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STABILITY IN INSECT HOST-PARASITE MODELS 

BY M. P. HASSELL AND R. M. MAY* 

Department of Zoology, Imperial College, London S. W.7, and 
Department of Theoretical Physics, University of Sydney, Sydney, Australia 

INTRODUCTION 

Population submodels for insect parasitism (or predation) abound in the ecological 
literature. Many of these have been well reviewed by Royama (1971). They have the 
general form: 

Ns = Ntf [Pt,Nt]; 
(1) 

Pt+1 = Nt - Ns; 

where NS represents the survivors after Pt parasites have searched for Nt hosts resulting 
in P+ 1 parasite progenyt. All assumptions about parasite searching behaviour are here 
contained in the functionf[Pt,Nt]. If we consider the simplest case where the parasite 
population is specific and synchronized temporally with its host population, we can write 
the following generalized model for a host-parasite interaction: 

Nt + = FNtf [Pt,Nt]; 
(2) 

.pt+l -N t- F F 

where N and P are now the host and parasite densities in generations t and t + 1 and F 
is the rate of increase of the host population. Note that F is not necessarily the average 
fecundity per adult host, but represents the effective rate of increase of the host after 
allowing for all mortalities within the generation except parasitism. This is best shown 
by an example. Let a given host species have an average fecundity of 100 eggs per adult. 
In this case, F = 100 only if there are no other host mortalities. If there are such mortali- 
ties, as will usually be the case, F must be reduced accordingly. Thus with an average 
additional mortality of 9000, F becomes 10; if the mortality is 95%o, F = 5 and so on. 
This is important because, as we shall see below, effective rate of increase always has an 
effect on the stability of an interaction. 

General host-parasite models may be judged on several counts, especially on whether 
the biological assumptions made are valid and whether sufficient assumptions have been 
made for the outcome to indicate the roles of parasitism in natural interactions. It is also 
important that the model is 'useful' which of course depends on the objectives in mind. 

* Present address: Department of Biology, Princeton University, Princeton, New Jersey, U.S.A. 
t We shall refer in this paper to 'hosts' and 'parasites' (= parasitoids) rather than to 'prey' and 'preda- 

tors'. This is not because prey-predator interactions are fundamentally different, but they are usually 
more complex, especially in that the predator reproductive rate is often only loosely dependent on the 
number of prey eaten and because the immature stages have specific searching characteristics which vary 
during their development. 
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Generally, models with a large number of input parameters are difficult to apply to a 
wide range of natural populations. This application is much easier with some of the 
simpler models based on much fewer assumptions, which makes it desirable to single out 
the really important factors affecting the outcome of parasitism. To be useful in pest 
control, a general model for parasitism should contain only those components which are 
likely to affect markedly the outcome of a host-parasite interaction. 

The models discussed here vary from the very simple such as that of Nicholson & 
Bailey (1935) to more complex ones involving effects of host and parasite densities and 
distribution. In each case we place special emphasis on the type of outcome from different 
models: whether a particular model is always unstable or is stable within certain limits. 
In the latter case one should know the precise conditions which can lead to stability, 
since this may be a useful consideration in developing a theoretical basis to biological 
control (see Discussion). The practical objective is to be able to predict the type of 

Table 1. Brief description of some of the models to be discussed (see text for definition of 
symbols) 

Parasitism function 
Model N, = Ntf(Pt, Nt) Brief description Author(s) 

A N, = Nt exp (-a Pt) Random search; constant Nicholson (1933) 
searching efficiency Nicholson & Bailey 

(1935) 
( a, Tt Pt Random search; searching Holling (1959b) 

B NS = Nt exp '\1 +a' Tf Nt efficiency dependent on Royama (1971) 
host density Rogers (1972) 

C N, = Nt exp (Q Pt' -m) Random search; searching Hassell & Varley (1969) 
efficiency dependent on 
parasite density 

/ a TNePa t-\ Random search; searching Hassell & Rogers (1972) 
B/C N, = Nt exp Vri +a' Th Nt) efficiency dependent on 

host and parasite density 
it Non-random search; (This paper) 

D NS = Nt I [a, exp (-a fit PO)] constant searching efficiency 

t 
n ~~~~~Non-random search; (This paper) 

E N, = Nt , [ai exp ( Q(fli P =o m searching efficiency depend- 
ent on parasite density 

outcome expected from different host-parasite interactions by measuring certain 'key 
parameters' of the host and parasite. We have, therefore, wherever possible, illustrated 
graphically the stability boundaries of the different models. Their mathematical deriva- 
tions are given in the Appendix. 

Hassell & Rogers (1972) discuss three basic parasite responses which can affect 
searching efficiency and should form part of any general host-parasite (or prey-predator) 
model: (1) the response to host density; (2) the response to other parasites; and (3) the 
distribution of searching parasites in relation to the host distribution. We shall illustrate 
the relative importance of these with different models. Initially, we consider simple 
models where each response is present alone, and then attempt to show how these 
responses may be combined in more complex models which are more realistic and yet 
not so complex as to be unwieldy. Table I provides a brief description of these different 
models. Models A, B, C and B/C are all based on random search but differ in the responses 
to host and parasite density, while models D and E examine the importance of non- 
random search by including responses to the host distribution, 
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MODEL A 

The Nicholson-Bailey host-parasite model (Nicholson 1933; Nicholson & Bailey 1935) 
has been included here as a form of 'control'. It illustrates the properties of a host- 
parasite model where search is at random and where searching efficiency is independent of 
both host and parasite density. It is based on the following assumptions, which if generally 
valid make the model an ideal one. 

(1) Each parasite in the population searches at random with respect to both hosts and 
other parasites. 

(2) The average area which one parasite effectively searches in its life-time (the area 
of discovery [a]) is constant and characteristic for that species. 

(3) A parasite always contains sufficient eggs for oviposition in all hosts encountered. 
This follows on from assumption (2) in that the area of discovery cannot be a constant if 
egg supply is limiting. 

A parasite with these characteristics will encounter hosts in direct proportion to their 
density. This is shown by the functional responses* in Fig. 1, which clearly imply that 
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FIG. 1. Examples of functional responses implicit in Nicholson and Bailey's theory. The 
different slopes are determined by the assumed areas of discovery (a = N,,I(NtP,)). - 

N.lPt=0-OlNt; ~, Nl/Pt = 0 075Nt; - - -, Nl/Pt = 0-05Nt. 

parasites do not have a maximum attack rate (Watt 1959) determined by their egg supply 
or by the time spent 'handling' hosts (Holling 1959b). From Fig. I we see that the average 
number of attacks or encounters per host (NaINt) is equal to the product of the area of 
discovery and the searching parasite density (NaIN, = a Pt). The way that these attacks 
are distributed amongst the available hosts has a great bearing on the outcome of the 
model. Nicholson followed Thompson (1924) by distributing these attacks randomly so 
that 

N -N I - exp - Na) (3a) 

/a N 

or 
ONa = Nt[O-exp(-aPt)] (3b) 

* A functional response to host density (Solomon 1949; Holling 1959a) is defined as any change in the 
number of hosts attacked per parasite (or prey attacked per predator) as host density changes. 
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where Nha is the number of hosts parasitized (whether one or more times) by the parasite 
population. Clearly, this must be less than the number of encounters with hosts (Na). 
We shall see later that eqn (3a) has been widely used in more recent models (see models 
B and C), but with the derivation of Na differing from model to model. 

By substituting in eqn (2) we have the simple model: 

Nt+l = FNtexp(- aPt); (4) 

Pt+ = Nt(1 - exp(- aPt)). 

