produce sim-
ilar semantic patterns in the resulting network, but if the points in the corresponding
semantic space are in different attractor basins, the system should follow a trajectory
to the correct meaning in each case. As shown in figure 8.5 for MUD and MUG
(using points in spaces of reduced dimensionality to partly represent patterns in the
network), the similarity in spelling tends to result in representations that maintain
some proximity through the transformations from orthographic to hidden to semantic
layers of the network. But then the interactive dynamics among sememes put the
two words on to diverging trajectories (less direct than shown) towards distant
attractors. The additional words shown (without their basins of attraction) indicate
that attractors for other words in the same semantic category tend to be nearby.
The interactive connections that implemented this dynamic were of two kinds.
First, Hinton and Shallice inserted pairwise connections between sememe units
within the same semantic role ensemble, which tended to produce varying degrees
of lateral inhibition within these groups. Second, they added a set of 60 clean-up
units which received input from the sememe units and sent activation back to them.
These units learned which combinations of sememes were characteristic in the
corpus and guided the sememe patterns towards these combinations. For example,
when the units for size:small and hardness:hard and shape:3D all are active,
location:indoors also should be active. The clean-up units will notice that and
boost the net input to the location:indoors unit over time until it crosses its
activation threshold. That is, the co-occurrence of these four units is an attractor,
and its dynamics enhance processing of such words as mug, cup, can, gem, and bone.
Moreover, the entire sememe pattern comprising the meaning mug is an attractor in
part due to this subregularity and in part due to idiosyncratic factors and other
subregularities it shares with other words. For example, mug shares the cluster
use:for-eating-drinking/location:on-surface/location:indoors/shape:3D with
can, rum, pop, and lime (cup differs because it is placed on a saucer rather than on a
surface and gem and bone are not used for eating or drinking). In effect, attractor
basins for subregularities like these are assembled into word-sized attractor basins,
each of which occupies a distinctive region in the full 68-dimensional semantic
space. These 40 basins guide the network into the appropriate meaning for each
input despite the initial tendency to keep visually similar words too close together.

8.3.2.2 Modeling the phonological pathway Whereas Hinton and Shallice intro-
duced interactivity because they anticipated that attractors in semantic space would
help solve a problem, Plaut, McClelland, Seidenberg, and Patterson (1996; here-
after, PMISP) included an interactive network as part of a long-standing commitment
to interactive architectures on the part of their research team. They compared it to
an otherwise identical feedforward network in part to find out whether interactivity
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Figure 8.5 A schematic illustration in just two dimensions of how attractor dynamics
overcome the tendency for visually similar words like and MUD and M UG to land

near each other in semantic space (Hinton and Shallice, 1991). Each word’s meaning
corresponds to a point attractor (large dots, far apart for these two words) whose large basin
of attraction includes the initial point of entry to the space (small dots, nearby for these two
words). Via interactive processing each word follows a trajectory (less direct than shown) to
the appropriate point attractor, mud or mug. Note that mug is close to cup, not to mud.

would be disadvantageous for this particular task, which modeled the pathway lead-
ing from orthography directly to phonology. Though ultimately they expected the
entire network in figure 8.4 to be involved in the reading-aloud task, this pathway
seemed most crucial for reading in general (especially somewhat mechanical or
absent-minded reading) and for a form of surface dyslexia in which low-frequency
exception words are especially prone to disruption. Like Hinton and Shallice, they
planned to simulate one form of dyslexia by lesioning their network (this part of
their project is discussed in section 10.2.3).

Reading aloud is a task that is quasi-regular; that is, largely systematic, but with
exceptions. For example, MINT, HINT, and TINT are regular words but PINT is
an exception word because its vowel has an atypical pronunciation. The regularities
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are sometimes described using rules of grapheme—phoneme correspondence, but one
of PMSP’s goals was to show that both regular and exceptional pronunciations can
be successfully modeled using a network rather than explicitly stated rules. PMSP
trained their network to map graphemic into phonemic encodings using a corpus of
2,998 regular and exception words (restricted to onset—vowel—coda monosyllables,
e.g., TH-I-NK). Like Hinton and Shallice they used a localist, position-specific
encoding scheme, but it had to be more elaborate because their words were more
complex (they could include multi-letter graphemes like TH and also multiple graph-
emes in each position). There were 105 grapheme units divided into three en-
sembles: 30 onset units such as G, W, WH, and TH; 27 vowel units such as 4, I, AI,
0O, and OY; and 48 coda units such as G, X, K.S, TH, S\S, and TCH. The hidden
and phoneme layers were as shown in figure 8.4. The three groups of phoneme units
were position-specific for onset, vowel, or coda. More than one unit could be active
for a position; for example, to present THINK to the network requires activating
three onset units (the primary grapheme T'H and by convention also T and H ), one
vowel unit (/) and two coda units (N and K, which are separate graphemes). In
addition to the feedforward connections, each phoneme unit sent a lateral connec-
tion to every other phoneme unit (including itself) and a feedback connection to
each hidden unit; it was interactive processing across these two sets of connections
that produced attractors in the network. (Note that the use of position-specific
ensembles of units in the input and output layers contrasts with Seidenberg and
McClelland’s use of Wickelfeature representations in a 1989 model; reasons for
changing their encoding system are noted in section 10.2.3.3.)

The network was trained with the backpropagation through time procedure (an
adaptation of backpropagation for recurrent networks). After 1,900 epochs of train-
ing it had learned to pronounce all but 25 of the 2,998 regular and exception words
in the corpus. The comparison network, which had the same feedforward connec-
tions but neither type of recurrent (interactive) connection, learned much more
easily; it made O errors after just 300 epochs of training. However, given that inter-
active networks are more neurally plausible than purely feedforward networks, PMSP
thought it important to find out whether an attractor network was able to generalize
its training on words so as to attain human-like performance in pronouncing
nonwords. It was by no means obvious that this would be the case, since attractor
dynamics are supposed to help ensure that a network’s response will be one of those
already learned (e.g., the pronunciation “think,” which is /8ink/ in phonemic nota-
tion), not only to the inputs on which it was trained (e.g., the written word THINK)
but also to similar inputs on which it was not trained. (e.g., the nonword BINK). As
long as the input activates a point within some word’s basin of attraction, the
interactions between the units during settling should result in the activation of that
word. This would seem to preclude the network correctly reading aloud nonword
test items; for example, if the initial response to BINK fell into the attractor basin
for the pronunciation of THINK it would be incorrectly pronounced [0ink/.

In fact, though, the network performed very well. It was tested on a list of 86
nonwords created by Glushko (1979), in which half were derived from regular
words and half from irregular words, and a list of 80 nonwords used by McCann
and Besner (1987) for a control condition. Table 8.1 compares the performance of
human participants in their studies with that of the interactive (attractor) network as
well as the comparable feedforward network. The similarities are impressive, with
the same pattern of difficulty in each row and the absolute percentages very close in
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Table 8.1 Percentages of regular pronunciations in tests of three sets of nonwords

Glushko (1979) McCann and Besner (1987)
Regular Exception Control
Reader nonwords nonwords nonwords
Humans 93.8 78.3 88.6
Interactive network 93.0 62.8 86.3
Feedforward network 97.7 67.4 82.5

Note: Adapted from Plant et al. (1996), table 3.

two of the three columns. Moreover, error in the networks, used as an index of
difficulty, showed the same regularity by frequency interaction as human naming
latencies (i.e., infrequent exception words are slower than frequent ones, whereas
regular words show little or no frequency effect). A closer analog to naming latency
was available for the interactive networks (average time to a criterion of stable
responding); it showed the same interaction. (However, Spieler and Balota, 1997,
argued that the model should yield good predictions of relative performance by
humans on individual items, not just two-way interactions involving broad categor-
ies such as high-frequency items. On their analysis, it did not.)

How was an attractor network able to respond appropriately to nonwords? PMSP
proposed that the network’s primary strategy was to develop, not whole-word
attractors, but rather componential attractors — one each for the various onset, vowel,
and coda clusters that make up words (a cluster contains one or more graphemes or
phonemes, such as the N and K in the coda of THINK). That is, the network did
not always treat written words as unanalyzed wholes but rather learned the usual
pronunciation of each onset, vowel, and coda that recurred across the words of the
corpus. It encoded them as “soft” activation-based correspondences between ortho-
graphic feature patterns and phonemes rather than “hard” grapheme—phoneme cor-
respondence rules. Learning the regularities in this way produced attractors for
particular phoneme clusters in phonemic space that were associated with the appro-
priate orthographic clusters via additional attractors in hidden-unit space. To pro-
nounce a regular word, in effect, the network found the intersection in each of these
spaces of the attractors for its onset, vowel, and coda. The same dynamic could work
just as well for pronouncing nonwords composed of novel combinations of familiar,
regular phoneme clusters. For example, the intersection of attractors for /b/ and [i/
and /nk/ would yield the correct pronunciation of BINK even though the entire
pattern BINK had never been experienced.

Exception words are more complex, since they present a mixture of regular and
irregular correspondences. PMSP suggested that the system takes advantage of
whatever regularities do exist within the word but goes part-way to a whole-word
approach to handle the more idiosyncratic aspects. In order to support this claim,
they created several innovative analyses of how the onsets, vowels, and codas of
various types of words were handled by the network. For example, if MINT were in
the corpus, they could show that the orthographic encoding of the onset M would be
responsible for the inclusion of /m/ in the network’s output, the vowel I would be
responsible for [i/, and so forth. But for the exception word PINT, the onset and
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coda in the orthographic representation actually would be more influential than the
vowel. These analyses provided a window on what was happening at the hidden
layer in the absence of a good way to directly examine the attractors that developed
there. Even the indirect analyses were too complex to describe here, but the need for
them underscores that part of the unfinished business of connectionism is to attain
better tools for understanding activity in large networks. In the next section we
return to a simulation by Jeffrey Elman that was discussed at some length in section
6.4. We can now view it as a discrete dynamical system and examine an additional
analysis he performed which combined principal components analysis with state
space plots to get a direct (though partial) look at hidden layer activity.

8.3.3 Discovering trajectories in SRNs for sentence processing

One way of examining the activity of units in a network is to plot trajectories in a
state space. Each dimension represents the activation value of one unit, and a traject-
ory in this space displays the changing state of the network across time. As we saw
above, Beer (1995) made good use of this method to unearth the reasons why his
autonomous, coupled, and mixed networks behaved so differently in certain tests.
By limiting his analysis to three motor neurons controlling a single leg, he was able
to provide three-dimensional displays of the limit cycles that evolved and, for the
networks with variable input, characterize the dynamics in terms of instantaneous
trajectories and attractors.

