MICROBIAL DIVERSITY
“If I could do it all over again, and relive my vision in the twenty-first century, I would be a microbial ecologist. Ten billion bacteria live in a gram of ordinary soil, a mere pinch held between thumb and forefinger. They represent thousands of species almost none of which are known to science. Into that world I would go with the aid of modern microscopy and molecular analysis. I would cut my way through clonal forests sprawled across grains of sand, travel in an imagined submarine through drops of water proportionately the size of lakes, and track predators and prey in order to discover new life ways and alien food webs. All this, and I need venture no farther than ten paces outside my laboratory building. The jaguars, ants, and orchids would still occupy distant forests in all their splendor, but now they would be joined by an even stranger and vastly more complex living world virtually without end. For one more turn around I would keep alive the little boy of Paradise Beach who found wonder in a scyphozoan jellyfish and a barely glimpsed monster of the deep.”

CONTENTS

Foreword ix
Preface xiii

PART I CONCEPTS AND METHODS 1

1 The concept of microbial species 3
- Old and new challenges for assessing microbial diversity 4
- Traditional concepts of species
 - Typological species concept 6
 - Morphological species concept 7
 - Biological species concept 7
 - Evolutionary species concept 8
 - Other concepts 8
- Species concepts for prokaryotes 10
- Theoretical mechanisms of speciation
 - Anagenesis 12
 - Cladogenesis 13
 - Macroevolution theories 13
 - Species fusion theory 14
 - Gradual speciation 17
 - Microbial speciation 18
- Conclusion: Emerging concepts and applications of microbial diversity 19
- Questions for further investigation 21
- Suggested readings 21

2 Microscopic methods for assessing microbial diversity 23
- Advances in instrumentation and methodology
 - Basic light microscopy 24
 - Electron microscopy 24
 - Specialized light microscopy 26
 - Microscopic video image analysis 27
- Objectives for microscopic analysis in microbial diversity assessment 27
- Microbial cell morphological types 28
- Multicellular organization in microbial colonies 29
- Relative abundance of species in a community 29
- Cell–cell interactions 30
- Viability and metabolic activities 32
- Cell components 33
- Predation and parasitism that regulate populations 33
- Differentiation and life cycles 36
- Fossil microorganisms 36
- Conclusion 38
- Questions for further investigation 41
- Suggested readings 41

3 Culture methods 43
- Cultivation and diversity assessment 43
- Axenic cultures
 - Modeling microbial nutrition 47
 - Microbial trophic systems 48
 - Aeration 48
 - Carbon and energy sources 49
 - Selective growth conditions 50
- Microcosm cultures 50
- Somnicells and microbial diversity assessment 51
- Conclusion 56
- Questions for further investigation 56
- Suggested readings 56

4 Molecular and genomic methods 58
- The molecular context of microbial diversity 58
- Interpretation of molecular diversity 59
- Nucleic acid sequence comparisons 60
- Specific nucleic acid-based methods 61
- Signature lipid biomarkers 66
- Protein profiles 69
- Molecular microarray systems 70
- Conclusion 71
- Questions for further investigation 71
- Suggested readings 71
5 Phylogenetic analysis 73
 The rationale for phylogenetic trees 73
 Multiple sequence alignments 75
 Constructing phylogenetic trees from aligned sequences 75
 Interpreting phylogenetic trees 76
 Case study of phylogenetic relationships and niche diversity 77
 Conclusion 82
 Questions for further investigation 84
 Suggested readings 84

PART II PRINCIPLES AND APPLICATIONS 85

6 Environmental evolution 87
 Biogenesis 87
 The case for panspermia 89
 The history of microbial diversity in stromatolites (microbialites) 94
 Contemporary microbial mats 96
 Microbial life and evolution in extreme environments 101
 The emergence of multicellularity and eukaryosis, and their consequences for environmental evolution 104
 Endosymbiosis 104
 Biotic effects on the evolution of Earth’s atmosphere 106
 Practical aspects of microbial diversity and environmental evolution 107
 Hydrogenesis 107
 Methanogenesis 108
 Carbon sequestration 109
 Conclusion 109
 Questions for further investigation 110
 Suggested readings 110