Such models have only one equilibrium, occurring when host and adult parasite popula- 
tions are equal to the 'steady densities' (N* and P*). These densities depend on the values 
for the area of discovery (a) and the host rate of increase (F): 

FlnF 

(F- 1)a' (5) 

p= lnF or FeaP* 1 
a 

Any deviation of either N or P from these values leads to host-parasite oscillations of 
increasing amplitude. Unstable interactions of this kind have been observed only under 
very simple laboratory conditions. Fig. 2, for example, shows the results of an interaction 
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FIG. 2. Observed ( ) and calculated (- -) results of an interaction between the parasite 
Encarsia formosa (o) and the greenhouse whitefly, Trialeurodes vaporariorum (-). The 
model is calculated on the basis of a constant area of discovery of 0-068 and a host repro- 

ductive rate of 2. (After Burnett 1958a.) 
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between the greenhouse whitefly (Trialeurodes vaporariorium (Westw.)) and its parasite, 
Encarsia formosa Gahan, where the host reproductive rate in each 'generation' was 
artificially made two-fold (Burnett 1958a). Notice that a Nicholson-Bailey model with 
the area of discovery equal to the mean of those observed over the twenty-one 'genera- 
tions' follows the results quite closely. Under natural conditions, however, one is struck 
by the great stability of most host-parasite interactions. Where pronounced host-parasite 
oscillations do seem to occur as in the case of the black-headed budworm (Acleris variana 
(Fern)) in Canada (Morris 1959), there is no sign that they are increasing in amplitude. 

We cannot, however, reject Nicholson's theory as inadequate on these grounds alone 
since any model based on eqn (4) may be made stable by the inclusion of a suitable 
density-dependent factor acting on host or parasite population (Varley & Gradwell 1963; 
Hassell 1969a, b). The real test must be whether the assumptions upon which the model 
is based-random search and a constant searching efficiency-are biologically valid. The 
wealth of biological information on parasites indicates that neither of these can be 
generally true. Perhaps some parasites do effectively search at random throughout their 
life, but certainly many, and probably most, do not search in this way: they respond to 
the host distribution (see models D and E below). A constant searching efficiency is even 
more difficult to accept. Apart from the influence of climate (Klomp 1959), searching 
efficiency must depend on host density on a priori grounds and is also likely to be 
dependent on parasite density. The effect of host density is included in Model B and that 
of parasite density in model C. 

MODEL B 

This model is based on the work of Holling (1959b) and differs from the Nicholson- 
Bailey model (A) in that searching efficiency is now dependent on the host density. 
Holling pointed out that there must always be a certain time interval between a host 
being encountered and search being resumed: this he called the 'handling time'. This 
handling time progressively reduces the time available for searching (TJ) as more and 
more hosts are encountered: 

T,=TtThNag (6) 

where Ti, is the handling time for a particular host-parasite interaction, and Tt the total 
time initially available for searching. In model A the total number of encounters with 
hosts is directly proportional to host density 

Na = aNtPt (see Fig. 1). (7) 

The time spent searching here is assumed to be constant (Tt = T, = generation time of 
adult parasites). Eqn (6) shows that this should be modified so that 

Na = a'(T - Th Na) Nt Pt (8) 

where a' is an attack coefficient representing the instantaneous rate of encountering hosts. 
(Notice that the area of discovery, a, is equal to a' Ts.) The expected functional responses 
are therefore obtained from 

Na a' TtNt (9) 
Pt 1+ a' ThNt 

This is Holling's familiar 'disc equation'-so-called because it was supported by an 
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experiment in which a blindfolded subject searched for various numbers of sandpaper 
discs (Ne) on a flat surface. The effect of including a handling time is that with increasing 
host density the attacks per parasite rise at a decreasing rate towards a maximum defined 
by a' Ti and Th. This is illustrated in Fig. 3 where increasing Th clearly reduces the maxi- 
mum attack rate. Such curvilinear functional responses are typical of insect parasites and 
predators (Holling 1959b, 1966). There are considerable data in the literature from which 
handling times can be calculated and Table 2 shows the extent to which handling times 
have been found to vary from species to species. Under natural conditions, of course, the 
maximum rate may also depend on egg-limitation or satiation in the case of predators. 
In such cases, we may expect the handling time to increase as egg-depletion or satiation 
is approached. 
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FIG. 3. Functional responses based on eqn (9) where the attack coefficient (a') is 0(01 and 
the handling time (Th) (expressed as a proportion of the total time (Ti)) varies as shown for 

each relationship. ,T = 0; - --, Tk = 0 05; -.--, Th= 0 1;., Th= 0*2. 

Table 2. Estimated handling times (Tb) from di;fferent host-parasite experiments (from 
Rogers (1972) with the exception of that for Pleolophus basizonus (Griffiths 1969) and for 
Nemeritis canescens where Tb wals directly observed; the values of TbITt are based on very 

conservative estimates of adult parasite longevity obtained from the literature) 

Handling time Th 
Parasite species Host species Th (days) Tt Author(s) 

Nasonia vitripennis (Walker) Musca domestica (L.) 0 5 < 01 DeBach & Smith 
(1941) 

Chelonus texanus Cress. Ephestia kuhniella Zeller 0 005 < 0001 Ullyett (1949a) 
Cryptus inornatus Pratt Loxostege sticticalls (L.) 0*06 <0-02 Ullyett (1949b) 
Dahibominus fuscipennis (Zett.) Neodiprion sertifer (Geoff.) 0 04 < 0 01 Burnett (1954) 
Dahibominulsfuscipennis Neodiprion kecontei (Fitch) 0 01 < 0003 Burnett (1958b) 
Pleolophus basizonus (Grav.) Neodiprion sertifer 00(3 <0-02 Griffiths (1969) 
Nemeritis canescens (Gray.) Ephestia cautella (Walk.) 0-0002 < 00001 Hassell & Rogers 

(1972) 

Griffiths & Holling (1969), Royama (1971) and Rogers (1972) have all pointed out 
that the disc equation can predict only the number of attacks or encounters with hosts 
(Na) and not the number parasitized (Nba). This is because the model does not consider 
the distribution of parasite eggs amongst the available hosts. (In the case of predators 
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where prey are removed at each encounter (i.e. eaten) the model can only apply to a 
systematically searching predator which searches a given area only once (Rogers 1972).) 
The most appropriate way to predict the number of hosts parasitized from eqn (9), 
which implies random encounters, is to distribute the attacks randomly amongst the 
available hosts, once again using eqn (3) above. (Non-random distributions are considered 
later (models D and E).) This makes model B comparable to model A and model C. 
The function in eqns (1) and (2) must now become 

f=exp(-1 (10) 

This model is always less stable than a comparable Nicholson-Bailey model. The reason 
for this can be appreciated by comparing Figs. 1 and 3. The functional responses in 
Fig. 1 (implicit in model A) shows a constant proportion of hosts encountered per parasite 
at all host densities, while the responses in Fig. 3 (model B) are clearly inversely density- 
dependent. The degree of instability is determined by the values of F (the effective rate 
of increase of the host) and Th (the handling time). Increasing the value of either of these 
leads to greater instability. The value of a'T, has no effect on stability-it is merely a 
scaling parameter which partly determines the levels about which the populations 
oscillate. 

Models using eqn (8) avoid one of the criticisms of the Nicholson-Bailey theory since 
they allow searching efficiency to be dependent on host density. The predicted outcome, 
however, is an even less satisfactory explanation of the apparent general stability of 
natural interactions. Clearly, we must look for other important components of parasite 
searching behaviour which may contribute to the stability of such interactions. 