In this section we show how Jeffrey Elman (1990, 1991) used trajectories in state
space to explore the activity of simple recurrent networks (SRNs). His project is
otherwise so different from that of Beer that it provides some sense of how broadly
useful the tools of DS'T can be. One difference is that Beer had an unusually small
number of units to examine. For most network models, including that of Elman,
some method of collapsing the activity of numerous units into a low-dimensional
plot is needed in order to visualize the state space. Another difference is that SRNs
have a distinctive design that lies somewhere between interactive networks (whose
recurrent connections can exhibit attractor dynamics) and feedforward networks
(which have no recurrent connections and cannot develop attractors). They have
recurrent connections, but they are used in a special way that enables the network to
retain and re-use a (compressed) history of its own sequence of states (it recursively
copies states; no attractor dynamics are involved or possible). Changes of state are
discrete, in response to input, but the possible changes are constrained by the state
history that forms part of the input. In DST terms, SRNs are nonautonomous
systems (because they receive input) which change state at discrete time-steps (once
per input) and might be viewed as composed of subsystems, two of which are
coupled (because the units that store the state history and the hidden units provide
input to each other).

As we discussed in section 6.4, Elman trained simple recurrent networks to pre-
dict successive words in a corpus of sentences. He was interested not merely in the
network’s success, but also in understanding how it accomplishes its task. In his
1990 paper he used cluster analysis to show that hidden unit patterns were similar
for words with similar privileges of occurrence in sentences; that is, patterns for
words in the same syntactic/semantic class, such as human or transitive verb, were
clustered together in the hierarchy extracted by the analysis. This way of examining
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hidden-unit activity was necessarily rather coarse-grained: since patterns had to be
averaged across contexts to obtain a single pattern for each word, the cluster analysis
provided no insight into how the hidden-unit patterns for a given word varied
according to current grammatical context. Such variations play a key role in enab-
ling an SRN to predict the next word.

To examine the time dimension rather than averaging it away, a DS'T framework
would suggest plotting the trajectories of the activation patterns on the hidden layer
as the network moves from one word to the next in a corpus. For a network with 70
hidden units this would require a trajectory in an activation space of 70 dimensions,
which can easily be computed but cannot be displayed on a page nor grasped by
mere mortals. Elman (1991) turned to principal components analysis as a method
for taming the surfeit of detail. This statistical procedure extracts a set of orthogonal
dimensions (principal components) that captures much of the structure in the data
and projects the high-dimensional vectors on to this reduced space. If the number
of derived dimensions is still larger than desired, a state space plot can be limited to
two or three of them (selected because they account for the most variance or are
most relevant for a specific analysis). Elman views his networks as having learned
constraints on possible trajectories. When a word is presented along with a record of
the sentence’s trajectory so far (on the input and context units, respectively), the
hidden units integrate this information and propagate it to the output units so as to
activate one (or more) words that meet the constraints. The plots generated using
dimensions from the principal components analysis display the word-by-word tra-
jectory of a sentence through a subspace of the overall hidden-unit activation space.

Elman (1991) used this technique to view some of the dynamics involved in pro-
cessing sentences generated by a phrase structure grammar (the grammar and the
“starting small” technique of training simple sentences first are the same as in Elman,
1993; see section 6.4 for details). Figure 8.6 displays plots in the two-dimensional
state space obtained from principal components 1 and 11. This particular hidden-
unit subspace happened to be particularly informative about the processing of relat-
ive clauses. A separate plot is provided for each of the following sentences. (To
minimize other influences on the trajectories, boy is the only noun used throughout.)

(a) boy chases boy.

(b) boy chases boy who chases boy.

(¢) boy chases boy who chases boy who chases boy.
(d) boy who chases boy chases boy.

Consider sentence (a). The first word (boy) is presented on the 26 input units and
becomes re-encoded on the 70 hidden units. Weights on the connections leading out
from the hidden layer support the network’s prediction on the 26 output units
(which is not a single word, but rather all words that satisfy the distributional
constraints of the corpus: all of the singular verbs, including chases, plus the word
who). When the 70-dimensional activation vector on the hidden layer is projected on
to the subspace to give us a partial look at it, in figure 8.6(a), we see it has landed in
the lower right corner (at a point high on component 1 and somewhat low on
component 11). Now the network is (in effect) wiped clean except that the hidden-
layer vector is copied on to the context units and the next word (chases) is presented
on the input units. This combination produces a hidden-unit vector that projects to
a middle left point in the state space. After it has been used to predict the next word
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Principal component 1
Figure 8.6 'T'rajectories through activation state space as Elman’s (1991) simple recurrent
network (SRN) predicts successive words in a corpus generated by a phrase structure
grammar. Only the first and eleventh principal components of the hidden unit activations
are shown. Sentences (a) through (d) are displayed counter-clockwise to facilitate
comparison of (a) to the sentences obtained by adding an object relative clause (b) or
subject relative clause (d). Recursion of the object relative clause is shown in (c).

on the output layer, this new hidden-layer vector (which now encodes the history of
hidden-layer responses to boy and then chase) is copied on to the context units and
the next word (another token of boy) is presented on the input units (it is another
token of boy, and would have been among the predicted words on the previous step
if the network had learned its task well). This combination (boy as the next word in
a sequence beginning with boy chases) produces a hidden-unit vector different enough
from the first one that it projects to a different part of the state space (it is similar on
component 1 but much higher on component 11 than the first boy).

To make this short sentence’s trajectory easy to see in figure 8.6(a), the three points
in the state space are labeled and joined with lines, with an arrowhead added near
the beginning and a square at the end. It is a genuine trajectory, in that each state is
constrained by the previous state (e.g., the positioning of boy is context-dependent).
However, because the state changes are discrete and input-driven, intermediate
points are not actually traversed by the network. The lines merely indicate the
temporal order in which the system jumps from one point to the next. Nonetheless,
it will become evident as we discuss plots (b)—(d) that state-space plots combined
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with principal components analysis provide an extremely useful window on the
sequential activity of simple recurrent networks.

Figure 8.6(b) shows what happens when an embedded clause is added to the simple
sentence (a). The trajectory begins as in 8.6(a) but then reveals (for just components
1 and 11) how the network deals with a relative clause modifying the object. Though
who is a subject, like the initial boy, the network takes note of its relative pronoun
category and context by producing a hidden-layer encoding that yields a negative
value on component 1 (i.e., the trajectory jumps to the far left of the state space).
The embedded chases boy subtrajectory is more like that of the main clause: though
displaced somewhat, it still has the object boy higher and further right than the verb
chases.

When yet another relative clause is added, figure 8.6(c) shows that a triangular
subtrajectory much like that of the first relative clause is produced — but displaced
slightly. This small difference in states is not accidental; it reflects the fact that
although each clause is linguistically identical (a relative clause modifying an object)
their contexts are different. One is preceded by another relative clause; the other is
followed by another relative clause. Elman states that the failure of the network to
informationally encapsulate each clause contrasts with the way recursion is handled
in a formal grammar or computational push-down stack. He calls the network’s
solution “leaky recursion” (p. 218) and argues that it is actually advantageous to
encode the same kind of clause in different contexts a bit differently on the hidden
layer, even though they result in the same output behavior (the network produces
the same sequence of word predictions twice).

The remaining plot, figure 8.6(d), shows what happens when those same words
must be predicted, but in a context with very different sequential dependencies
(modifying the subject rather than the object). The fact that the words make up a
relative clause is reflected in their now-familiar triangular subtrajectory; the fact that
this clause modifies a subject rather than an object is reflected in its very distinctive
placement in the space compared to 8.6(b).?

What if additional relative clauses are added? Since an increasingly long history
must be compressed on to a fixed number of hidden units as they recursively track
progress through a sentence, eventually the network’s performance degrades. In
sentence (d), for example, the first boy and the final chases must agree in number.
The second principal component (not shown in figure 8.6) is especially sensitive to
the subject noun’s number; here, it captures that boy is singular, not plural.* The
weights leading out from the hidden units know how to use this information to
predict a verb that agrees in number (here, chases rather than chase), and also know
how to delay exercising this knowledge when an intervening embedded clause is
encountered. With additional embeddings, the hidden-layer encoding becomes too
compressed and sends less usable information to the outgoing weights. In a nutshell,
networks (like humans) become less dependable at dealing with long-distance depend-
encies as distance increases.

8.3.4 Dynamical analyses of learning in networks
The state space plots in this chapter have displayed activation spaces for networks,

some (such as Elman’s) focusing on individual trajectories and others (phase portraits)
showing at least some of the attractors in a particular system. State space plots can
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also be used to display a network’s weight space and the trajectory of weight changes
it traverses during learning. Because error reduction plays such a key role in con-
nectionist learning algorithms, generally a dimension is added to the weight dimen-
sions which displays the amount of error associated with each weight state. In chapter
3 we introduced two plots of this type. Figure 3.1 was the simplest possible plot: error
on the vertical axis and the range of possible weights for one unit on the horizontal
axis. Its curvilinear function indicated how much error was associated with each
weight within a range for a hypothetical system. The lowest point on the line is
especially important; we referred to it there as a global minimum, but in dynamical
terms it is an attractor. (‘The single local minimum in that figure is also an attractor.)

Learning rules such as the delta rule and backpropagation are gradient descent
rules, which means they change weights in a network so as to follow a trajectory to a
lower error. The various points in weight space from which a network will settle into
a particular minimum constitutes its basin of attraction. When there are multiple
attractor basins, as in figure 3.1, they are separated by repellors — points in the weight
space from which the system will move away. (A successful learning procedure can
escape local minima by perturbing the weights enough to get beyond repellors.) In
figure 3.3 we showed how such a weight space representation can be generalized to
two weights.” Again, the low points are attractors (now on a two-dimensional error
surface rather than a line), and gradient descent will lead the network to follow a
(frequently meandering) downwards trajectory. T'he networks used to model human
performance generally have high-dimensional weight spaces, but the same general
concepts apply.

8.4 Putting Chaos to Work in Networks
8.4.1 Skarda and Freeman’s model of the olfactory bulb

Most of the researchers reviewed so far in this chapter are card-carrying connec-
tionists who design and test network models in the usual way and then add DST
tools to obtain a better than usual understanding of how the models work. How does
the research differ when DS'T is the starting point, and networks are simply one of
the possible mediums in which to explore the potential of DS'T tools and concepts?
Beer’s work on network controllers for model insects provides a partial answer, and
in this section we will consider work from two additional groups of investigators. One
characteristic of DST-driven research that quickly becomes apparent in the original
papers is the extent to which mathematical considerations and analyses are front and
center. For example, the paper by Beer cannot be meaningfully summarized without
talking about limit cycles and attractors. In this section we go further by consider-
ing, at a very schematic level, systems that exhibit chaos in some phases of their beha-
vior. Another characteristic is that DS'T' researchers enthusiastically put genuinely
novel findings on display. These are not easily assimilated by the uninitiated, and in
section 8.5 we will discuss arguments for (and against) regarding dynamical approaches
to cognition as a new paradigm that supersedes, rather than augments, existing
paradigms.