7 Biogeochemical cycling of carbon and nitrogen 112
 The Earth as an integrated biogeochemical system 113
 Integrative research on biogeochemical cycling 116
 The carbon cycle 119
 Photosynthesis 122
 Methanogenesis 125
 Methanotrophy 131
 Heterotrophy 134
 Biochemical and phylogenetic range of heterotrophy 139
 The nitrogen cycle 141
 Nitrogen fixation 143
 Evolutionary history of biological nitrogen fixation 144
 Nitrogen fixation and environmental change 149
 Ammonification and nitrification 151
 Ammonification 151
 Nitrification 151
 Denitrification 154
 The global dimension of the nitrogen cycle: Prospects and challenges 156
 Conclusion 157
 Questions for further investigation 157
 Suggested readings 157

8 Biogeochemical cycling of phosphorus, sulfur, metals, and trace elements 159
 The phosphorus cycle 160
 Phosphine cycling 164
 The sulfur cycle 165
 Desulfuration 165
 Sulfur oxidation 169
 Sulfur reduction 170
 Prospects and challenges of the sulfur cycle 170
 Metals and trace element cycles 172
 Conclusion 176
 Questions for further investigation 177
 Suggested readings 177

9 Cross-species interactions among prokaryotes 178
 Quorum sensing 179
 Interactions with viruses 183
 Aquatic viruses 184
 Soil viruses 187
 Prokaryotic interactions and genetic exchange 189
 Microbial consortia and the crisis of isolation 191
 Natural antibiosis and microbial diversity 193
 Conclusion 196
 Questions for further investigation 197
 Suggested readings 197

10 Interactions between microorganisms and large eukaryotes 198
 Microbial diversity and geography 198
 Plant diseases 199
 Impacts of global environmental change on microbial pathogens and plant diseases 205
 Animal diseases 209
 Mad cow disease 210
 Foot and mouth disease 212
 Human diseases 213
 Tuberculosis 213
 Cholera 216
 Diseases of marine organisms 218
 The beneficial effects of microbe-eukaryote interactions 220
11 Microbial diversity and global environmental issues 225

Microbial diversity and indexes of environmental change 226
Quantitative measures of species diversity 227
Global climate change 233
Stratospheric ozone depletion 235
Toxic chemical pollution 237

Appendix 1 Partial list of sequenced microbial genomes 243
Glossary 251
References 258
Index 287
When we contemplate “evolution of life on Earth” we tend to imagine changes in animals and plants. We picture little ape-men who yelp at their hairy wives or small running Paleocene mammals who run on the third ("middle finger") digits of their fore and hind legs that enlarge and harden to become hooves. We see forests of ancient scaly Lepidodendron trees descend to become the little club mosses (also called ground pine or Christmas fern). Mostly the word “evolution” conjures the grunting caveman to singing cave painter transition in northern Spain and southern France. Although we know that no Eohippus ever awoke one fine and sunny spring morning, to stretch his legs and watch his toes transform to horny hooves, nor did any bone-splitting, marrow-chomping hairy Neanderthal survey the snowscape to return inside the limestone cavern to outline horned antelope before the fire, such exaggerated evolutionary images enchant and attract us. What is seldom conjured up by the phrase “evolution of life on Earth” is bacteria.