MODEL C 

Several experiments reported in the literature have shown parasite searching efficiency 
to be dependent on the density of searching parasites (Hassell 1971a). On the basis of 
these, Hassell & Varley (1969) proposed a simple inductive model for parasite inter- 
ference where the area of discovery (a) is exponentially related to parasite density: 

a=QPt-' or loga=logQ-mlogPt, (11) 

where Q is the area of discovery when Pt = I and m (the mutual interference constant) 
is the slope of the linear relationship between log a and log Pt. This provides a simple 
sub-model for parasitism where 

f = exp(- Qptl-M) (12) 

may be substituted in eqns (1) and (2). This modification of the Nicholson-Bailey model 
(which is now a special case when m = 0) can completely alter the outcome of a host- 
parasite model. Instead of always being unstable, this new model is stable over a wide 
range of conditions depending on the effective rate of host increase (F) and the amount of 
interference (m). (Q, again contributes to the determination of level but has no effect on 
stability.) The precise conditions for stability or instability have been derived in the 
Appendix and are listed in Table 3 and illustrated in Fig. 4. We can see from this figure 
that, provided that values for F are not very large, even quite small values for n (say 
nz > 0 25) will contribute markedly to stability and may even give complete stability. The 
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Table 3. Stability boundaries for model C 

Description Condition 

(1) Unstable Populations increase exponentially m> 1 

(2) Unstable Populations oscillate with increasing 1 rF-1 I 
amplitude - LF nF] 

(3) Stable Populations oscillate with rF-1F m F-1I 
decreasing amplitude 1-i LnFJ (2F-n1-2 VF(F-1))>m>1 [FlnF] 

(4) Stable Populations approach equilibrium rF-] I -. 

exponentially l>m>l-L. inF] (2F1 -2 VF(F- 1)) 

Stable Populations approach equilibrium r F-1 1 
oscillatorily or exponentially 1 > m > 1-L nF 

Optimum Most rapid exponential approach m rF-i I I2 _ 

stability to equilibrium which occurs at L lnF] (2F-1-2 VF(F-1)) 
boundaries of 3 and 4 above 

Unstable (exponential) 

0 I 

FIG. 4 Stablity bundares(frm Smod le C) (exponenthemtalitrfrnelosan)m 

05 

1 234 

Host rate of increase (F) 

FIG. 4. Stability boundaries (from model C) between the mutual interference constant (in) 
and the host rate of increase (F). The shaded area denotes the conditions for stability and is 
divided into two regions (1) where the equilibrium host and parasite populations are 
approached exponentially; and (2) where there are damped oscillations. The line between 
these regions indicates the conditions for most rapid approach to the equilibria. 
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optimum stability is always on the boundary between the zones of exponential and 
oscillatory stability shown in Fig. 4. 

Before the usefulness of this model can be judged we need to know (1) how widespread 
is interference of some form, and (2) whether eqn (11) is a generally valid description of 
interference. Table 4(a) shows values of m and their confidence limits obtained from labor- 
atory experiments on six parasite species. In all of the species m was greater than 0 25 
and in three cases greater than 0 5. There is less information from interactions in the 
field. The four parasite species listed in Table 4(b) have comparably high (or higher) 
values for m, although these cannot be statistically confirmed (Hassell & Varley 1969) 
and, thus, it is not known at present whether or not the interference found in laboratory 
experiments is solely due to unnatural conditions. Griffiths & Holling (1969) do not 
consider interference to be important under natural conditions since the frequency of 
encounters between parasites will usually be lower than in laboratory experiments. While 
this is certainly true, they overlook the fact that under field conditions the time 'wasted' 

Table 4(a). Mutual interference constants (m) from laboratory experiments 

Mutual interference 
Parasite species constant? S.E. Author(s) 

Chelonus texanus Cress. 0-53 ? 012 Ullyett (1949a) 
Cryptus inornatus Pratt. 0-38 ? 008 Ullyett (1949b) 
Dahlbominusfuscipennis (Zett.) 0-28 ? 006 Burnett (1956) 
Encarsia formosa Gahan 0 39?0 04 Burnett (1958b) 
Pseudeucoila bochei Weld. 0-69?0-05 Bakker et al. (1967) 
Nemeritis canescens (Grav.) 0-54?0.08 Hassell & Huffaker (1969) 

0-66?002 Hassell (1971a, b) 
0-69?0 02 

Table 4(b). Mutual interference constants (m) from field studies 

Mutual interference 
Parasite species constant ? S.E. Author(s) 

Apanteles fumiferanae Vier. 0-96?0 07 Miller (1959) 
Telenomus nakagawai Watanabe 0-48 ? 0-15 Nakasuji, Hokyo & Kiritani (1966) 
Cyzenis albicans (Fall.) 0-52?0-20 Hassell & Varley (1969) 
Cratichneumon culex (Muell.) 0 87 ?019 G. R. Gradwell (personal communication) 

after each encounter between two parasites (T - = 'time wasted')-is almost certain to 
be more than in laboratory experiments where dispersal is not possible. Thus, omitting 
any effects of host density, the time spent searching per parasite (Ts) may be represented 
by 

T =T,-T Encs (13) 

where Encs are the encounters per parasite. The same value for T- can be obtained by 
large numbers of encounters per parasite with low values for T" (laboratory conditions) 
or, conversely, few encounters but large values for Tw (field conditions). For example, 
Hassell & Rogers (1972) found from laboratory experiments using Nemeritis canescens 
(Grav.) that approximately 25 s represents the average time between leaving a container 
of hosts following interference and locating a further suitable area. Under natural condi- 
tions (within a flour mill) Nemeritis will still encounter one another, if only occasionally, 
since they are attracted to areas of high host density. However, T" will now be much 
higher on average since areas of suitable hosts are much more widely dispersed than 
under laboratory conditions. 

0 
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We conclude that there are no a priori grounds for considering interference to be 
unimportant under natural conditions. Conversely, its probable importance is supported 
by its occurrence in some laboratory experiments where parasite density is no greater 
than that found often in the field, and by the reports of aggressive behaviour between 
parasite females of some species (Hassell 1971a). Apart from helping to account for the 
observed stability of so many host-parasite interactions, parasite interference also can 
account for the frequent coexistence of several parasite species on one host. In such cases, 
interspecific interference is also possible, but has not yet been considered theoretically. 
Certainly, some parasites, such as Rhiyssa persuasoria (L.) (Spradbery 1970), seem to 
react principally to females of their own species. However, interspecific interference has 
been clearly reported in a few cases. For example, Hokyo & Kiritani (1966) report 'severe 
interspecific interference through aggressive behaviour of Asolcus [mitsukurii Ashmead] 
female[s] against Telenomus [nakagawai Watanabe]' under natural conditions. 
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loglo Searching parasite density (Pt) 
FIG. 5. An arbitrary curvilinear relationship between the searching efficiency (log a) and log 
parasite density. The point m' represents the slope of the curve at the equilibrium parasite 

density (P*) (see text for further explanation). 

Eqn (I l) is an inductive submodel for parasitism based on the approximate description 
of several sets of data. It has the virtue of being sufficiently simple for the parameters to 
be measurable from census information on natural populations (Varley & Gradwell 
1971). However, its general validity must depend upon the assumptions implicit in eqn 
(1 I)-principally on whether m can be a constant for a particular interaction. It is clear 
that this cannot be the case. It is not possible for rn to be constant throughout the range 
of possible parasite densities. The searching efficiency must tend to become independent 
of parasite density as the chance of interference becomes very small. Deductive models 
show that values of nt will tend to increase as parasite density increases (i.e. there will be 
a curvilinear relationship between log a and log P) (Royama 1971; D. J. Rogers & 
M. P. Hassell, unpublished). The available data support these models to a greater 
extent that those where mi is a constant. We must conclude therefore, that while model 
C may remain a very useful submodel for parasitism, it requires further development to 
be realistic under all conditions. 

An advantage of the stability boundaries shown in Fig. 4 is that they may be used 
whatever interference model is adopted. Fig. 5 shows an arbitrary curvilinear relationship 
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between log a and log parasite density. The slope (m') is no longer a constant in contrast 
to m above. The procedure for determining stability is now as follows. 

(1) Calculate the potential equilibrium density of parasites (P* in Fig. 5) using the 
particular model adopted. This is the point where 

Ff(Pt, N) = 1. 

(2) Measure the slope (m') of the curve at this point. 

(3) The model will be stable if 1 > m'> 1 -Fl I(see Table 3) and Fig. 4 may be used 
Fln F 

by substituting m for m'. 

MODEL B/C 

Our aim here is to explore the effects of both the functional response to host density and 

t Pt 

Host density (N,) - - 

FIG. 6. Diagram of a three-dimensional surface showing how the searching efficiency 
(expressed as NA/(NAP,)) in model B/C is dependent on both host and parasite density. 

parasite interference in a single model. Starting with eqn (9) (the 'disc equation'), we have 
included interference by making the total time (Tt) dependent on parasite density: 

Na a' TtcPmNtN1 
P1 1+a'ThNI' ~~~~~~(14) Pt 1 + a Th At 

where c and m are constants, m being the mutual interference constant as in model C. 
This is similar in effect to Tt being constant and the attack coefficient (a') varying with 
parasite density. Thus, the model reduces to model B if there is no interference (m- 0) 
and to model C if there is assumed to be no handling time (Th = 0). The three dimen- 
sional 'surface' in Fig. 6 shows how the searching efficiency (expressed as Na/NtPt) in 
this model now varies with both host and parasite densities. Searching efficiency is low 
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at high host densities due to a high total handling time (Th Na) and it is low at high 
parasite densities due to increased interference. 