DST researchers also exhibit a bias towards systems with nonstationary dynamics
— those with an intrinsic ability to keep moving between states rather than getting
stuck in an attractor. This contrasts with the typical connectionist view of networks
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as input—output devices; from that perspective, using an input to push a system’s
state into the appropriate point attractor is a pretty interesting way to get an output.
The fact that nothing will happen next, unless an external agent zeros the activation
values and supplies another input, has not been a high-priority concern. Christine
A. Skarda and Walter J. Freeman (1987, p. 172) tried to raise consciousness on this
issue by noting that “the neural system does not exhibit behavior that can be modeled
with point attractors, except under deep anesthesia or death. Convergence to a point
attractor amounts to ‘death’ for the system.” Instead, they view the nervous system
as a dynamical system that is constantly in motion, finding different opportunities
not only on trajectories within a single phase portrait but also as changes in para-
meters reshape the phase portraits themselves.

Even the humblest aspect of nervous system functioning is re-construed by these
neuroscientists: its background activity is claimed to emerge from deterministic
chaos rather than random noise. Despite the drama of the term “chaos,” this simply
means that the system continuously changes state along a trajectory that appears
random but is determined by the equations governing the system and its initial
conditions (the values of its variables at ¢,). Skarda and Freeman viewed chaos as a
way of keeping the overall state space active and ready for more targeted action, in
contrast to the usual assumption that background activity is noise that is unrelated
to signals and obscures them. (Chaotic systems are famous for their sensitivity to
initial conditions — that is, small differences in initial values tend to produce quite
dissimilar trajectories — but the particular trajectories are unimportant for Skarda
and Freeman’s purposes.)

Skarda and Freeman sought to entice their readers towards this perspective by
discussing Freeman’s (1987) model of the olfactory bulb. The model is a network,
but is connectionist only in the broadest sense of that term. Its design was motivated
by considerations from DST and neuroscience: each component of the olfactory
system (with subsets of excitatory and inhibitory neurons of different cell types
treated as separate components) is represented by a second-order nonlinear differen-
tial equation, and these components are coupled via excitatory and inhibitory con-
nections into an interactive network. In a painstaking series of studies, Freeman and
his earlier collaborators had conditioned animals (typically rabbits) to respond to
particular odors. In tracking concomitant electrical activity using EEG recordings,
they had found that the olfactory bulb exhibits a pattern of disorderly firing during
exhalation and more orderly firing during inhalation. The model exhibits similar
alternations. During late exhalation it receives no input and behaves chaotically —
engaging in “restless, but bounded, activity” (p. 165). During inhalation an odor is
supplied, which usually sends the system from chaos into the basin of one of several
limit cycle attractors that rather suddenly make an appearance. Each attractor is a
previously learned response to a particular odor (except that one corresponds to a
no-odor control condition); hence, the system can be said to have recognized an odor
when the system lands in the appropriate attractor.

Note that the recognition response is not static. First, when the trajectory is
pulled into a limit cycle attractor it cycles through multiple states (vs. a point
attractor’s single state). Second, once that cyclic attractor has done its job, other
aspects of the system’s dynamics (referred to as nonstationary) provide routes into
other activity. One way out is that the relatively organized phase portrait for inhala-
tion includes the low-energy chaotic well to which the system will retreat if a novel
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Waking rest
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Figure 8.7 Hypothetical phase portraits for the olfactory system Reprinted with
permission from Freeman (1987, p. 146), who emphasized the inhalation and exhalation
phases in rabbits when motivated by presentation of previously-conditioned odors.

odor is supplied (and from which a new limit cycle can form across repeated presen-
tations). The more usual way out is that the phase portrait itself is continuously
changing. During exhalation the limit cycle attractors disappear and the system
finds new opportunities in chaos. Skarda and Freeman (p. 168) “conjecture that
chaotic activity provides a way of exercising neurons.” On the next inhalation, chaos
plays a more task-relevant role, allowing “rapid and unbiased access to every limit
cycle attractor . . . so that the entire repertoire of learned discriminanda is available
to the animal at all times for instantaneous access. There is no search through a
memory store.”

For Skarda and Freeman, then, odor recognition is achieved when the olfactory
system alternates between relatively free-ranging chaotic behavior (exhalation) and
odor-specific cyclic behavior (inhalation). The same system is capable of reaching
extremes of anesthesia and seizure, as shown by the hypothetical “snapshots” of
some of its possible phases in figure 8.7. In each phase portrait the two primary
dimensions represent the overall activity of two subsets of neurons (excitatory and
inhibitory). The vertical dimension represents the amount of energy when a point is
active. During anesthesia a point attractor produces a temporary “death” (very low-
energy state). A point repellor replaces it as the system moves to a waking rest. A
chaotic well (the circular trench, whose base is a chaotic attractor) develops and
deepens as the system becomes more motivated and alternates between exhalation
and inhalation. The limit cycles are represented in the center of the inhalation
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portrait, and become latent as the system relaxes into exhalation or (exceptionally)
gets repelled into the degenerate, low-dimensional chaos of seizure.

The system’s ability to temporarily lose and regain its limit cycles via its own
nonstationary dynamics is an intriguing solution to the problem of how to stop
responding to one input and begin responding to another. To understand what
moves Freeman’s model between inhalation and exhalation, recall the logistic equa-
tion (equation (1)). In figure 8.2 it was seen to exhibit chaotic dynamics in a region
with values of A beyond 3.6. But within this region there existed values of A for
which the dynamics again became periodic. This suggests the possibility of a system
moving from chaotic regimes to temporarily stable ones (and back to chaotic ones)
through small changes in parameter values — an ability that would be extremely
useful for a nervous system. The equations describing the functioning of the olfactory
bulb are more complex, but they show this same characteristic. Importantly, changes
in parameter values are not arbitrary (e.g., some reflect the influence of systems to
which the olfactory bulb is connected). As Skarda and Freeman (p. 167) note in
discussing the overall states captured in figure 8.7: “['T']he olfactory system and its
corresponding model have a hierarchy of states. The basic neural dynamics and the
equations are the same in all states but, depending on various neural conditions
and model parameters, the systems behave differently. . . . Both systems display the
capacity for abrupt, dramatic global jumps from one state to another. These are the
bifurcations.”

8.4.2 Shifting interpretations of ambiguous displays

In Freeman’s model, changes in parameter values (usually due to the activities of
related systems) are responsible for the system’s transitions; the role of chaos is
affected by, but does not effect, those changes. Chaos has been argued to play a
much more prominent role in the spontaneous shifts of attention that people report
when they look at such well-known ambiguous figures as the duck/rabbit, young/old
woman, and the Necker cube. For example, Cees van LLeeuwen and his collaborators
(van Leeuwen, Steyvers, and Nooter, 1997) proposed a DST-based network model
of people’s shifting perceptions of the ambiguous display at the center of figure 8.8.
To the left and right of it are unambiguous displays that produce relatively stable
percepts. The same network model that can simulate ordinary percepts like these
becomes destabilized in the presence of the ambiguous display, repeatedly switching
between column and row interpretations of its organization. In their words (p. 321):
“The noisy processes which help construct the pattern will revolt against it, once it
becomes established.” In achieving switching behavior, they made an important
advance beyond the first network model of perceiving ambiguous figures, in which
the network settled to one of two point attractors (chose one of the possible inter-
pretations of a Necker cube) but then stopped (Rumelhart, Smolensky, McClelland,
and Hinton, 1986).

The work of van Leeuwen et al. expanded upon three related strands of research.
First, Skarda and Freeman (see section 8.4.1) had the insight that chaos may be
fundamental to perception and constructed the first network model in which chaotic
and stable behavior alternate.

Second, J. A. Scott Kelso showed that coupled systems with nonlinear dynamics
could switch between metastable (not quite stable) states at irregular intervals, mim-
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Figure 8.8 Stimuli used in van Leeuwen, Steyvers, and Nooter (1997). If the gestalt
principle of symmetry is used to group items, the black squares in the left display will be
grouped vertically and those in the right display horizontally. Those in the center display,
however, will be ambiguous and subjects may alternate between grouping them vertically
and grouping them horizontally.

icking the switching intervals of people asked to press a button each time their
interpretation of a Necker cube reversed. On Kelso’s account (see Kelso, 1995), each
interpretation is attractive to the system but is not quite an attractor. The system
therefore exhibits intermittency, alternating between metastable states and chaotic
bursts in which the system breaks free and moves erratically through state space. In
the words of Kelso (1995, p. 200): “['T]he system dwells for varying times near
attractive states where it can switch flexibly and quickly. Faced with ambiguous
stimuli, the brain will be revealed as a twinkling metastable system living on the
brink of instability.”® Kelso also emphasized that the metastable states (and the flow
of patterns in the brain more generally) are an outcome of self-organization. Patterns
are generated by a large number of components interacting nonlinearly, with no
supervisors or agents needed. Although Kelso gave considerable attention to the
dynamics resulting when two or more self-organized systems become coupled, he
characterized the systems themselves in terms of equations with a small number of
variables and parameters (see section 8.5.2).

This leads to the third strand contributing to van Leeuwen et al.’s work. One way
to understand how the systems became self-organized in the first place is to build a
network model whose units are low-level components of the perceptual system.
Kunihiko Kaneko (1990) explored the stability characteristics of a type of network
called a coupled map lattice (CML). A lattice is a sparsely connected network in
which the couplings (connections) can be viewed as topologically arranged such that
neighbors are coupled and other units are not; for example, the Kohonen feature
maps used for DISCERN’s lexical and episodic memories in chapter 7 are lattices.
A map is a type of function in which values are iteratively determined in discrete
time; for example, the logistic equation (equation (3) in section 8.2.2) is a map and
was used by Kaneko to obtain the value of each unit in a lattice at each time-step.
This choice yields coupled nonlinear units which move between values within a
range (oscillate) in discrete time either periodically (e.g., alternating between the two
most extreme values) or chaotically (yielding a quasi-random sequence of values
within the range). Such a network can exhibit different kinds of behavior depending
on what values have been assigned to certain control parameters; among the possib-
ilities are synchrony’ across periodic or chaotic units (i.e., all units in a cluster have
the same sequence of activation values, even if that sequence is chaotic) and chaotic
behavior across chaotic units (chaoto-chaotic emergence).
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Van Leeuwen et al. proposed that CML networks could be harnessed as lower-
level, self-organizing mechanisms for achieving intermittency in models of percep-
tion. Given the ambiguous display in the center of figure 8.8 as input, an appropriate
CML quickly comes to exhibit one pattern of synchronized activity for the colum-
nar interpretation (as on the left) and a different one for the row interpretation (as on
the right). These patterns are metastable states of the network, so they can suddenly
reorganize (shifting the synchronization from rows to columns or vice versa, or
under some conditions from global to more localized synchronization or vice versa).