A thorough read of Microbial Diversity will alter our worldview. We moderns are grossly biased in our perspective; we are far too preoccupied with far too few forms of life. Of most concern to us are vertebrates that live on land (ourselves, our pets, our draft animals); flowering grasses that do most of the production upon which we depend for sustenance (i.e., barley, corn, rye, wheat); and the fungi as mushrooms, the yeast of bread and beer, or as agents of ringworm, athlete’s foot, or allergens. Reminiscent of the five-year old, our anthropocentric view toward the natural world is one of “what’s in it for me?” When, in The Progress of the Soul (c.1610), John Donne wrote, “Nature’s great masterpiece, an Elephant...”, he was only partly right. He could not have guessed the truth that Professor Ogunseitan builds in this splendid text and, I paraphrase, “Nature’s great masterpiece, the bacterium”. In Microbial Diversity Ogunseitan has written well about the fundamental units of life, the bacteria. His work is surprisingly comprehensive and up to date. By implication and even in explicit reference, he explains their spectacular evolution. But he has not even opened the expansive landscape to their most gifted and crucial descendants: the eukaryotic microorganisms. These larger beings, are the coevolved and integrated communities of bacteria, the immediate kin from which the larger forms of life on Earth evolved. What other denizens of the glorious microbial world, the microcosmos, are omitted from detailed treatment here? The filamentous fungi and the protists, microscopic eukaryotic organisms, refractory to simple classification and to short accurate description are underrepresented.

The fundamental lesson of this book turns our cultural myths inside out. The abundance and diversity of life on Earth has come not from fossil horses or club mosses but from the flourishing of the oldest, most omnipresent life forms, the bacteria. For all intents and purposes the bacteria invented everything of importance: growth, metabolism and reproduction, swimming and chemical sensitivities, oxygen respiration and desiccation-resistant propagules. Some perfected predatory behavior and the kill. They are masters of efficiency and recycling of waste. They invented sex and indulge in it with abandon. They cover the mountaintops, the prairie, and the plains with their offspring. They swim with no thought
of sleep. They fashion fuel like methane and ethanol from far less energetic forms of carbon such as CO₂. The prodigious bacteria have created sexual communication and gender, genetic recombination, and consortial living. Some thrive exposed to ferocious winds and blinding sunlight on open cliffs, others burrow into hard limestone rock and photosynthesize right through their chalky covers. As metal workers, bacteria have no peers: some precipitate gold and others mine iron; some manufacture metallic sheens of manganese and others work copper or etch glass. In Ogunseitan’s learned tome the crucial importance of bacterial life to our environment is laid bare at a sobering level of scholarship. He pays heed to the recent literature. He does not overstate or overconclude, rather he gives the advanced student access to the professional literature on its own terms.

Microbes, by consent, are live beings too small to be seen as individuals with the unaided eye. Nature’s energetic gyration has generated two vast groups, easily distinguished by direct microscopic inspection of their cells. Because no single life form intermediate between these groups has ever been found, all microbial life is unambiguously classified into the Eukarya, organisms with nuclei or the bacteria in the broad sense (the Prokarya). Apparently small and simple when visualized by light microscopy, bacteria are amazingly complex and diverse when studied by more devious means. Chemical, metabolic, macromolecular, and other indirect analyses have revealed the world of diversity in prokaryotes that is the subject of this book. Prokaryotes are single or multicellular organisms in which each cell is of the bacterial kind. Since they were discovered by Antoni van Leeuwenhoek in the late-17th century and analyzed by Louis Pasteur in the late-19th century, bacteria have been studied by chemists, oil scientists, food industry advisers, and especially by physicians. Lately prokaryotes have been the focus of attention of sewage engineers, space scientists, and environmental analysts. Biologists, whether zoologist, botanist, or cell biologist, have tended to exclude prokaryotes from their foci of study. The activities of these wily, insinuating hordes impinge so heavily on human lives that a new vocational term was coined to describe the scientist whose profession it is to study the greater bacteria: he is the microbiologist. Although, by tradition and practice, the microbiologist studies all the prokaryotes and one group of eukaryotes, the smallest fungi (the yeasts), he systematically, by tradition, excludes the eukaryotic microbes. Microbes composed of cells that contain nuclei, an estimated 250,000 species alive today, form another world. They tend to be studied by zoologists (the protozoa), botanists (the algae), and mycologists (the fungi including the slime molds). Ogunseitan rests squarely in the microbiologist’s traditions but he is aware of its deficiencies.