If once again we assume that the attacks (Na) are distributed randomly amongst the 
available hosts, we can write the function for parasitism as 

f = exp( t- 1 (15) 

where Q' = the constant a'Ttc from eqn (14). There are three significant parameters 
affecting stability in a population model based on eqn (15). 

(1) p, which is defined to be 

a' Th N* 
p = - ~~~~~~~~~(16) P=1 + a'Th N*' 16 

where N* is the equilibrium host density and Th is expressed as a proportion of total 
time (Ti). This parameter can take any value between zero and unity, and largely charac- 
terizes the effect of handling time on stability. Increasing values of Th give higher values 
for p, as discussed below, while variation in a' has a relatively smaller effect on p due to 
compensating changes in the value of N*. 

(2) m, the interference constant as discussed under model C. 
(3) F, the effective host rate of increase which, as in all host-parasite or prey-predator 

models, must affect the stability of the interaction. 
The stability boundaries in Figs. 7 and 8 show the rather complex interaction between 

these three parameters. The relationships between m and F are plotted in Fig. 7(a, b, c) 
for three values of p (02, 0 5 and 08) and Fig. 8(a, b, c, d) illustrates the relationships 
between m and p for various values of F (1 1, 1 5, 2-0 and 4.0). Both figures indicate that 
increasing values of p (between 0 and 1) and of F decrease stability, while increasing 
values of m may make the interaction more stable. Fig. 7(a, b, c) is similar in general 
form to Fig. 4 from model C where values of m within the range 0 <m < 1 are shown to 
increase stability. Now we find that only values of m within the range of 0< m< 1-p 
make the model more stable. 

We saw from model C that marked mutual interference is a powerful stabilizing factor. 
It is clear from Figs. 7 and 8 that the handling time component can have the opposite 
effect but only becomes important when p is relatively high (say 0 2 < p < 1). We therefore 
need to know the values of p that are likely under natural conditions. 

Let us first consider the case where there is no interference (m = 0), as in model B. 
The equilibrium levels here may be written as: 

a' TtP 
1 + a ThN* (17) 

P*= (F -)N* 
F 

where P* and N* are the equilibrium populations of parasite and host. The parameter p, 
defined above, may now be written as 

P T F= l (18) 
~TtF- I 
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FIG. 7. Stability boundaries (from model B/C) between the mutual interference constant (m) 
and the host rate of increase (F) for three values of the 'handling time' parameter (p): 
(a) p = 0-2; (b) p = 0-5; (c) p = 0-8. Shaded area indicates conditions for stability. 
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Now, FIn is always of order unity, from which it follows that p Th/Tt. For most 
F- I 

parasites the handling time is a very small fraction of the parasite's total searching time 
(Ti) (see Table 2) and hence it follows that usually p < 1. 

This argument remains qualitatively correct when we include some degree of inter- 
ference (m # 0). We therefore conclude that in most host-parasite interactions, stability 
will be affected more by interference and non-random search (to be discussed below) 
than by handling time. 

NON-RANDOM SEARCH 

Models A-C assume that parasites search at random. They are all based on a Poisson 
distribution of the total number of attacks (Na) amongst N, hosts, where the probability 
of an attack on a particular host is equal to 1/N,. Thus, 

Po = ex N( t) (19) 

where PO is the proportion of hosts unattacked (cf. eqn 3). 
The biological assumptions in these equations are straightforward. The distribution 

of hosts within the whole area is irrelevant when parasites search at random. In other 
words, hosts within an aggregation are just as susceptible to parasitism as those which 
are widely spaced out. It is not so easy, however, to relate random search to the actual 
movements of a parasite, although on average each parasite should spend as much time 
searching in one sub-unit of the total area as in any other equivalent unit. This means 
that each parasite will encounter the same proportion of hosts in each sub-unit (Rogers 
1970, 1972). 

We can see that random search is a convenient assumption mathematically; but is it 
a realistic one ? The accumulating information in the literature on the searching behaviour 
of insect parasites and predators strongly indicates that random search is the exception 
rather than the rule. This is not surprising when we consider that most host and prey 
populations tend to be contagiously distributed over the area in which a parasite or 
predator individual searches. This provides a strong selective advantage for those 
parasites and predators that tend to aggregate where their food supply is most abundant. 
There are several types of behaviour that will result in such aggregating of a searching 
population. For example, individuals may respond over a considerable distance to some 
product whose concentration is a function of host density. Several examples of this are 
now known, some of which are listed in Table 5. Alternatively, some species change their 
searching behaviour after successful parasitism-often by an increased turning rate and 
thus tend to remain for longer periods in the unit areas where there are most hosts. Fig. 9 
illustrates this from an experiment using Cyzenis albicans, a tachinid parasite of the 
winter moth (Operophtera brumata (L.)). T he track shows the movement of a female 
parasite in an arena with different densities of small drops of sugar solution per unit area. 
(Cyzenis tends to oviposit on leaves where sap has exuded as a result of feeding by host 
caterpillars (Hassell 1968).) The increased turning rate has resulted in more time being 
spent in the area with eight drops than in any lower density area (Murdie & Hassell 
1973). Very similar behaviour has been found from an aphid parasite, Diaeretiella rapae 
McIntosh (Hafez 1961); an egg parasite, Trichogramma ev'anescens Westw. (Laing 1937); 
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a pupal parasite of flies, Nasonia vitripennis (Wylie 1958); a predatory mite, Stethorus 
picipes Casey (Fleschner 1950); and some coccinellids (Banks 1957; Dixon 1959). 

Hassell & Rogers (1972) suggested from simple models that any aggregation of a 
parasite population in areas of high host density contributes to the stability of a host- 

Table 5. Some examples of 'long-range' attraction of parasites and predators by host 
products 

Parasite or 
predator species Attracted by: Author(s) 

Pimpla bicolor Bouche unknown volatile compound from pupae Ullyett (1953) 
of host (Euproctis terminalia Wlk.) 

Enocleris lecontei (Wole) sex pheromone from prey (Ips Wood et al. (1968) 
paraconfusus Lanier) 

Temnochila chlorodia (Mann) exo-brevicomin isolated from host Bedard et al. (1969) 
(Dendroctonus brevicornis Lec.) frass 

Trichopoda pennipes (F.) male sex pheromone from host Mitchell & Mau (1971) 
(Nezara viridula (L.)) 

Nemeritis canescens (Grav.) pheromone from host Ephestia kuehniella Corbet (1971) 
(Zell.) 

Bracon hebetor Say unknown factor from larvae of host Benson (1972) 
(Ephestia cautella (Walk.)) 

Medetera aldrichi Wheeler plant terpenes liberated by scolytid prey Fitzgerald & Nagel (1972) 
Heydenia unica Cook & Davis plant terpene and pheromone from host Camors & Payne (1972) 

(Dendroctonus frontalis Zimm.) 

r ---|-r-- ?--1-___|SS 
I ? 1 o IfI 0 

0 

' ~ ~I I I 

I 0 

FIG. 9. Part of a track showing the movements of a tachinid parasite Cyzenis albicans, within 
an arena. The circles represent small drops of sugar solution upon which the parasite adults 

feed. The solid circles show where feeding occurred. 

parasite interaction. We shall now explore this more precisely using population models 
where both host and parasite distributions are considered. First, we show the effect of 
non-random search alone (model D) and then include the responses from previous 
models (model E). 