Preliminary to studying a full-scale CML model of perceptual organization, van
Leeuwen et al. first examined the simplest network in which synchronization can be
achieved — a network of just two units. Since individual neurons probably are linear,
each unit is best thought of as a micro-ensemble of excitatory (pyramidal) and
inhibitory (stellate) neurons. The net input to each unit is calculated according to
the following equation, in which a, represents the value of unit x (our notation,
reflecting that it is roughly comparable to an activation value in a traditional con-
nectionist network) and C represents a coupling parameter (comparable to a connec-
tion weight) that determines how much each unit is affected by its own value versus
that of the other unit:

netinput, = Ca, + (1 — C)a, “4)

To obtain the value of unit x at each discrete time, they incorporated the net input
calculated by equation (4) within the logistic equation (see equation (3)):

a,,. = A netinput, , (1 — netinput, ) (5)

The net input and value of unit y were obtained in the same way. As shown earlier (in
figure 8.2 for equation (3)), the values of a unit approach a point attractor at lower
values of A and periodic attractors at intermediate values, but behave chaotically
for most values above 3.6. This is how each unit on its own would behave. Because
the units are coupled, however, the additional parameter (C) can alter these out-
comes. The overall behavior of the two-unit network depends on the values of both
A and C.

In this miniature network it is easy to measure synchronization: the two units are
synchronized when the difference between their activation values at each time-step
is zero. Generally they do not start out synchronized, but van LLeeuwen et al. demon-
strated that the size of the difference will decrease monotonically to zero when

"L,(1=1/A) < C <1+ 1/A).

That is, for appropriate values of C relative to A, after a transition period the two
units will exhibit the same sequence of values — a sequence which itself (depending
on A) may be chaotic. It is outside this range of guaranteed synchrony that things
get interesting. The size of the difference may be a constant or may vary periodic-
ally, quasi-periodically, or even chaotically. Most relevant for a psychological model of
perception, the size of the difference may vary intermittently: alternating between zero
(a semi-stable state of synchronization) and a chaotic sequence of values (wandering
through state space until the difference rests temporarily at zero again).

Van Leeuwen et al. then extended their analysis to the larger CML networks
appropriate for perceptual tasks. For example, each unit in an array of 50 X 50 units
may be sparsely coupled to just four other units — its neighbors in the array. (Note
that van Leeuwen et al. usually coupled each unit to its corresponding unit in
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additional arrays as well, but one array is enough to get the key results.) They began
by simply generalizing equations (4) and (5) to apply to more than two units, and
found that small values of C relative to A tended to generate relatively small clusters
within which units may synchronize their activity. What was needed to simulate
shifting perceptions of the grid in figure 8.8, however, was a very specific synchroniza-
tion in which the clusters were specialized to its rows and columns; for more stable
perception of a large “X” pattern, two diagonal clusters (at different orientations)
were needed. T'o obtain networks that could adapt to the input patterns of interest,
they modified the way in which C and A were used. First, A became a variable
controlled by input rather than a fixed parameter. Relatively high activity in the
receptive field of a unit was realized by lowering the value of A for that unit. (This
seems backwards, but lower values of A would tend to drive the unit to a level of
chaotic activity at which it is more likely to synchronize with other units: weak
chaos.) Second, the coupling parameter C was replaced by adaptive weights on each
local connection plus a global parameter C,,., which scales those weights so as to
produce a bias towards stability or instability (depending on the value of A). When
the activation sequences of two units begin to synchronize the weight between them
is increased; this favors greater synchronization in the succeeding time-steps. Thus,
synchronization that initially just happened to occur between two chaotic sequences
gets grabbed and used by the system to move towards more structured activity. In a
sense, the weights serve as a short-term memory of recent synchronization that
helps to reinstate that synchronization. With this occurring across multiple pairs of
units simultaneously, the system can advance towards larger clusters within which
all units are synchronized (e.g., a cluster specialized to the third column) and leave
behind its chaotic behavior in favor of one of the metastable states (e.g., seeing the
grid as organized in columns).

Using this adaptive CML, van Leeuwen et al. were able to simulate the behavior
of a perceiver switching between metastable synchronizations when the input repres-
ents an ambiguous figure, but also attaining stably synchronized clusters when the
input is an unambiguous figure. What is important is that the system has the in-
trinsic capacity to achieve percepts via synchronization but also the flexibility to
change to a different percept via desynchronization. Ambiguous figures are useful
for researchers because they can be counted upon to put the system into irregular
swings between synchronization and desynchronization. This case would be only a
curiosity, though, if it did not point the way to the system’s overall design and capac-
ities. That the same system can handle unambiguous figures is an initial demonstration
of the generality of the design. Recently this research group has provided further
demonstrations. Within perception, they have shown that CMLs can provide an
especially efficient solution to Grossberg’s boundary contour problem (van Leeuwen,
Verver, and Brinkers, 2000). In a much bolder move, they have proposed to extend
the timescale at which coupled maps are considered to operate downwards as far as
iconic memory and upwards to long-term memory (van Leeuwen and Raffone,
2001). In this unified view of perception and memory, representations at a variety of
timescales may be realized and maintained by the chaotic dynamics of coupled
oscillators. A bold claim elicits tough questioning. Much work would be needed to
show that this mechanism is adequate to account for a broad variety of perceptual
and memory phenomena; and even if it works as a base, additional mechanisms may
be needed as well. There is also the question of whether this is the way the brain
actually does the job.
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The questions raised by chaos-inspired dynamical models, exemplified here by
those of Skarda and Freeman and van Leeuwen’s group, will not be answered quickly.
The results to date suggest that incorporating a DS'T" perspective in the very design
of networks yields distinctive properties which may be used to advantage in modeling
and may also change the way cognitive scientists think about perception and cogni-
tion. However, the approach is too new to have moved much beyond individual
models; for example, Freeman and van Leeuwen make very different uses of chaos.
As researchers gain more experience with DST'-driven network design, principles
and practices will emerge and the approach will have its best chance of gaining
increased visibility and impact within cognitive science. Will enough researchers be
sufficiently enticed to re-situate their own work within an unfamiliar theoretical
territory, bringing about a Kuhnian paradigm shift? If so, would the impact of
connectionism be seen retrospectively as merely transitional? We now leave specific
models behind and return to philosophical inquiry into implications.

8.5 Is Dynamicism a Competitor to Connectionism?
8.5.1 Van Gelder and Port’s critique of classic connectionism

Connectionist networks are clearly complex systems and, as we have seen, certain
connectionists have found DS'T tools to be extremely useful in analyzing the behavior
of their networks and developing new kinds of networks. As exemplified in the
quotation from van Gelder and Port at the beginning of the chapter, though, for
some theorists the emergence of dynamical approaches offers not just a set of tools to
be utilized within existing paradigms but an actual Kuhnian revolution in cognitive
science. On this view, connectionism was not the real revolution:

[Clonnectionism should not be thought of as constituting an alternative to the com-
putational research paradigm in cognitive science. The reason is that there is a much
deeper fault line running between the computational approach and the dynamical ap-
proach. In our opinion, connectionists have often been attempting, unwittingly and
unsuccessfully, to straddle this line: to use dynamical machinery to implement ideas
about the nature of cognitive processes which owe more to computationalism. From the
perspective of a genuinely dynamical conception of cognition, classic PDP-style con-
nectionism (as contained in, for example, the well-known volumes [of] Rumelhart and
McClelland, 1986, and McClelland and Rumelhart, 1986) is little more than an ill-fated
attempt to find a halfway house between the two worldviews. (van Gelder and Port,

1995, pp. 33-4)

In support of this claim, they asserted that the classic connectionism that used
networks (especially feedforward networks) as “sophisticated devices for mapping
static inputs into static outputs” (p. 32) is disappearing as it splits into two distinct
streams. Researchers in the relatively computational stream design networks that
straightforwardly implement computational mechanisms or have hybrid archi-
tectures. Researchers in the relatively dynamical stream design networks like those
discussed in the current chapter and give at least some attention to their dynamics.
Van Gelder and Port allow that (p. 34): “Connectionist researchers who take the
latter path are, of course, welcome participants in the dynamical approach” but also
point to ways they differ from nonconnectionist dynamicists — especially those
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dynamicists taking the quantitative approach that van Gelder and Port regard as a
standard or prototype.

One difference that tends to keep connectionists at the periphery of dynamical
modeling is the type of formal model employed: massive networks targeting the
“microstructure of cognition” versus equations with collective variables targeting its
macrostructure. Moreover, van Gelder and Port seem concerned that connectionists
are still carrying baggage from the classical computational approach that slows their
progress along the road from the halfway house. This concern is elucidated in
several papers in which van Gelder laid out his view of the differences between the
computational and dynamical worldviews (van Gelder, 1995, 1998, 1999). In what
follows we will first briefly contrast the two styles of modeling and then grapple with
whether the computational baggage is a help or a hindrance by discussing issues of
explanation and representation.®

8.5.2 Two styles of modeling

Dynamicists generally strive for compact models in which one or more (preferably
differential) equations capture the overall behavior of a system in terms of a very
small number of variables and parameters. Connectionists (even those taking a
dynamical approach) produce models which have about the same number of equa-
tions but apply them repeatedly across the ranges of variables. Iteration of this kind
yields as many activation values as there are units and as many weights as there are
connections at each time-step. These differences in the type of formal model em-
ployed reflect differences in goals and desired grain-size of one’s account.

For example, we have already seen that in van Leeuwen et al.’s CML account of
the perception of ambiguous figures (a network-like dynamical model) a large number
of coupled oscillators are governed by the same equations but do not behave identic-
ally. They interact to produce conflicting, metastable interpretations of a stimulus.
Kelso’s (1995) standard dynamical account also achieves metastability (pp. 218-23),
but with respect to the value of a single collective variable (@) that measures the
synchrony of just two coupled oscillators. The two primary interpretations of the
ambiguous figure are indexed by these values rather than simulated. It is a new
application of Kelso’s signature model of a surprisingly salient task: finger twiddling.
People are asked to move both index fingers up and down either together (in-phase)
or in opposition to one another (antiphase) in synchrony with a metronome. As the
speed of the metronome increases it becomes impossible to maintain the antiphase
movement, and subjects involuntarily switch to in-phase twiddling. This can be
dynamically understood as a transition from a landscape with stable attractors for
both types of movement to one with a stable attractor only for in-phase movement.
Intermediate values of relative phase (¢) may appear during the transition (e.g., one
finger just a bit ahead of the other in their up—down cycles). The attractor landscapes
(V) within which in-phase, antiphase or intermediate relative phases occur can be
obtained from equation (6) by providing appropriate values of the parameters:

V'=-=@dw— a cos ¢ — b cos 2¢ (6)

T'o genuinely understand this equation and its ramifications, you must read Kelso’s
book. The main point here is that an equation with just a few parameters can give an
account of the behavior of two coupled oscillators (here, fingers). The difference
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between the fingers’ spontaneous frequency and the metronome’s frequency is re-
flected in 6w. The a and b parameters reflect (indirectly) the oscillation frequency
(how fast the fingers are moving), and a/b is a crucial coupling ratio (when it is small,
oscillation is fast and in-phase movement is the only attractor). Certain combinations
of parameter values produce intermittency (the system fluctuates chaotically between
the two kinds of movement, which now are semi-stable rather than stable). Change
the realization of the equation from finger phases to competing interpretations of an
ambiguous figure (by changing the interpretation of each collective variable), and
votla — equation (6) models a perceptual phenomenon (the distribution of switching
times) at an abstract level.