His subtitle admits that this is a book about the bacteria as units of life itself. It deals with all organisms made of cells that lack membrane-bounded nuclei. All prokaryotes are still members of the bacterial world, whether in ribosomal composition eubacterial or archaebacterial, or in cell wall structure (two-membraned gram-negative, single-membraned gram-positive, gram-variable, or the aphragmatic that lack cell walls entirely). Bacteria lack chromosomes. In spite of the widespread terminology, “bacterial chromosomes”, in my opinion, do not exist. The naked DNA structures of the bacterial genophores are chromonemes, not chromosomes. The histone protein-draped chromatin of animals, plants, protocists, and fungi provide the material basis of meiotic-fertilization forms of sex. Mitotic spindle movements of real chromosomes assure alternate production of haploids (e.g., plant spores and germ cells) and diploids (plant sporophytes and animal body cells). Such elaborate sexuality in the Eukarya, which requires the breach of the individual haploid cell and the acceptance in toto of a “foreign” nucleus or cell within a common membrane, is a feature essential to eukaryotes and their behavior. The cell-level “emboitement” (known in many guises: fertilization, pinocytosis, phagocytosis, cell fusion, karyogamy, invasion, endocytosis, incorporation) marks as unique all eukaryotes relative to Ogunseitan’s prokaryotes. The ability to evolve “a genome at a swallow” is entirely lacking at the prokaryotic level of cell organization.

The paucity of endosymbionts and absence of cyclical cell fusion is what makes Carl Woese’s currently preferred term “Archaea” an anathema, as it implies that these microorganisms somehow are not bacteria. Whereas Woese’s original concept of “Archaeabacteria”
led to an immense contribution to the literature of the analysis of microbial life, “Archaea” is a misnomer. Archaebacteria (usually methanogens, halobacters, or sulfoacidophils) are, after all, bacteria in every sense. Like all their prokaryotic brethren they are homogenomic, have small ribosomes and chromonemic organization, transfer small pieces of DNA, and are not products of symbiotic fusions. The great group of bacteria, including archaeabacteria, with its incredible diversity, may be characterized by many criteria in addition to the ribosomal RNA DNA genes or a chromonemal gene sequence for a single protein. Unique physiological pathways and environmental distribution are two examples. A singular strength of Ogunseitan’s text is its exhaustive, measured, and fair comparison of ways to measure and handle the unruliness of the prodigious diversity of bacteria. He knowingly slights the eukaryotes although he realizes they are composites of bacteria. Clearly, a detailed treatment of them would bring him into a far different realm. Because eukaryotes are all merged complexes of a limited set of prokaryotes another entire book would be required to do them justice. The ecological, behavioral, developmental, metabolic, and genetic magnitude of prokaryotic diversity is staggering enough. Beside it the diversity of all eukaryotes pales. Whether microbial (small fungus or protoctist) or visible with the unaided eye (large fungus and protoctist, animal or plant), the uniformity of the sexual and metabolic biology of eukaryotes is striking relative to the evolutionary diversity of bacteria. Only in morphological splendor, easily delineated species and the production of certain specific metabolites such as plant and fungal hallucinogens, toad and dinomastigote nerve toxins, plant skin irritants, Chinese and English speech, phosphate–nitrate mountains and cities, do the eukaryotes have any claim to unique and original diversity. All important features of life on this planet evolved in bacteria. Enter here and see for yourself.

Lynn Margulis
Distinguished University Professor
Department of Geosciences, University of Massachusetts
Conservation biology is a relatively new academic discipline that is currently enjoying a remarkable popularity among students, researchers, and the public. Its success is striking because it is primarily an exploratory science with few reproducible theories or generalizable concepts. Habitat preservation and species protection programs implemented through government regulations such as the U.S. Government’s Endangered Species Act of 1973 have been modestly successful experiments to conserve biological diversity. However, to microbiologists, these landmark steps toward popular appreciation of ecological biology must seem partial and inadequate. Years dedicated to learning that microorganisms sustain the global ecosystem have not reduced the gap between the appreciation of large animal and plant organisms (macrobiodiversity) and the widely acknowledged ignorance of the diversity of microorganisms (viruses, bacteria, protists, and small fungi—microbiodiversity).