708 Stability in insect host-parasite models 

MODEL D 

We commence with a general formulation. Let the total host and parasite populations 
produced in each generation be distributed into n areas (where the unit area may be a 
leaf, a plant, an area of tree canopy, etc.) with the fraction of the host population in the 
ith area being ai and the parasite fraction correspondingly being f3i. Thus, the sum of the 
ai values and of the fi3 values are equal to unity 

n n 

(E i 1 Efl = 1). 
i=l i=l 

Model A can now be modified: 
n 

Ns = Nt [tai exp (-a , P)]. (20) 

This model therefore distributes Pt parasites and Nt hosts into n areas in the proportions 
specified by ai and f3i. Within each area (i) the exploitation of the hosts is random and 
the searching efficiency of the parasites is assumed to be independent of host and parasite 
density so that the effects of different distributions may be more easily shown. We are 
therefore considering a model similar to model A, but including spatial distributions of 
hosts and searching parasites. Solution of eqn (20) (see Appendix) shows that, unlike the 
Nicholson-Bailey model, this model may be completely stabilized if there is an uneven 
host distribution and marked aggregation of parasites in the unit areas of highest host 
density. The precise conditions for stability are 

n * F-I 
F , [oci (a f3i P*) exp (a f3i P*)] < - (21) 

I = 1 F 

Thus, the key parameters affecting stability in this model are: (1) F, the effective rate of 
increase of the host population; (2) {oci}, the distribution of hosts; and (3) {flJl the 
distribution of parasites. 

Eqn (20) provides a completely general model with which to explore the effects of 
different host and parasite distributions. It requires, however, lengthy calculation for the 
values of each special set {oca} and {flJi that are used. We shall therefore define a further 
parameter-the 'parasite aggregation index' (,u)-which describes the distribution of the 
parasite population relative to that of the host: 

l = c oa (22) 

where c is a normalization constant such that the f3i values sum to unity 

(c-= [ai] 1) 

We have adopted this expression as a simple means of predicting parasite distributions 
given a particular host distribution. A subsequent paper will consider parasite and 
predator aggregation more realistically. Fig. 10 shows some special relationships between 
ai and f3i (p = 0; ,i = 1 and u> 1). 

(1) tu = 0. This is the special case when there are the same number of parasites in all 
host areas, irrespective of the host distribution. Thus, 

pi =- [for all values of i from I to n]. (23) n 
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Eqn (20) is now exactly comparable to model A where search is at random. Regardless 
of the host distribution there will be the same (unstable) outcome as in a Nicholson- 
Bailey model. 

(2) pu = 1. This represents the special case where the proportions per unit area of the 
total parasites searching and the total hosts are the same. Thus, 

fpi = ai [for all values of i from 1 to n]. (24) 

(3) Iu> 1. There is now a differential aggregation of parasites in the areas of highest 
host density which can be very marked if lu? 1. The limiting case, when pu-+ oo, occurs 
when all the parasite population aggregates in the single area of highest host density. 
Thus, all but this particular host area are refuges from parasitism. This is further discussed 
later in this section. 

0-4 - /= 2 

0- - 
/A0- 0 c 

0 004 

0 

a. 

0 

0 0-2 0 4 

Proportion of hosts in ith unit area (a,) 

FIG. 10. Some relationships between the proportion of searching parasites (1Ji) and the 
proportion of hosts (xi) per unit area from eqn (22), assuming different values of the parasite 

aggregation index (,) as shown. 

At present it is difficult to assess what values of p may be found under natural condi- 
tions since both {cti} and {fli} are rarely measured in host-parasite studies. Fig. 11, 
however, shows the results in one case where these were measured; from laboratory 
experiments where Nemeritis canescens searched for unevenly distributed Ephestia 
cautella larvae (Hassell 1971a, b). Eqn (22) describes the observed data moderately well, 
with the calculated value for the aggregation index ([u = 0 73+0 04 (9500 confidence 
limits)) being close to condition (2) above. 

Ideally, we should like to produce stability conditions for the parasite response to any 
set of host distributions. For example: 
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{ai} = 0.4, 0 3, 0-2, 0 05, 0 03, 0-02; (25) 

{ i} = C4. 

Although mathematically straightforward, it is difficult to obtain general insight using 
such particular examples. Instead, we shall take one particular type of host distribution 
as an example, since the stability conditions are of the same general form for any given 

{fci} set. The particular host distribution we have selected corresponds to one where hosts 
are abundant in one area and relatively scarce elsewhere, with a hosts in the high density 
area and (1 - oc)/(n - 1) hosts in each of the (n - 1) low density areas. The degree of parasite 
aggregation in response to this distribution depends on the aggregation index (p). Thus 
for the hosts: 

{ci} = o; (n-1) areas with (26) 

and for the parasites: 

{pi} = fi; (n - 1) areas with sfi. (27) 

0.3 

-7Z 

02- 
0. 

02 

0 

0 01 02 03 

Proportion of Ephestia larvae in ith area (ai) 

FIG. 1 1. The relationship between the proportion of searching Nemeritis canescens (3i) and 
the proportion of Ephestia cautella larvae (ai) per unit area from a laboratory interaction 
(Hassell 1971a, b). The fitted curve was derived by use of eqn (22). ,1i = 0 53 a' 0-73 004 

The probabilities in eqn (27) for the parasites are related to those in eqn (26) for the 
hosts by the definition (22): 

(28) 
-n- 

/3 =,[1 + s(n - 1)]'. (29) 

There are four parameters which now affect stability, which are (1) I, the parasite 
aggregation index, (2) oc, the proportion of hosts in the high density area, (3) (n-1), 
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the number of low host density areas, and (4) F, the host rate of increase. Figs. 12 and 13 
illustrate the stability boundaries between p and F for various values of a and (n-1). 
These graphs indicate which features of host and parasite distribution have the most 
impact on stability. There are four obvious trends. 

(1) Increasing parasite aggregation (,a) increases stability. This is clear from all the 
figures. Thus, parasite aggregation alone can sometimes stabilize a model which other- 
wise is quite unstable. 

(2) Given the particular type of host distribution considered, stability is increased if 
there are more low host density regions. Fig. 12 shows that as (n-1) gets larger, smaller 
values of p (less parasite aggregation) are required for stability. 

(a) (b) 
o , lo, 

n-Il3 

5 5 

'o /7n-1=5 

n-1i _ 

cyl 1 2 3 1 2 3 4 
T 1 0 

LI) (c) 

a 

5 

0 I 2 3 4 5 6 7' 8 
Host rote of increose (F) 

FIc. 12. Stability boundaries (from model D) between the parasite aggregation index (1) 
and the host rate of increase (F) for various values for the number of 'low host density 
areas' (n- 1) and for the proportion of hosts (a) in the 'high host density area'. Each graph 
gives the boundaries for three values of (n-1) depending on the value of a: (a) ac= 0-3; 

(b) = 0-5; (c) a = 0-7. 

(3) There is a wider range of stability conditions when a is in the region of 0 5 rather 
than when it is very small or very large. If o is large (e.g. o- = 07 or 08 in Fig. 12c) there 
is no stability at low rates of host increase (F). On the other hand, as aX decreases (e.g. 
a _ 0-15 in Fig. 13) stability is only possible with combinations of small values for F 
and large values for p. 

(4) In each case stability breaks down rather abruptly as F increases. 
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Bailey, Nicholson & Williams (1962) have previously derived a criterion equivalent to 
eqn (21) (their equation (17) with their definitions (2) and (10)) for the stability of a 
host-parasite system in which some hosts are more difficult to find than others. To illus- 
trate the nature of the stability criterion (21) they chose specific host and parasite 
distributions which are more mathematically elegant than our three-parameter model 
defined by eqns (22), (26) and (27); but their conclusions are somewhat less biologically 
transparent. However, examination of the specific distributions of Bailey et al. shows 
them to bear out the main trends remarked above. This is true both for the discrete 
distributions in their sections 6(ii) and 6(iii), whose stability structure is laid bare in their 
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Host rote of increose (F) 

FIG. 13. Stability boundaries (from model D) between the parasite aggregation index (,) 
and the host rate of increase (F), for various proportions of hosts (a) in the 'high host 

density area'. Shaded area indicates conditions for stability where a- = 015. 