Van Leeuwen et al.’s CML model is different in part because it does two jobs.
Unlike Kelso’s model, it simulates the percepts themselves — its units actually organ-
ize themselves into synchronized columns or rows to simulate the two interpreta-
tions of the ambiguous display. Like Kelso’s model, though, it also models the
more global perceptual phenomenon of semi-stable interpretation by repeatedly but
irregularly switching between these percepts.

This difference in style of modeling has other consequences. Certain concepts that
are part of the “computational baggage” (our metaphor) apply much more naturally
to dynamical network models than to standard dynamical models. In the ambiguous
figures task, van Leeuwen et al.’s explanation comes in the form of a mechanistic
model, within which the metastable patterns can reasonably be regarded as two
alternative representations of the stimulus (albeit distributed rather than classical).
Kelso’s compact system was not designed to do these jobs; it models the fluctuation
between interpretations of the stimulus array but not the interpretations themselves.
In taking a closer look at these computational concepts and at the dynamical alternat-
ives, we will find that each can play a different but useful role in exploring dynamical
network models.

8.5.3 Mechanistic versus covering-law explanations

The notions of mechanistic model and representation that we find useful in think-
ing about dynamical network models are rooted in stronger, classical notions:
homuncularity and symbolic representation. Van Gelder (1995, p. 351) had the
classical versions in mind when he characterized the computational approach in
terms of “a mutually interdependent cluster” of properties: “representation, com-
putation, sequential and cyclic operation, and homuncularity.” A computer program
with subroutines is a prototype that gives a good, quick sense of what he means.
Computation involves discrete operations that manipulate representations; they
apply sequentially (not in parallel); and sometimes a particular sequence of such op-
erations will apply iteratively or recursively (cyclic operation — here a discrete notion
that is not to be confused with oscillation or limit cycles in a dynamical model).
When combined with these other properties, representations are sequences of mani-
pulable elements that usually also have meaning (are symbolic) — this special case
is the classical notion of representation. Before discussing representation further, we
will take a look at computational versus dynamical approaches to explanation and
the special case of homuncularity.

The homuncularity property derives from Daniel Dennett’s (1977) characteriza-
tion of the components in a mechanistic model of the mind as homunculi. By this
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metaphor — whimsical but making a serious claim — Dennett saw the mind as a com-
mittee of little agents, each with its own specialized subtask (e.g., discrimination,
memory, evaluation), who pass messages (representations) to one another to perform
the overall task. Each little agent itself can be analyzed as a committee of somewhat
more specialized, less clever agents; and so forth until the lowest-level agents per-
form primitive calculations such as picking the larger of two numbers. Put less color-
fully, such a system has a hierarchy of components, each of which performs its
subtask by taking representations as input, operating on them, and sending the
outputs to other components.

A mechanistic model relaxes this characterization, such that in some cases the
components may function and interact continuously rather than discretely and their
interactions may be better characterized as causal or information-bearing than as
classically representational. One way in which scientists construct such a model is to
first decompose a task into subtasks and then try to recompose it by specifying the
component performing each subtask and its interactions with other components (see
Bechtel and Richardson, 1993). The model is taken to provide an explanation of the
system’s performance of the task. In principle the decomposition could continue down
to primitives (cognitive models are often assumed to “bottom out” in neurobiology),
but in practice modelers usually limit themselves to going down one or two levels. When
the components of a model like this can be localized in the system being modeled
(e.g., identifying edge-detectors in the primary visual cortex), Bechtel and Richardson
(1993) call them complex systems to distinguish them from simple systems (for which
components have not been identified) and from integrated systems (in which the com-
ponents interact by feedback loops or other reciprocal connections — the most difficult
kind of model and usually not achieved until a research program reaches maturity).

Who needs mechanistic explanation? Most explanations in the mainstream of
biology tend to be of this genre. Symbolic models in cognitive science generally
qualify — they served as Dennett’s paradigm case of homuncularity and van Gelder’s
prime target. (However, competence models such as Chomskian grammars have
a componential structure that may not map cleanly on to the processing system
modeled). Standard dynamical models are generally claimed to bypass the mechan-
istic style of explanation. It is network models for which the question gets most
interesting, but to show why, we first need to ask: what are dynamical modelers
doing if not providing mechanistic explanations?

One possibility is that dynamicists merely describe a system by identifying regu-
larities in its behavior. But van Gelder (1998, p. 625) rejected this suggestion, noting
that dynamical accounts of cognition are no different in form than dynamical ac-
counts of physical phenomena such as planetary motion. Since the latter count as
explanatory, so should the former. Indeed, his point is well taken; the contrast is not
between explanation and description, but rather between two forms of explanation.
The logical positivists identified a form of explanation, deductive-nomological or
covering-law explanation, which fits the dynamicist case. In a covering-law explana-
tion, a phenomenon is explained by showing how a description of it can be derived
from a set of laws and initial conditions. T’he dynamical equations provide the laws
for such covering-law explanations, and by supplying initial conditions (values of
variables and parameters), one can predict and explain subsequent states of the
system. That is the appropriate kind of explanation for van Gelder, since he pro-
poses to regard cognition solely as a dynamical system — one that changes states in
time as expressed in equations.
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Now we can consider networks. The simplest thing to say is that the type of
explanation attributed to them can vary with the design of the network and with the
designer’s leanings between classical connectionism and dynamicism. Much more
interesting is the prospect that they may lead us to new kinds of explanation that
combine and extend current options. Van Gelder (1995, p. 374) projected that
combining ingredients of the two worldviews in connectionism “may well turn out
to be an unstable mixture” and refrained from doing so; we prefer to focus on the
constructive synthesis that may emerge from the energy put into such a project.
(Clark, 1997b, was similarly optimistic about combining these types of explanation
and provided a thoughtful discussion of explanation more generally.)

Here are some cases. Sejnowski and Rosenberg’s (1986) NETtalk network can
serve as an exemplar of a feedforward connectionist design, which in this case
provides a mechanistic explanation of reading aloud (see section 3.2.2.3 for more
details). At the first level down, it is easy to identify components (the input, hidden,
and output layers) and to state they are connected by two full sets of feedforward
connections. Below that there are two more levels of decomposition on the input
layer (seven sets of letter units) and one more level on the output layer (one set of
articulatory feature units). It is distinctive to connectionist networks that the hidden
layer affords only a functional decomposition: cluster analysis reveals functional
components for various grapheme—phoneme regularities, vowels vs. consonants, etc.
The connectivity of the network is also highly distributed, unlike classical systems.
The designers built the network as a mechanistic model, but cannot give a complete
mechanistic analysis of the microfeatures and microactivities that result from its
adaptive weight changes during learning. However, the incomplete mechanistic
explanation is the best available; dynamical analysis has little to offer towards under-
standing feedforward networks.

When interactivity is added to layered networks of this type via recurrent connec-
tions, complex activity extended across time and connections becomes very important.
This aspect of a network model benefits from dynamical analysis. We suggest that a
connectionist dynamical approach offers the opportunity to embrace both types of
explanation and use them to serve complementary purposes (see Bechtel, 1998). Most
simply, the dynamical analysis can offer covering laws that characterize overall pat-
terns of change in a system (generally in terms of aggregate or external variables), and
the mechanistic one can show how those changes are effected. The connectionist
researcher built the network, knows its components and how they are connected, and
can use this knowledge to “go behind the scenes” and provide a (partial) mechanistic
account of the phenomena captured in the dynamical covering-law explanation of the
system. Dynamical tools may then be used not only to characterize the complete system,
but also the interaction of the components. For example, in building the CML
model of ambiguous figure perception, van LLeeuwen et al. (1997) knew from Kelso’s
work that two coupled oscillators could produce the right kind of semi-stable beha-
vior. They wanted to build a system at a much finer grain to model the microstructure
and microactivity underlying the percepts themselves in addition to the overall semi-
stable behavior. Their novel solution (using a large number of coupled oscillators as
components) was informed by the prior dynamical model but extended it significantly
by treating component parts as dynamically interacting oscillators. The resulting CML
model is best described using a combination of dynamical and mechanistic analysis.

In another example from this chapter, a mechanistic analysis gets even further with
Skarda and Freeman’s (1987) model of the olfactory bulb. Built at an intermediate
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grain-size, the “units” were just 16 large nervous system components that were less
homogeneous than the units of a connectionist network; for example, all of the
excitatory (pyramidal) cells of the anterior olfactory nucleus were represented collect-
ively in one component. However, their interactive connections produced complex
behavior in the network as a whole. Dynamical concepts and analysis were crucial
for understanding the chaotic and limit cycle behavior that emerged. Another
example: Beer’s autonomous controller network for insects’ tripod gait has six replica-
tions of the same five units (a componential organization at this level). Three of the
units controlling each leg have well-defined subtasks (each clearly controls its own
specialized motor effector) but are dynamical in their quantitative states and intercon-
nected activity (including influence from the other two units — the interneurons).
Each leg’s activity is best understood in terms of a limit cycle, but the state space is
defined with respect to components of the network.

The ability of these two perspectives to complement each other becomes even more
evident when dynamical analysis is applied not only to the whole network but also to
some of its components. This can work even in a network with thoroughly homo-
geneous units within each layer. An interesting case covered above is that of Elman
(1991), who knew the gross architecture of his simple recurrent network (SRN) for
predicting words in sentences and could give a rough mechanistic account based on
his own design work. However, he also used principal components analysis (a tool
from yet another tradition, multivariate statistical analysis) to identify functional
components of the system on the hidden layer and used DST tools to discover
exactly what task those components were accomplishing. For example, plotting
trajectories through the state space of components 1 and 11 revealed the phenom-
enon that relative clauses were being wrapped corkscrew-like into the space.