In nature, the large population densities and rapid growth rates inferred from working with many microorganisms in the laboratory support the view that prokaryotes cannot be in danger of extinction (Staley, 1997). Microbial pathogens that humans have deliberately tried to extinguish with antibiotics and antiseptics for centuries are still very much with us. However, occasions do arise that raise the prospect of microbial extinction, at least locally. For example, the debate at the end of the twentieth century about whether to terminate the last remaining stocks of the smallpox virus only slightly included discussions about microbial diversity. Instead, the debate was framed by concerns for future bioterrorism and access to vaccines.

This book presents a comprehensive analysis of the concepts and methods that have facilitated recent advances in the understanding of microbial diversity, and a clear linkage to the importance of this understanding for global physicochemical and biological processes that are easily recognizable to investigators in the natural sciences. Microbial diversity is presented here as highly relevant to processes that are proximal to human affairs, a treatment that will be of interest to investigators in other disciplines.

Taxonomy and systematics are unquestionably important to concepts of microbial diversity, but they are treated here only as means to the goal of understanding the diversity of microbial function in nature. Therefore, in certain contexts, it is reasonable to discuss the diversity of specific microbial processes with limited scientific data on the exact number and names of microbes that are responsible for the processes at a particular time and place. The inability to identify and quantify particular microbial species involved in a given ecological process has long been recognized as a major impediment in microbial ecology and environmental microbiology, but the shortcomings are treated here as an opportunity for scientific advancement. The advancement will undoubtedly ameliorate the hindrance that methodological limitations have placed on research programs aiming to understand the contributions of microbial diversity to defined states of ecological and human health.

The book is organized in two major sections with chapters representing major themes within each section. Part I focuses on conceptual and methodological issues, whereas Part
II focuses on principles, applications, and opportunities for research and the advancement of knowledge. Chapter 1 introduces the theoretical and empirical difficulties entailed in defining a microbial "species" as a fundamental unit of microbial diversity, and on the methods for identifying varieties in microbial populations. Chapters 2 through 5 present critical analyses of the major techniques employed for investigating microbial diversity including microscopic, culture, molecular, and phylogenetic systematic methods.

Chapter 6 lays the foundation for integrating microbial diversity with Earth system science through the historical evidence for the influence of the origin of microbial life on the early Earth environment. The sojourn into environmental evolution places contemporary concerns about human impacts on the global ecosystem into the robust context of the coevolution of life and environment. The constant flow of novel and controversial theories about the geological roots of microbial life on Earth makes this topic also of great interest for astrobiology (e.g., see Gold, 1999). Chapters 7 and 8 focus on the relevance of microbial diversity to biogeochemical cycles. This is a well-researched area of microbial ecology, but rather than focusing on the activities of well-known microbial species or specific biochemical pathways, the approach used in these chapters focuses on the interconnectedness of microbial communities and their role in maintaining balanced biogeochemical pathways. In addition, the discussion deals with the consequences to microbial communities, of geochemical disequilibria attributed to human-dominated ecosystems. Chapters 9 and 10 focus on the relationship of microbial diversity to biotic interactions. Many of the commercial applications of microbial diversity fall within this topic area.

The axenic culture conditions that have been very useful in elucidating the characteristics of microorganisms are unfortunately not the state in which microorganisms exist in nature, therefore, it is clearly not appropriate to draw far-reaching conclusions about the driving forces of microbial speciation and diversity from axenic laboratory experiments. Advances in microcosm design have facilitated research on natural microbial communities, but it is difficult to reproduce how these communities behave under natural environmental conditions. As the progenitors of eukaryotic life forms, most microorganisms that have been studied engage in complex multifaceted interactions with plants, animals, and with other microorganisms. The inevitable human-value system prejudges these interactions as either beneficial such as in nitrogen fixation or detrimental such as in the case of pathogens, but there is no question that these biotic interactions and all their ramifications are essential for the sustainability of natural ecosystems. The approach used in these chapters does not underestimate the significance of the categorization of microbial biotic interactions, but the emphasis is on the importance of microbial diversity to such categorizations, and how human impacts on existing diversity may reinforce or modify the biotic interactions in consequential ways.