Figs. 4 I-TII and 5, and for the continuous distributions treated in sections 7(i), 7(ii) and 
Fig. 4 IV-V. Consider, for example, their mathematical statement (comprising their 
section 7(i)) that the very special continuous 'gamma distribution' relating host and 
parasite distributions leads invariably to stability if 't < 1, and to instability if 't> 1'. This 
comes down to the biological statement that this particular model is always stable if 
there is a wide spread of host densities, with a considerable amount of low density area 
(t< 1, see their Fig. 6), whereas the model is never stable if the host density distribution 
is relatively flat (t> 1). 
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We may expect, therefore, that the ability of searching parasites to locate the areas of 
highest host density is an important feature of behaviour promoting stability. The effec- 
tiveness of aggregation in this respect depends not only on F but also in part on the type 
of host distribution ({oca}). In this case, stability is increased if something in the region of 
50%0 of the hosts are in a high density region (oa = 0 5) and the remaining hosts fairly 
evenly spread over a wide area. 

We have chosen this type of host distribution because of the ease with which the 
stability conditions may be presented as ,u varies. Of course, under natural conditions 
host distributions must vary very considerably and will often depend on the unit areas 
considered. Thus, the distribution of aphids per plant will usually be quite different from 
the distribution per leaf. The most meaningful distribution depends on the area searched 
by the parasite individual. If a parasite tends to remain on a single plant throughout its 
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FIG. 14. Stability boundaries (from model D) between the proportions of hosts accessible to 
parasitism (y) and the host rate of increase (F). Shaded area indicates conditions for stability. 

life, the distribution per leaf, branch, etc. will be most meaningful. On the other hand, 
the whole plant is likely to be a more useful unit of host distribution where parasites 
move very readily from plant to plant. These different types of host distribution do not, 
however, qualitatively change the conclusions already reached. For any given {ai} set, 
one will still arrive at the general form of relationship between ,u and F shown in Fig. 12. 
The principal difference is that the minimum value for ,u required for stability (,u min) 
will increase as the {ai} set gets 'flatter' (i.e. as the hosts tend towards a more even 
distribution). Indeed, if there is too little contrast in the prey population densities in the 
various 'patches', it can be that no amount of parasite aggregation (not even ,u -- oo) can 
stabilize the interaction. 

Model D (eqn 20) is also useful in exploring the effect of spatial asynchrony between 
host and parasite. Fig. 14 shows the precise conditions for stability assuming that the 
hosts may be divided into a proportion, y, which are accessible to parasitism and thus a 
proportion, 1 -y, that are inaccessible. There are only two parameters affecting stability 
in this simple model, F and y. We may conclude from this that increasing the degree of 
asynchrony (1 - y) either spatially or temporally, increases stability only within narrow 
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limits depending on the effective host rate of increase. In the 'no equilibrium' region 
marked in the figure there is no kind of equilibrium possible: there is too much refuge 
from parasitism and both populations must increase. Similar conclusions were obtained 
by Bailey et al. (1962). 

Temporal or spatial asynchrony at some level must be a widespread feature in host- 
parasite interactions and a number of authors have noted that it can contribute to the 
stability of populations. Varley & Gradwell (1958) listed any protection of hosts from 
parasitism as a stabilizing factor. Griffiths (1969) studied two ichneumon parasites of the 
European pine sawfly, one of which was imperfectly synchronized temporally and the 
other imperfectly synchronized spatially (due to difficulties in locating the host cocoons 
at any depth in the pine needle litter). He showed by simulation that such asynchrony 
can contribute to stability. Hassell (1969a) found that 55"4 of the winter moth larvae 
in one year were protected from parasitism by Cyzenis albicans due to the late emergence 
of the parasite adults. This was found to be sufficient to stabilize a simple population 
model based on the observed interaction. 

We consider that spatial considerations of the type discussed in this section will often 
be the dominant factor governing the stability of an interaction (see Discussion). 

MODEL E 

Using model D we considered the importance of parasite aggregation and host distribu- 
tion without the complications of functional responses and parasite interference. In this 
way it was possible to show quite clearly the likely effect of some non-random distributions 
on the outcome of an interaction. In this section we combine the effects of interference 
with parasite aggregation and host distribution. To be complete we should also include 
the functional response from model B which would then give 

n a'T~c(fiJ Pt), rn~ 
Ns = Nt ai exp- 1 +a' ThN (30) 

in which handling time (Th), parasite interference (m) and the host and parasite distribu- 
tions ({ofi} and {,fb}) are considered. To avoid a very complex family of stability curves, 
we have simplified this model by omitting the effect of handling time on the functional 
response, since most handling times have only a small destabilizing effect on an inter- 
action (see p. 704). Model E, therefore, becomes 

n 

NS = Nt E [ci exp (-Q(fi Pt)l-m)]. (31) 

The precise conditions for stability from this model are shown in the Appendix. As 
expected, the significant parameters are the same as those from model C and model D. 
Fig. 15 shows how these stability conditions become very extensive even when moderate 
values for interference and parasite aggregation are combined. 

DISCUSSION 

It is clear that certain features of parasite searching behaviour can have a marked effect 
on a host-parasite interaction by determining the form of three basic parasite responses: 
(1) the functional response to host density; (2) the response to parasite density; and 
(3) the response to the host distribution. 
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FIG. 15. Stability boundaries (from model E) between the parasite aggregation index (,u) 
and the host rate of increase (F) for different degrees of mutual interference (in). Shaded 

area indicates conditions for stability where m = 0. 

Biological control 

The nature of these responses is important to the stability of host and parasite popula- 
tions as indicated in Table 6. It would be most misleading, however, to imply that only 
factors affecting stability are important to the outcome of an interaction, since other 
factors principally have an important effect on the average levels about which the 
populations fluctuate although they have little or no affect on stability. Both of these 
categories are important to biological control using insect natural enemies, the success 
of which depends on the parasites or predators reducing the pest population and main- 
taining it about a new low level in a stable interaction. These equilibrium levels depend 
on two factors. 

Table 6. The effect of different parasite responises on population stability 

Response Parameter Effect 
Functional response to host density Handling time (Th) (model B) Increasing instability as Th 

(as a proportion of T,) 
increases 

Response to parasite density Interference constant (m) (model C) Increased stability if m is 
within the range O< m< I 
with an optimum value as 
shown in Table 3 

Response to host distribution Aggregation index (p,) (model D) Increased stability as ,u 
increases, depending on the 
host distribution (see p. 711). 
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(1) The effective rate of increase (F) of the host. The value of F depends on the host 
fecundity, sex ratio and all host mortalities other than parasitism. 

(2) The average proportion of hosts parasitized. This proportion depends on the 
number of searching parasites (which in part depends on the survival of parasite progeny) 
and all factors affecting the overall searching efficiency (NaINtPt). 

Thus any factors acting on host or parasite populations must have some effect on their 
average population levels, while only some of these will alter stability. 

It is now possible to suggest (see Table 7) how the various searching parameters in 
models A-E should be optimized for better biological control. Parasites with the follow- 
ing searching characters are the more likely to stabilize their host population at low 
levels. 

Table 7. Some parameters affecting stability and average population levels 

Optimum for 
Parameter biological control Effect 

a' a 
aT F High Reduced average population levels 
QJ 
Tt* High Reduced average population levels 

Th Low Negligible reduction in stability and very slight increase 
in average population levels 

m Within the range 0< m< I with Increase in stability. Some increase in average population 
an optimum as shown in Table 3 levels 

,t High Increase in stability depending on the host distribution. 
Some increase in average population levels 

* Tt is included in the definition of a and Q. 

(1) A high intrinsic searching efficiency (a'). This is necessary to attain the low equili- 
brium populations. 

(2) A small handling time (Th) relative to the total adult searching life-time (Tt). This 
minimizes the instability that results from parasite functional responses. 

(3) Some degree of parasite interference (m). This contributes to stability if the 
interference constant falls within the range 0 < m < 1 (for optimum stability, see Table 3). 