It is not known to what extent an orchestration of methods like this might yield
insight into large networks with more complex interactions among units. Michael
Wheeler (1998) considered the difficulty of explaining the activity of networks
exhibiting what Clark (1997a, pp. 163-6) called “continuous reciprocal causation.”
An example is Beer’s nonautonomous control network, in which sensor input com-
pletes a loop between the controller and the environment, but Wheeler was most
concerned about larger, more homogeneous networks and especially those in evo-
lutionary robotics (see sections 9.4 and 9.5) whose organization is minimally con-
strained by human preconceptions of design. He thought the explanatory stance
must become more holistic as the amount of continuous reciprocal causation in-
creases, shifting away from modular (mechanistic) explanation and towards system
dynamics. “The justification for this claim is that the sheer number and complexity
of the causal interactions in operation in such systems force the grain at which useful
explanations are found to become coarser” (Wheeler, in press, p. 16). Clark (1997a,
p- 175) had a similar concern but argued for proceeding more optimistically, “add-
ing new tools to cognitive science’s tool kit, refining and reconfiguring but not
abandoning those we already possess. After all, if the brain were so simple that a
single approach could unlock its secrets, we would be so simple that we couldn’t do
the job!™’

In accord with the more optimistic view of Clark, we look forward to seeing how
much headway can be made, even with highly interactive networks, when mechan-
istic and dynamical explanation are combined and extended. However, it is so early
in dynamical network research that this suggestion of complementary, even integ-
rated, use of two kinds of explanation must be tentative. Those who wish to use an
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exclusively dynamical approach to cognition may find their own way to go behind
the scenes, in some way parsing the system and building a hierarchy of dynamical
models that cover a variety of grain-sizes from the overall phenomenon of interest
on down. In his 1995 book, Kelso sketched such a vision in chapter 2 and considered
modeling at neuronal levels in chapter 8. He emphasized, though, that his equations
give a different parsing than does a mechanistic analysis of the biological systems
that realize them. For now, networks of homogeneous units and connections, each
with its own application of the equations governing the system, do a modeling job
that is hard to replace by purely dynamical analyses. Can we do better than simply
performing each kind of analysis separately? It would be most interesting if attempts
to grapple with these problems led to new notions of explanation within the philo-
sophy of science in addition to better models.

8.5.4 Representations: Who needs them?

We turn now to a second area of discrepancy between connectionist and dynam-
ical approaches that places those who seek to combine them at the periphery of
dynamicism (but perhaps at the leading edge of the future of cognitive modeling):
the role of representations. Disagreements about representation abound. It is least
troublesome within the symbolic approach, where the notion that cognition involves
operations upon representations (construed as structured sequences of symbols) is
central. At the other end of the road, among those dynamicists who attend to the
concept of representation at all, it tends to be either denied or radically redefined.
Between these extremes are the connectionists, who see part of their mission as (less
radically) redefining representation. Activation patterns across the layers of a net-
work are commonly (though not universally) regarded as “subsymbolic” (Smolensky,
1988) — a departure from symbols in their fine grain, their status as numerical vectors,
and the kinds of activity that generate them (parallel processing, and for interactive
networks, settling into attractors or other kinds of change across a nontrivial tem-
poral dimension). However, van Gelder and Port (1995) worried that connectionists
taking this view (especially those working with feedforward networks such as
NET'talk) have insufficiently shed notions of representation rooted in the symbolic
approach. On this view, an unchanging composition of subsymbols is in danger of
being treated as a static symbol.

Dynamical reappraisals of representation were considered as part of an argument
for the dynamical hypothesis by van Gelder (1998; quotes from p. 622). His starting
point was to unequivocally dispense with “static configurations of symbol tokens” —
a core commitment of what he calls the computational view (some of the commentators
on this BBS paper, seeing computation as broader, would prefer a different term).
The main alternative he noted is that dynamicists “find their representations among
the kinds of entities that figure in DS'T, including parameter settings, system states,
attractors, trajectories, or even aspects of bifurcation structures” and eventually “even
more exotic forms.” (See also van Gelder and Port, 1995, p. 12.) That he felt no
urgency to pare down this mixed bag of possibilities reflects the fact that few if any
dynamicists view representation as a core concern. Indeed, van Gelder also noted
(refraining from endorsement or disapproval) the more radical view that dynamicists
can develop models of cognition that “sidestep representation altogether.”'’ He cited
the work by Beer and by Skarda and Freeman (discussed above in sections 8.3.1 and
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8.4.1) as exemplifying the ability “to imagine how any nonrepresentational system
could possibly exhibit cognitive performances” and also to model such a system.

One could quibble about whether models of sensorimotor function are a sufficient
basis to argue that cognition more generally can be modeled nonrepresentationally;
yet, they give a toehold. Freeman and Skarda (1990) clearly endorsed the position
that representation can be dispensed with (at least in dynamical models of perception
grounded in brain function) in a commentary with the title “Representations: Who
needs them?” They answered: “Functionalist philosophers, computer scientists, and
cognitive psychologists need them, often desperately, but physiologists do not, and
those who wish to find and use biological brain algorithms should also avoid them”
(p. 379). Why should they be avoided? “['T'The idea of representation is seductive,”
giving “the illusion that we understand something that we do not” but in fact “is
unnecessary to describe brain dynamics” and even “impedes progress” (pp. 375-6).
In illustration they gave this remarkable reprise of their olfactory bulb work (note
that the “burst” they refer to is a spatial pattern of activity across the entire bulb
under the control of one of the cyclic attractors sketched in figure 8.7):

For more than 10 years we tried to say that . . . each burst served to represent the odor-
ant with which we correlated it. . . . This was a mistake. After years of sifting through
our data, we identified the problem: it was the concept of representation. ... [They
explain that the pattern for a given odor occurs only under conditioning and changes if
the reinforcement contingency is altered or a new odor is added.] Our findings indicate
that patterned neural activity correlates best with reliable forms of interaction in a
context that is behaviorally and environmentally co-defined by what Steven Rose (1976)
calls a dialectic. There is nothing intrinsically representational about this dynamic pro-
cess until the observer intrudes. It is the experimenter who infers what the observed
activity patterns represent to or in a subject, in order to explain his results to himself

(Werner, 1988a, 1988b). (Freeman and Skarda, 1990, p. 376)

They further stated that this insight led them to ask new questions of their data and
that their dynamical network model, with its emphasis on the role of chaos, was one
of the novel answers that resulted.

Skarda and Freeman’s network was intended to model an actual biological sys-
tem. Researchers in the field of artificial life (the topic of chapter 9) attempt a more
abstract characterization of such biological constructs as evolution, sensation, and
motor control, and many of them share the skepticism about representation. For
example, speaking from his experience with autonomous agents (including his insect
controller networks), Beer (1995, p. 144) concluded that generally “there need be no
clean decomposition of an agent’s dynamics into distinct functional modules and no
aspect of the agent’s state need be interpretable as a representation.” Philosophers
focusing on evolutionary robotics, including Beer’s work, have launched into a
major re-examination of the notion of representation. Wheeler (1998), writing about
systems that exhibit high degrees of continuous reciprocal causation, assumed that
his arguments against their homuncularity (and more generally, their modularity)
counted as well against their having representations. (He argued elsewhere the point
that makes this plausible: the claim that these properties are mutually supportive.)
This was a soft rather than hard conclusion; for example, he left open the possibility
that more sophisticated evolved robotic control systems of the future would be more
decomposable. Clark (1997a; all quotes from pp. 174-5) agreed that such systems
present the “most potent challenge” in finding a role for internal representation, but
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again preferred a more optimistic and inclusive stance. First, in coming to grips with
such complex dynamics, “the notion of internal representation itself may be subtly
transformed,” losing some of its classical connotations while co-opting dynamical
notions of inner events (chaotic attractors, trajectories in state space, and so forth;
a list similar to van Gelder’s). But Clark equally threw down the gauntlet to
dynamicists:

The recent skepticism concerning the role of computations and representation in cognit-
ive science is, I believe, overblown. . .. T’he minimal conditions under which internal
representation talk will be useful, I have argued, obtain whenever we can successfully
unpack the complex causal web of influences so as to reveal the information-processing
adaptive role of some system of states or of processes. . . . [CJontinuous reciprocal causa-
tion between internal and external factors . . . appears unlikely to characterize the range
of cases for which the representational approach is in any case most compelling—viz.,
cases involving reasoning about the distant, the nonexistent, or the highly abstract. In
such cases, the focus shifts to the internal dynamics of the system under study. The
crucial and still-unresolved question is whether these internal dynamics will themselves
reward a somewhat more liberalized but still recognizably representation-based under-
standing. . . . no alternative understanding of genuinely representation-hungry prob-
lem solving yet exists, and . . . it is hard to see how to give crisp, general, and perspicu-
ous explanations of much of our adaptive success without somehow reinventing the
ideas of complex information processing and of content-bearing inner states.” (Clark,
1997a, pp. 174-5)

So far we have looked at how the notion of representation has fared when confronted
with biological systems and with their simulated counterparts, evolved robot con-
trollers. Van Gelder added industrial machinery to the array of test cases in a 1995
article, “What might cognition be, if not computation?” His general goal was to
argue that dynamical systems provide a plausible alternative to computational ones,
and that such systems need not have representations. Although at some points in the
paper he focused on a classical computational definition of representation, he also
said that his arguments should go through using “pretty much any reasonable char-
acterization, based around a core idea of some state of a system which, by virtue of
some general representational scheme, stands in for some further state of affairs,
thereby enabling the system to behave appropriately with respect to that state of
affairs” (van Gelder, 1995, p. 351; he adapted this characterization from Haugeland,
1991). This definition of representation is broad enough to cover both classical
symbolic and connectionist subsymbolic approaches.

The notion of “stands in for” requires some explication. One way to characterize
it is in terms of carrying information: one state or event can stand in for another if it
carries information about that other state or event. The notion of carrying information
about something is usually explicated in terms of causal relations (Dretske, 1988).
But this notion of information is both too general and too narrow for explicating
representation. It is too general because any effect carries information about its cause,
but not every effect constitutes a representation. It is too narrow because it fails to
account for misrepresentation — the possibility that some state might falsely represent
something else when it was not caused by it. Based on this and other arguments,
Millikan (1993) proposed that we need to look in a different direction, specifically, at
the agent or device that uses (consumes) the information. If a consumer Z is designed
(e.g., by evolution or by an engineer) to use Y to carry information about X, then Y
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might serve as a representation of X even if Y never actually carries information
about X. For example, a radiation detector (Y) may have been designed for a plant
supervisor who wants to be informed if there is ever a radiation leak (X). If no leaks
occur, it will in fact produce only false alarms; nonetheless, the radiation detector
serves to represent radiation leaks.

In practice, we generally need to look in both directions: some state is a repres-
entation only if it is used to gain information about something else, but we identify
what it represents by determining what is capable of bringing it about. For example,
in Lettvin et al.’s (1959) classic identification of ganglion cells in the frog’s retina as
bug detectors, two kinds of findings jointly were needed to determine what the firing
of these cells represented: (a) increased firing of these cells generated bug-eating
behaviors in the frog; (b) bug-like shapes generated increased firing. There are,
therefore, three interrelated components in a representational story: what is repres-
ented (bugs), the representation (increased firing of ganglion cells), and the user of
the representation (the frog, or the frog’s action system).

While this is not a complete characterization of representation, it provides a suf-
ficient foundation to begin considering van Gelder’s contention that dynamical sys-
tems need not have representations. T'o make his case, van Gelder reached back over
two centuries to James Watt’s groundbreaking design for using a steam engine to
power machinery via a flywheel, and suggested that its centrifugal governor would
be “preferable to the Turing machine as a landmark for models of cognition” (van
Gelder, 1995, p. 381). The governor was the second of two major innovations neces-
sary to the invention’s success. Watt’s first innovation was a gearing system that
allowed an oscillating piston to drive a rotating flywheel. But the solution to the
problem of translating one kind of motion into another raised a second problem:
how to maintain a constant flywheel speed in the face of constantly fluctuating steam
pressure as well as resistance due to workload on the machinery being driven by the
flywheel. (For many kinds of machinery, such as industrial weaving machines, it is
important that a constant speed of operation be maintained, despite fluctuations in
resistance, via constant flywheel speed.) The speed at which the flywheel turns can
be reduced, when necessary, by partly closing a valve to reduce the amount of steam
coming through the pipe leading from the boiler to the piston. Similarly, partly
opening the valve increases the amount of steam. But who or what would keep
adjusting the valve?