The final chapter deals with the relevance of microbial diversity to global environmental problems that have been exacerbated recently by inefficient industrial ecology, population growth and urbanization. In many ways, the recognition of dynamic environmental phenomena as intractable problems is rooted in impatience with, and poor understanding of, biogeochemical cycles, some of which are discussed in Part II. An optimistic view is that solutions to these global environmental “problems” may depend in part on better understanding and scientific management of microbial diversity for “correcting” the balance of chemical fluxes in various environmental compartments.

For students majoring in microbiology, this book will be useful for one of the quartet of core courses recommended by the American Society for Microbiology, namely "Introduction to Microbiology", "Microbial Physiology", "Microbial Genetics", and "Microbial Diversity" (Baker, 2001). The order in which this sequence of courses is taken should not adversely affect comprehension of the materials presented in this book, although it is recommended that a solid foundation in general microbiology should come first. The book is presented in a format that can also serve as an accessible resource for a graduate-level, one-semester course in departments where knowledge of applied microbiology is required to sustain specific research programs. The book is also designed for active researchers to reveal the current
state of knowledge, including conceptual inconsistencies and existing analytical gaps. All biological diversity can be traced back in time to prokaryotic diversity. In this sense, the Earth is a planet of prokaryotes, and the treatment of microbial diversity here leans heavily on prokaryotic forms and functions. Excellent treatments of eukaryotic microbial diversity already exist (notably Margulis et al., 2000). These texts and handbooks should be indispensable supplements to this book for a complete view of microbial diversity.

Special features of the book include:

• Extensive illustrations including charts, maps, graphs, and diagrams.
• Four-color plate inserts with high resolution images of microorganisms, maps, and satellite images.
• Text and image boxes presenting extended discussions of critical concepts and case studies, for those interested in a deeper exploration of the material.
• Challenging questions for further investigation in each chapter offer opportunities for direct field investigation.
• A list of suggested readings in each chapter and an extensive list of references at the end of the book provide up-to-date sources for further exploration.
• An accompanying CD-ROM containing the high resolution images and art used in the text, provided in JPEG format for classroom presentations.
• A dedicated website (www.blackwellpublishing.com/ogunseitan) for further consultation, access to special features, and updates.

Many people deserve plenty of gratitude for their unflinching support throughout the evolution of this book project. Without the encouragement of Nancy Whilton at Blackwell, this book could have remained indefinitely as an idea in my mind. Nathan Brown, Elizabeth Wald, and Rosie Hayden also at Blackwell, provided excellent feedback and professional support. Tessa Hanford, in Surrey, England, performed excellent copy editing for which I am very grateful. The quality of the book owes much to the critiques and guidance provided by several peer reviewers at various universities in the United States and Europe. The following reviewers (in alphabetical order) deserve particular gratitude: Mary Ann Burns at Penn State University; James Brown at North Carolina State University; Jocelyne DiRuggiero at the University of Maryland; Stjepko Golubic at Boston University; Lidija Halda-Alija at the University of Mississippi; Lynn Margulis at the University of Massachusetts, Amherst; James Prosser at the University of Aberdeen in Scotland; and Peter Sheridan at Idaho State University. By definition, a scientific book is a "work in progress," and I take full responsibility for any shortcomings that may remain in this edition. A sizable portion of the book was drafted, revised, and completed on my home computer, and without the steadfast support and understanding of Alison, Coryna, and Sofya, this would not have been possible. I thank the Macy Foundation and the administrative faculty of the Marine Biological Laboratory at Woods Hole, Massachusetts for making it possible for me to spend two glorious summers incubating the idea for this book in and around the laboratory at Cape Cod. The perspective of microbial diversity as a fundamental science of the Earth system matured in my mind during the interim period that I spent between these summers as a global environmental assessment fellow at Harvard University, and I am grateful to William Clark and colleagues for providing that opportunity. Finally, I thank my colleagues at the University of California, Irvine, and several investigators around the world who patiently shared the results of their research.

Oladele A. Ogunseitan