(4) A high level of parasite aggregation (M). This too can contribute markedly to 
stability but depends very much on the host distribution (p. 711). Generally speaking, 
higher values of ,u are required for stability as the host population tends to become more 
evenly distributed per unit area. In the extreme case where there is no variation in host 
density per unit area, no amount of aggregation affects the outcome. 

Of course, the success of biological control depends in the first place on the suitability 
of the chosen natural enemy or enemies within a broader context (Messenger 1971; van 
den Bosch 1971; Zwolfer 1971). Thus, specific parasites are likely to be more effective 
than widely polyphagous ones which will interact with their hosts in quite different ways. 
Their density is less dependent on that of a single host species and their aggregative 
behaviour is likely to depend on the relative abundance of the different host species. 
Parasite effectiveness is often limited by climate. For example, the introduced parasite, 
Aphytis lingnanensis Compere, has been very effective against the California red scale in 
the coastal parts of California, but much less so in the more extreme climatic conditions 
inland where A. melinus DeBach is more effective (DeBach, Rosen & Kennett 1971). The 
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choice of unsuitable biological races has hindered some projects such as the early attempts 
to control the olive scale in California (Doutt 1954). The development of host resistance 
has greatly reduced the effectiveness of Mesoleius tenthredinis Morley, an introduced 
ichneumon parasite of the larch sawfly in Canada (Muldrew 1953). Lack of synchroniza- 
tion may be an important factor preventing the establishment of some parasites. Although 
this can be a powerful stabilizing factor within a narrow range, too much asynchrony 
prevents any control by the parasite (model D). Other unforeseen circumstances could 
often be important. For example, it now seems clear that the strong density-dependent 
pupal mortality of Cyzenis albicans in Wytham Woods has prevented it having the 
important effect on the winter moth populations there that it has had in Nova Scotia 
(Embree 1966; Hassell 1969b; Varley & Gradwell 1971). Such difficulties are hard to 
foresee without extensive preliminary studies. 

Given, however, that such factors are not limiting, the searching characteristics of the 
natural enemies become of central importance. The four 'key parameters' listed above 
are not very difficult to measure experimentally. A series of experiments in which host 
density is varied will give a measure of a' and Th or how the searching efficiency 
(Na!N,P, =-a) varies with host density (Rogers 1972), and a series where hosts are 
distributed unevenly and parasite density varied provides estimates of aggregation and 
interference. Although the precise parameters from such experiments cannot be directly 
related to field conditions, they would be useful in comparing potential parasites for 
release. It is hoped that experiments of this kind will become more widespread in the 
normal screening procedure for possible biological control agents. 
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SUMMARY 

(1) Several models for host-parasite interactions are discussed. Some of these are 
based on random search where searching efficiency is either assumed to be constant or 
to depend on host and/or parasite density. In the others, the parasites are assumed to 
search in a non-random way, tending to aggregate in unit areas where host density is 
high. The most complex model considered includes three basic parasite responses: the 
functional response to host density, the response to parasite density and the response to 
the host distribution. 

(2) For each of these models, the significant parameters affecting stability are presented 
and the stability boundaries illustrated where possible. Only mutual interference between 
searching parasites, aggregation of parasites in unit areas where host density is relatively 
high and some degree of spatial or temporal asynchrony were found to contribute to 
stability. 

(3) The parameters that affect the equilibrium levels of host and parasite populations 
and those also affecting stability are discussed in the context of biological control. It is 
concluded that a high basic searching efficiency, a low handling time, some degree of 
interference and parasite aggregation are all optimum searching characteristics for 
biological control. 

p 
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MATHEMATICAL APPENDIX 

This appendix outlines the mathematical derivation of the various stability results set 
out in the body of the paper. We first give a formal treatment of the stability character 
of the general eqn (2), and then apply the consequent formulae to the particular models 
A-D. 

The present account is sketchy. A detailed and lucid analysis of some similar, but 
simpler, models is in Maynard Smith (1968, Ch. 2). A formal, and in some respects more 
fully set out, stability analysis of eqn (2) is due to Bailey, Nicholson & Williams (1962); 
however, these authors have no host dependence in the search functionf (i.e.f(Pt) only, 
notf(N,,P,)), and their specific applications differ from our models A-D, being somewhat 
less biologically motivated. For a general account of the stability analysis of population 
models with difference equations, and their relation to the corresponding analysis for 
systems of differential equations, see May (1972a, 1973a, b). 

General case 

The possible time-independent equilibrium populations, N* and P*, are found simply 
by putting N+1 = N = N* and P+1 = P = P* in eqn (2): 

F P* (F -1) N*;- (Al) 

f(N*, P*) = F-1. (A2) 

These equations may in principle be solved to get N* and P*, provided F> 1. 
In the real world, with its environmental fluctuations, the equilibrium solution will 

be meaningful only if the system tends to return to these equilibrium populations when 
perturbed from them. Thus we seek to find whether the equilibrium point N*, P* is a 
stable or an unstable one. 

To this end, first write the perturbed populations as: 

Nt=N*(1+xt); (A3) 

Pt =P*(1+Yt). (A4) 

Here the quantities xt and Yt measure the initially relatively small perturbations to host 
and parasite populations, respectively. The dynamics of such perturbations are studied 
by Taylor-expanding the eqn (2) about the equilibrium point, and discarding terms of 
relative order x2, y, y 2 or higher, to get 

xt+ l 1+ v] xt -q(TF- l)yt; 
(A5) 

(F - 1) Yt+1 = F xt -xt+. 

The quantities q and v have been defined for notational convenience: 

- N* (af/aP)*; (A6) 

v--FN* (Of/lN)* (A7) 

The partial derivatives off(N,P) with respect to P and to N are both to be evaluated at 
the equilibrium point, N*, P*. In any biologically sensible model, the fraction of un- 
parasitized hosts, f(N,P), is likely to decrease as P increases, and to increase as N 
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increases, so that we expect q and v to be non-negative. However, the formal treatment 
below encompasses arbitrary il and v values. 

As pointed out in Maynard Smith (1968), Bailey et al. (1962), and elsewhere, for linear 
difference equations such as (A5) it is standard to write the solution in the form: 

Xt = A1 (Al)t + A2 (A2)t; 

Yt = B1 (Al)t + B2 (A2)t. (A8) 

Here the coefficients A and B are set by the initial perturbations in the generation at 
t = 0, and the time dependence is contained solely in the factors At. The quantities 2A 
and A2 are obtained in the usual way by substituting (A8) into (A5), to obtain relations 
of the form 

(1 + v - A) A - (F-1)B = 0; 

(F-A)A-(F-l)AB =0. (A9) 

This pair of equations are consistent only if their determinant vanishes: 

I +v- -A1(F-1) 
det = 0, (AIO) 

F-A -A(F-1) 

that is 
A -)v( +v+ i)+Fii=0. (A1) 

Thus, finally, the quantities Al and 22 are given by 

2A = (1 + V + 11) ? [(l + V + q)2 - 4Fq]l. (A12) 
From eqn (A8) it is evident that the perturbations xt and Yt will die away in time if 

and only if both 2A and 22 have modulus less than unity. That is, the overall stability 
criterion is 

|AJ| < 1. (A13) 

If the factor inside the square brackets in (A12) is positive, both 2A and 22 are real num- 
bers, and the damping is exponential in character; if this factor is negative, 2A and 22 

are a conjugate pair of complex numbers, and the stability character is oscillations of 
decreasing amplitude. Likewise if JAI> 1, there ensues purely exponential growth or 
growing oscillations depending on whether this same factor is positive or negative. 