Watt’s solution borrowed a technology already employed in windmills; it is shown
pictorially in figure 8.9(a) and schematically in figure 8.9(b). ('The pistons and gear-
ing system between the valve and flywheel are not shown, but complete the loop.)
To create a governor, he attached a vertical spindle to the flywheel which would
rotate at a speed proportionate to that of the flywheel, and attached to the spindle
two arms with metal balls on their ends. The arms were free to rise and fall as a
result of centrifugal force. Through a mechanical linkage, the angle of the arms
would change the opening of the valve, thereby controlling the amount of steam
driving the piston and hence the rotational speed of the flywheel itself.

As a first step towards establishing the plausibility of the idea that cognitive
systems, construed as dynamical systems, lack representations, van Gelder argued
that the Watt governor operates without representations. He called “misleading” “a
common and initially quite attractive intuition to the effect that the angle at which
the arms are swinging is a representation of the current speed of the engine, and it
is because the arms are related in this way to engine speed that the governor is able
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Figure 8.9 Watt’s centrifugal governor for a steam engine. (a) Drawing from J. Farley,

A Treatise on the Steam Engine: Historical, Practical, and Descriptive (LLondon: Longman,
Rees, Orme, Brown, and Green, 1927). (b) A schematic representation showing that the
angle of the spindle arms carries information about the speed of the flywheel for the valve,
which uses the angle to determine the opening, thereby regulating the speed of the flywheel.

to control that speed” (van Gelder, 1995, p. 351). He offered several arguments for
not construing the angle of the arms as representations; here we suggest counter-
arguments to two of them (for a fuller discussion of these and the other arguments, see
Bechtel, 1998). Van Gelder began by contending that there is no explanatory utility
in describing the angle of the arms in representational terms (that is, the dynamical
analysis is sufficient). To establish explanatory utility, we must argue that (a) a
mechanistic analysis is informative, and (b) that analysis includes a particular repres-
entational story about the arm angles: they stand in for the speed of the flywheel and
can regulate the valve opening because they carry this information.

First, then, here is a brief mechanistic analysis of the Watt governor (see Bechtel,
1999). It has several different parts, including the flywheel, the spindle and arms, and
a linkage mechanism connected to a valve. As figure 8.9(b) makes clear, each compon-
ent operates on a different engineering principle and hence performs a specific subtask;
each subtask contributes to the overall task of the system via the component’s
connection with the next component in the loop. That is, the opening of the valve gets
transformed (via the piston) into the rotation of the flywheel, which gets transformed
into the angle of the spindle arms, which gets transformed into the opening of the
valve. In this way, we have shifted vocabularies from one describing the overall beha-
vior of the Watt governor to one describing what its parts do. Then there is an extra
step back up to the system level by connecting the task of each component to the
needs of the whole system. Here it becomes clear why Watt inserted the spindle arms.
It is because the spindle arms rise and fall in response to the speed of the flywheel
that their angle can be used by the linkage mechanism to open and shut the valve.
Without the spindle arms and their linkage mechanism, the valve has no access to
information about the flywheel speed. They were inserted in order to encode that
information in a format that could be used by the valve-opening mechanism.

This makes the spindle arm angle an instance of a more general point about rep-
resentation: typically someone (a designer, or evolution, or the particular consumer
produced by design or evolution) has gone to the trouble of representing a state of
affairs in another medium because the representational medium is more suitable for
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use by the consumer. This can be due to its format, its accessibility (e.g., words
are generally more accessible to our cognitive system than are their referents), the
efficiency with which it can be manipulated (e.g., computer-aided design), economy
(e.g., industrial prototypes), and so forth. The representation is not just one vertex
of the triangle in figure 8.9(b), a part like any other part of the dynamic loop; it was
inserted to play a particular (representational) role and the system functions because
it was designed appropriately for that role.

Another of van Gelder’s arguments “for supposing that the centrifugal governor
is not representational is that, when we fully understand the relationship between
engine [flywheel] speed and arm angle, we see that the notion of representation is
just the wrong sort of conceptual tool to apply” (van Gelder, 1995, p. 353). Because
“arm angle and engine speed are at all times both determined by, and determining,
each other’s behavior” the relationship is “much more subtle and complex . . . than
the standard concept of representation can handle.” Here is Clark’s continuous recip-
rocal causation again, but the complexity resides only in the dynamical analysis. It
is quite possible, and desirable, to undertake a complementary classical analysis.
As just noted, it (a) identifies the system’s components, the subtasks they perform,
and their connectivity, and (b) picks out the spindle arm angle as representing the
flywheel’s speed for use by the valve. It happens in this case that something is
standing in for something else by being coupled to it in a dynamical manner. This
opens the way to a dynamical analysis that makes use of the identified components,
but emphasizes their coupling and provides equations that provide an elegant and
specific account of their state changes in time. Within the confines of this dynamical
analysis the components form a loop in which no one of them is viewed as providing
a starting point, let alone a differentiated role such as referent or representation. If
the equations can be uncovered, this analysis yields an elegant covering-law explana-
tion of the dynamics of that loop—no more and no less.

In analyzing the Watt governor in this way, we have taken the position that
representations should be construed broadly rather than restrictively. They can be
dynamic rather than static; vary continuously in time rather than discretely; and
involve quantitative operations rather than sequential manipulations of symbols.
The important thing is that something is standing in for something else. Generaliz-
ing the lessons learned from the Watt governor to biological or artificial agents, it
would seem that they can coordinate their behavior with an environment because
components of these agents vary their states in response to the environment so as to
stand in for it. Without such representations, it seems difficult to explain how the
system is able to take into account specific features of the environment. We should
emphasize that this does not require that the system build up a complete repres-
entation of its environment. Theorists such as Ballard (1991) and Churchland,
Ramachandran, and Sejnowski (1994) have argued that we only selectively, and
actively, sample the environment. Whatever information we do sample, however,
must ultimately be represented within the system in order to be employed in coor-
dinating behavior.

De-emphasizing the importance of the quantitative status of a system turns out to
be helpful in characterizing dynamical analysis as well. Rick Grush pointed out in a
review of Port and van Gelder’s 1995 book that “A large portion of the models of
‘higher’ cognitive processes articulated in the book have exactly the same processing-
step character as the vilified computational alternatives, even though the language,
mathematics, and illustrations used to present the models obscure this fact” (Grush,
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1997b, p. 235). Where equations were supplied, that is, they tended to be difference
equations by which the value of a variable at time ¢ + 1 depends on that variable and
others at time ¢. This is no closer to real time than the processing steps of a classical
ATl model. In responding to this argument, van Gelder (1999, p. 8) arrived at a more
realistic way of distinguishing types of models. “In dynamical models, there are
distances in state, and distances in time, and both are systematically related to the
behavior of the system.” It is the geometry of state spaces in relation to time (whether
discrete or continuous) that best characterizes dynamical analysis. This also suggests
that the suitability of dynamical analysis for a particular network has more to do
with whether trajectories in state space capture something important than with the
fact that their representations are quantitative vectors rather than symbol strings.
That sounds just right.

8.6 Is Dynamicism Complementary to Connectionism?

Terence Horgan and John Tienson (1996) presented a very specific vision of how
connectionism and DS'T can collaborate in providing an alternative to classicism.
They unfolded it by first characterizing the classical approach in terms of David
Marr’s (1982) well-known three levels of description and then adding five specific
assumptions of classicists regarding these levels. Essentially, this is the same starting
point as van Gelder and Port’s computational approach, although in the end Horgan
and Tienson rejected less of it. In summarizing their framework here, we primarily
use their terminology and their characterization of classicism but also (in paren-
theses) show Marr’s way of referring to each level.

Level 1: Cognitive-state transitions (Marr: an abstract theory of the computation)
A cognitive-transition function (C'T'F) maps one total cognitive state (T'CS) to the
next; that is, it specifies input—output mappings of intentional states. The choice of
function depends in part on the goal of the computation. The CTF is regarded as
tractably computable because, classically, general psychological laws reduce what
would otherwise be a brute list of mappings (see assumption 5).

Level 2: Mathematical-state transitions (Marr: an algorithmic specification of the
computation) An algorithm is chosen to realize the level-1 input—output mapping
(CTF) and representations are chosen for the input and output. Classically, formal
rules (see assumptions 2 and 3) manipulate syntactically structured sequences of
symbols (see assumptions 1 and 4).

Level 3: Physical implementation (Marr: implementation) The level-2 com-
putations are realized (implemented) in a physical system. A particular machine
language program run on a particular digital computer is the best exemplar, both
generally and for classicists.

Horgan and Tienson then identified the five key assumptions of classicism. Assump-
tions 1-3 give the basic layout of level-2 rule-governed symbol manipulation (3 is a
stronger version of 2 and implies it; both imply 1). Assumption 4 makes language
or language-like processing a special case (it is a stronger version of 1 and implies
it, but leaves room for imagistic processing, for example, to satisfy 1 but not 4).
Assumption 5 asserts the fundamentally computational worldview, which the other
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assumptions elaborate, and also makes a specific claim that it is realizable within avail-
able resources. Retaining the numbering and wording of the assumptions (pp. 24-5)
but labeling and rearranging them for easy reference:

Fundamental computational assumption (level 1):
(5) Human cognitive transitions conform to a tractably computable cognitive-
transition function.

Representation (level 2):
Weak (1) Intelligent cognition employs structurally complex mental
representations.
Strong (4) Many mental representations have syntactic structure.

Processing (level 2):
Weak (2) Cognitive processing is sensitive to the structure of these representa-
tions (and thereby is sensitive to their content).
Strong (3) Cognitive processing conforms to precise, exceptionless rules, statable
over the representations themselves and articulable in the format of a
computer program.

In evaluating these five assumptions for their own (nonclassicist) purposes, Horgan
and Tienson made a provocative cut: in addition to retaining the weakest assump-
tions about representation and processing, they also argued for retaining the strong
assumption that representations can be syntactically structured. They picked out
“hard” rules (algorithms) and computational tractability as classicism’s points of
vulnerability. Hence, in arguing for an alternative to classicism, they retained as-
sumptions 1, 2, and 4 and denied assumptions 3 and 5. Their favored alternative was
a dynamically oriented connectionism, which they viewed not as a half-hearted
halfway house but rather as the kind of dynamicism that is needed for the job of
modeling cognition.

These choices put Horgan and Tienson into several different fights, not just with
classicists but also with most connectionists and most dynamicists. Horgan and
Tienson took issue with classicists over assumptions 3 and 5 (by rejecting hard rules
and expressing extreme skepticism that cognition could be computationally tract-
able). They stood with their fellow connectionists in rejecting hard rules (the gen-
eral arguments are covered at length in chapter 5 and need not be reviewed here).
But their insistence that there is indeed a language of thought, and that its syn-
tactic structure must in some way be represented, placed them in opposition to
many connectionists (see chapter 6). Finally, dynamicists should applaud Horgan
and Tienson’s rejection of assumption 5 but would tend to agree with van Gelder
and Port that connectionist networks are a rather marginal medium for dynam-
ical modeling (especially if they are viewed as realizing syntactically structured
representations).

Horgan and Tienson dealt with the nay-sayers in two ways: argumentatively by
dissecting and debating each assumption and positively by trying to entice them into
the alternative framework that they called noncomputational dynamical cognition (we
will simply call it dynamicism). To make the contrast with classicism clear, they
constructed a noncomputational dynamical reconstrual of Marr’s three levels. Their

claims at each level can be summarized as follows (see their pp. 63—4 for more
detail):
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Level 1: Cognitive-state transitions In dynamicism the cognitive system is
viewed as having general dispositions to move from one total cognitive state to
another, and these dispositions are captured in psychological laws that are soft
rather than general. There is no need for a tractably computable cognitive-transition
function.

Level 2: Mathematical-state transitions Total cognitive states are realized as
points in the state space of a dynamical system, and transitions between states are
realized in trajectories through that state space. Each representation is a point (or
region), but not every point is a representation. Relations between syntactic struc-
tures (e.g., sentences with vs. without a direct object) are captured not in the pres-
ence or absence of certain steps in the algorithm generating a tree but rather in the
relative positions of points. The discrete mathematics of algorithms is replaced by
the continuous mathematics of dynamical systems theory. More specifically, given
how the dynamical system is implemented at level 3, it is a high-dimensional activa-
tion landscape in which each dimension corresponds to the range of possible activa-
tion values of one unit in a network.

Level 3: Physical implementation The dynamical system is implemented in a
neural network of some sort (working hypothesis: a connectionist network). “Points
in the state space of a dynamical system are realized by total activation patterns in
the associated network” (p. 64).

Horgan and Tienson’s denial of assumption 5 (the need for a tractably computable
function) involves a distinction between computable and tractably computable. One
could ask whether or not the cognitive transition functions that classicists attempt to
realize in algorithms are actually computable (e.g., by a universal Turing machine).
But to Horgan and Tienson, this was not the real issue. A cognitive system whose
transitions are computable but intractable is as nonrealizable as one whose transi-
tions are noncomputable. Any actual cognitive system must be realizable in a phys-
ical system that can implement mappings efficiently and quickly enough to be usable.
They noted that tractable computation of this kind is far from guaranteed:

[T]here are infinitely many functions [even] with finite domain and range that are not
tractably computable. Consider, for example, any googolplex of unrelated pairings. (A
googolplex is 1 followed by 10'" zeros.) The difference between infinite and huge-but-
finite is not important for cognitive science! (Horgan and Tienson, 1996, p. 26)

Classicists purport to get into the small-and-finite range by means of general psy-
chological laws which reduce what would otherwise be a brute list of mappings “ too
gargantuan” to specify. Horgan and Tienson presented arguments that laws of the
right sort for a computational system (hard laws) are not what the cognitive system
consists in, nor are they implemented by hard rules at the algorithmic level. On their
view, the way the cognitive system actually is built does not involve computation
(the discrete mathematics of algorithms), so the tractability question does not even
arise.

Instead of general laws, Horgan and Tienson claimed that cognition has an iso-
tropic and Quinean nature that makes computation untractable if not impossible.
The problem of zsotropy is that of gaining access to the right information for solving
a given task from all of the information in the system, while the Quinean problem
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concerns measuring the appropriate characteristics of the whole network of beliefs
(e.g., its coherence) so as to determine how to revise beliefs. They credited Fodor with
recognizing that these problems, originally identified in the context of confirming
scientific hypotheses, extend to the general task of belief fixation faced regularly by
cognitive systems. They did not see Fodor, or anyone else, as having shown how a
classical system can overcome these challenges so as to handle a new input appropri-
ately and efficiently: “Not only do we have no computational formalisms that show
us how to do this; it is a highly credible hypothesis that a tractable computational
system with these features is not possible for belief systems on the scale possessed by
human beings” (p. 42). One avenue of response would be to deny that these are
problems that need to be solved. Waskan and Bechtel (1997) contended that cogni-
tion is far less isotropic and Quinean than suggested by Fodor or Horgan and
Tienson. A system with some degree of modularity (in the weaker sense exemplified
in chapter 7, not Fodorian modularity) can concentrate its resources within a small
part of the overall system. Rather than exhibiting an overall property of isotropy, for
example, in such a system finding the right information quickly will depend on
whether the right module is active (and in fact, humans not infrequently do fail to
access relevant information that is somewhere in the system). A different avenue of
response was preferred by Horgan and Tienson: they claimed that noncomputational
dynamical cognition could easily be isotropic and Quinean. The problem of how to
compute in such an environment (a version of the tractability problem) does not
arise if the system does not compute.

In characterizing their noncomputational dynamical conception of cognition,
Horgan and Tienson retained the commitment to syntactic structure that is a legacy
of the symbolic approach (as stated in assumption 4). They construed as mistaken
the common view that one of connectionism’s contributions is to repudiate the use
of syntactically structured representations in cognitive models. As Horgan pointed
out, instead of improving on classical symbolic accounts this move produces “a
seriously crippled cousin of classicism.” He asked:

What exactly are we supposed to be gaining, in terms of our abilities to model cognitive
processes, by adopting an approach which (i) retains the assumption that cognitive
processing is representation-level computation, but (ii) eschews one extremely power-
ful way to introduce semantic coherence into representation-level computation: viz., via
the syntactic encoding of propositional content? Qua representation-level computation,
it looks as though this amounts to trying to model semantically coherent thought pro-
cesses with one hand — the good hand — tied behind one’s back. (Horgan, 1997, p. 17)

It quickly becomes apparent, however, that their construal of syntax is one that
many connectionists — but no classicists — would find comfortable. They pointed to
Pollack’s RAAM networks as exemplifying how to get syntactically structured
representations in a noncomputational cognitive system. These are the same rep-
resentations that we characterized in section 6.3 as exhibiting only functional com-
positionality, in contrast to the explicit compositionality of symbolic representations.
What makes RAAM representations functionally compositional is that there is usable
information in them about the constituent structure of the tree from which they
were generated. However, neither Pollack nor Horgan and Tienson have probed to
discover how much syntactic information is represented nor for what range of lin-
guistic performances it is adequate (beyond the passive transformation). They also
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have not pursued in any detail how the dynamical level of analysis contributes (though
work by Elman and Christiansen suggests such a pursuit would be rewarding).

8.7 Conclusion

Cognitive scientists, including connectionist modelers, increasingly are employing
dynamical concepts and the tools of DST. In this chapter we have seen how some
researchers have plotted trajectories through state space and identified different
types of attractors to better understand how their interactive networks did their job,
and others have incorporated concepts such as chaos even at the design stage of their
research. But some advocates of a dynamical approach to cognition claim that much
more is at stake than the introduction of new tools. Van Gelder and Port (1995)
contended that dynamics offers a paradigm for cognitive science that promises to
replace both the symbolic and connectionist approaches. We examined critiques of
mechanistic explanation and representation and concluded that these concepts need
not be discarded (e.g., mechanistic explanation is complementary to the covering
law explanations of dynamicism). Finally, we provided an overview of Horgan and
Tienson’s version of a dynamical approach to cognition, which was friendlier than
van Gelder and Port’s version with respect to both connectionist networks and the
symbolic notion that representations have syntactic structure. We did not agree with
all their claims, but their placement of dynamical and connectionist approaches at
two different levels of a Marr-style analytic framework is a good starting point for
working out how these approaches can complement each other.

NoOTES

1 A simulator for running Lotka—Volterra equations developed by Hendrik J. Blok is
available free at http://[www.physics.ubc.ca/~blok/files.html.

2 Of course, (c) also has starting points that are already on the cycle, and it is one of the
defining characteristics of an attractor that trajectories beginning at those points will
remain within it. These special trajectories have no transients. Although the cycle in (a)
exhibits this characteristic, it lacks another defining characteristic of attractors, the tend-
ency to attract nearby trajectories. Thus, none of its trajectories have transients.

3 Interestingly, it does not much disturb encoding of the matrix (outer) clause; the three
relevant points are similar to those in figure 8.6(a). This may be a leaky network analog to
“popping” the push-down stack in a standard symbolic parser.

4 This sensitivity is important, because pairs of words such as boy and boys were given
unrelated encodings on the input layer. The hidden layer seems to have extracted the
systematic contrast between singular and plural (as well as the essentials of subject—verb
agreement) purely from distributional information in the corpus. The principal compon-

ents analysis not only provides evidence of the network’s systematization of number but
also localizes identification of subject noun number in component 2 — an impressive
contribution to understanding how the network performs its task.

A weight space with an error dimension yields a very detailed display of its attractors —
not just their locations but also their relative depths along the error surface. Occasionally
activation spaces are plotted with an energy dimension included to obtain the same
effect, as in figure 8.7 in section 8.4.1 (reprinted from Freeman, 1987).

w
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6 Understanding why the system behaves in this way requires considerably more depth in
DS'T than our brief introduction can provide. To pursue this elsewhere, a reader should
pay particular attention to the tangency of stable (attracting) and unstable (repelling)
directions at saddle nodes; to obtain intermittency, the system must be nudged to near-
tangency. “When the saddle nodes vanish, indicating loss of entrainment, the coordina-
tion system tends to stay near the previously stable fixed point. It’s as though the fixed
point leaves behind a remnant or a phantom of itself that still affects the overall dynam-
ical behavior. . .. Motion hovers around the ghost of the previously stable fixed point
most of the time, but occasionally escapes along the repelling direction (phase wander-
ing)” (Kelso, 1995, p. 109).

7 In section 6.2 we discussed simulations of Shastri and Ajjanagadde (1993) that made use
of synchrony to effect variable binding. In their simulation synchrony did not emerge
spontaneously, but was created by the way in which connections were engineered. An
important feature of the van Leeuwen et al. simulation is that synchrony emerges from
the local activities of the components.

8 As the commentaries to van Gelder’s (1998) paper make clear, there is considerable
disagreement about the scope and definition of such terms as computational, dynamical, and
representation. 'T'o keep the discussion manageable, we will focus on van Gelder’s version.

9 Clark included a footnote to this last sentence beginning: “The phrase is memorable, but
its authorship rather elusive.”

10 In the words of van Gelder and Port (footnote 8, p. 40): “A more radical possibility is
that dynamical systems can behave in a way that depends on knowledge without actually
representing that knowledge by means of any particular, identifiable aspect of the system.”
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