It may be shown, after some algebraic manipulation, that application of the stability 
criterion (A 13) to the specific form (A 12) leads to the overall stability criterion 

v 1 

F < 1 F (A14) 

In addition to this criterion, it is also required that 11> -(2 + v)/(F+ 1). However, for 
biologically reasonable f(N,P) we expect v> 0, i1>0 (as is the case in all the present 
models, A-E), so that this third condition is automatically fulfilled. Larger values of Q 

outside the range (A14) lead to unstable oscillations, smaller values to unstable mono- 
tonic growth. Within the range (A 14), the stability is oscillatory or monotonic depending 
on whether i is greater or less than a critical value qo, which is the value for which the 
term in square brackets in eqn (A12) vanishes, namely 
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The above constitutes a linearized stability analysis, valid in the neighbourhood of the 
equilibrium point. For a class of analogous population models where growth is a con- 
tinuous process, that is where we have differential equations rather than difference 
equations such as (2), it is possible to show that for a stable equilibrium point the global 
nonlinear stability character is validly described by the neighbourhood analysis (May 
1972). (Conversely those models with no stable equilibrium point may possess a stable 
limit cycle.) The Poincare-Bendixson techniques employed in the differential equation 
case have no immediate analogue for difference equations, and we have no corresponding 
rigorous proof that the conventional neighbourhood stability analysis characterizes the 
global stability, for very large perturbations. However, it is plausible that in the com- 
paratively simple models A-D the neighbourhood analysis does describe the global 
stability character, and this conjecture is strengthened by the fact that extensive numerical 
studies for these models have invariably displayed the stability character predicted by the 
linearized analysis. 

Model A 

Here 
f(N, P) = exp (-aP). (A16) 

The equilibrium populations, eqns (Al) and (A2), are given by: 

a P* = ln F; 

(F-1) N* = F P*. (A17) 

Consequently the quantities i1 and v have the values 

v = 0, (A18) 

i = (ln F)/(F - 1). (A19) 

But for all F> 1, necessarily ln F> (F- 1)/F, which is to say 

l> 11F. (A20) 

Therefore the conventional Nicholson-Bailey model A leads to growing oscillations. 

Model B 

Heref(N,P) is given by eqn (10). First obtaining the equilibrium solutions N* and P* 
from eqns (Al) and (A2), we may then show that again 

1 = (ln F)/(F - 1), (A21) 

and now 

v = [F (InF)2}. (A22) 

It is still true that necessarily 
, > 1/F, (A23) 

leading to growing oscillations. From eqn (A 12) it is seen that the finite value of v makes 
such models less stable than the simple Nicholson-Bailey model A. 
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Model C 

The functionf(N, P) is here given by eqn (12). The consequent equilibrium populations 
follow from eqns (Al) and (A2), and the quantities il and v are 

= (1- m) In F (A24) 

v = 0. (A25) 

Use of the expressions (A24) and (A25) in conjunction with the stability criteria (A14) 
and (Al 5) leads directly to the results given in Table 3 and Fig. 4, which give the stability 
character of the model in terms of the parameters m and F. 

Using the form (A24) for ,, and putting v = 0, it may be asked for what value of ni 
(given F) does the stability-determining quantity A attain its minimum value, correspond- 
ing to maximum damping? The answer is seen to be for the value 'i = il of eqn (A15), 
that ig for m at the interface between stable oscillations and stable exponential damping, 
as stated in the main text. 

More generally, consider the case whenf(N, P) is some arbitrary function of P alone: 

f =f(P). (A26) 

By analogy with the simple model A above, define a generalized 'area of discovery', 

a(P)' = - (ln f(P))/P. (A27) 

If m' is now defined as the (negative) slope of the (ln 'a') versus (ln P) curve at the 
equilibrium point, then from the definition (A6) 

a(P*) N*F P*_(dP a] 

= IF) (1- m'). (A28) 
(F-i1) 

That is, the stability analysis is identical with that for the straightforward model C above, 
except that the slope m', defined as indicated in Fig. 5, now plays the role previously 
played by the m of eqn (12). 

Model B/C 

By combining the features of finite handling time (model B) and of parasite mutual 
interference (model C), we obtain the function f(N, P) of eqn (15). As usual the equili- 
brium populations N* and P* are found from eqns (Al) and (A2). From the definition 
(A6) il is again 

(1 - m)lnF (A29) 

and from eqn (A7) v may be written 

v=plnF. (A30) 

Here p is the quantity defined by eqn (16); notice 1> p >0, with p-O0 as the handling 
time becomes very short. 
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The stability conditions illustrated by Figs 7 and 8 now follow by substituting the 
expressions (A29) and (A30) for i1 and v into the overall stability criterion (A14). We 
see that this criterion assumes the form 

1-P>m>1-(FlnF) (A31) 

as illustrated for fixed p in Fig. 7, and for fixed F in Fig. 8. The boundary between stable 
solutions which are damped purely exponentially and those which exhibit damped 
oscillations is given by the general criterion (Al 5), or specifically by 

m= -In F )[ ~F --.,IF - I- pInF ].(A32) 

Model D 

Here we have 

f (N, P) = ai exp (- af3iP) (A33) 

where the normalized sets of probabilities {cai} and {/3i} are as defined above. As before 
the equilibrium populations N* and P* are given by eqns (Al) and (A2), and thence q 

and v by (A6) and (A7): 

1 (F _ i) ai(afiP*) exp (- aiP*), (A34) 

v = 0. (A35) 

The overall stability criterion (A14) then leads directly to the general result (21) 
presented in the body of the paper. For any given set of host and parasite proportions 
{cci} and {fli}, the stability character for a given F may in principle be determined. Some 
special cases are worth pursuing. 

(i) Explicit refuge 
Suppose a proportion y of hosts are accessible to the parasites, and the remaining I - y 

are not. That is, i =, OC2 = I-Y; fi = 1, ft2 = 0. The equilibrium parasite population 
follows from eqn (A2) with (A33): 

F(y exp (- aP*) + 1 - y) = 1. (A36) 

Unless F(l - y) <l , no equilibrium configuration is possible, which gives one stability 
boundary in Fig. 14. 

If an equilibrium population N*, P* does exist, it is seen that eqn (A34) reduces to 

=- (yF) (aP*)exp(- aP*) 
(F - 1) 

_ [1 - ( 
- 

y)] In ( (A37) 

Substituting this into the general equations (A 14) and (Al 5) gives the relations between 
y and F which determine the upper stability boundaries in Fig. 14. 
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(ii) High density/low density 
A typical way of characterizing the differential densities and aggregations of hosts and 

parasites is by the three parameters a, n and ,u of eqns (22), (26) and (27). The equilibrium 
parasite population is then 

F[ae-x + (I-c,)e&x] = I (A38) 

where for convenience x = afBP*. The stability criterion (21) is now 

xF[oceex + s(1 - a) e8x] < F . (A39) 
F 

Remember, s is a function of a, n and ,u (eqn 27). By eliminating x between the two eqns 
(A38) and (A39), a relation between ,u and F is obtained for given ac and n; such relations 
are as depicted in Figs. 12 and 13. 

(iii) General result for F 1 
In the limit 

F-1 + A; A < < 1 (A40) 

it is possible to simplify the stability criterion (21) for arbitrary sets of probabilities {c'} 
and {flJi. The limiting assumption (A40) implies that aP* is relatively small, which forms 
the basis for an approximate simplification of eqns (A2) and (A21), leading to the stability 
criterion 

EZciY3 > 2( ai fp) [1 + 0(A)]. (A41) 

The correction terms are of relative order A. This approximation gives a good estimate 
of the stability character even for F as large as two (i.e. A around unity). 

The trends manifested by this general (but approximate) result are interesting. The 
easiest way to satisfy (A41) is to have roughly equal numbers of hosts in a few high 
density areas and in many low density areas, and also to have strong differential aggrega- 
tion of the parasites in the high density areas. (Try writing down sets of probabilities {c'} 
and {#ij, and testing them against equation (A41).) 

Model E 

Here we use eqn (31) to get 

f (N, P) ai exp -Q(piP)lm]. (A42) 

In conjunction with eqns (Al) and (A2), this gives the equilibrium populations N*, P*. 
Froni eqn (A7) v = 0, and the quantity ql of eqn (A6) is now 

(I - rn)F 
'1 F l) . 2 ziexp(- zi) (A43) (F - i) 

with the definition zi = Q(f,i P*)- m. The overall stability criterion is, as ever, eqn (A 14). 
In essence, this differs from the preceding analysis only by the factor (I -1) in eqn 

(A43), and all the calculations made above for model D are easily amended to incorporate 
this additional stabilizing factor. In particular, the computations which give Figs. 12 
and 13 now give Fig. 15, with its wider stability zones. 
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