
A1 (a) This Monte Carlo study examines the 
sampling distribution of the average of 25 num-
bers drawn from a distribution with mean 2 and 
variance 9. The average of N numbers drawn 
randomly from a distribution with mean μ and 
variance σ  2 has a sampling distribution with 
mean  μ and variance σ  2/N.

 (b) Abar estimates the mean of this sampling 
distribution, so should be close to 2.

 (c) Avar estimates its variance, so should be 
close to 9/25 = 0.36.

A3 (a) This Monte Carlo study examines the sam-
pling distribution of the fraction of successes h 
in a sample of size 50 where the probability of 
success is 20%. When the true probability of 
success is p, for a sample of size N then h has a 
sampling distribution with mean p and variance 
p(1–p)/N.

 (b) hav should be an estimate of 0.2.
 (c) hvar should be an estimate of p(1–p)/N which 

here is (0.2)(0.8)/50 = 0.0032
 (d) wav estimates the mean of the sampling dis-

tribution of the estimated variance of h, and so 
should be approximately 0.0032.

A5 Create 44 observations from a normal distribu-
tion with mean 6 and variance 4. Calculate their 
average A and their median B. Repeat to obtain, 
say, 1000 As and 1000 Bs. Find the mean of the 
1000 A values and the mean of the 1000 B values 

and see which is closer to 6. Calculate the vari-
ance of the 1000 A values and the variance of 
the 1000 B values and see which is smaller.

A7 (i) Choose values for a and b, say 2 and 6 (be 
sure not to have zero fall between a and b because 
then an infinite value of 1/x2 would be possible 
and its distribution would not have a mean). (ii) 
Get the computer to generate 25 drawings (x val-
ues) from U(2,6). (If the computer can only draw 
from U(0,1), then multiply each of these values 
by 4 and add 2.) (iii) Use the data to calculate A’s 
estimate A* and B’s estimate B*. Save them. (iv) 
Repeat from (ii) 499 times, say, to get 500 A*s 
and 500 B*s. (v) Obtain the mean m of the distri-
bution of 1/x2 either algebraically (the integral 
from a to b of 1/(b–a)x2) or by averaging a very 
large number (10,000, say) of 1/x2 values. (vi) 
Estimate the bias of A* as the difference between 
the average of the 500 A*s and m. Estimate the 
variance of A* as the variance of the 500 A*s. 
Estimate the MSE of A* as the average of the 
500 values of (A* – m)2. Compute the estimates 
for B* in similar fashion and compare.

A9 The bias of β* is estimated as the average of the 
400 β *s minus β, the variance of which is the 
variance of β * divided by 400. Our estimate of 
this is 0.01/400. The relevant t statistic is thus 
0.04/(0.1/20) = 8 which exceeds the 5% critical 
value, so the null is rejected.

Suggested Answers to 
Odd-Numbered Questions

1
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2 Suggested Answers to Odd-Numbered Questions

A11 (a) The expected value of x  is μ, but the 
expected value of a nonlinear function of x  is 
not the nonlinear function of μ, except in large 
samples.

 (b) Use an estimate of the formula for the 
variance of a nonlinear function.

( ) ( )22 4 46
* * 3 9 2

27
V x V x x xθ ⎛ ⎞⎡ ⎤= = =⎜ ⎟⎣ ⎦ ⎝ ⎠

 (c) (i) Choose a value for μ, say 2, so that θ = 8. 
(ii) Generate 27 values of x drawn from N(2,6). 
(iii) Use the data to calculate θ* and V*(θ *). 
Save them. (iv) Repeat from (ii) to get 5000 
θ *s and 5000 V* (θ*)s. (v) Estimate the true 
variance of θ * by the variance of the 5000 θ *s 
and see how close the average of the 5000 
V*(θ *)s is to this value.

A13 (a) This process is estimating the variance of a 
random variable w by three different formulas 
differing only by their divisors. Since dividing 
by N–1 produces an unbiased estimate of this 
variance, the average of the 4000 a values 
should be closest to 4, the true variance of w.

 (b) Dividing by a larger number shrinks the 
variance estimate towards zero, making its 
variance smaller, so the variance of the c values 
should be smallest.

 (c) Step (viii) estimates the MSEs of the three 
estimators. Since dividing by N+1 produces the 
estimate with the smallest MSE, C should be 
the smallest.

A15 Set variables “stick” and “switch” equal to zero. 
*Set variable “switchguess” equal to four. Draw 
a number x from a distribution uniform between 
0 and 3. Set variable “door” equal to 1 if 0 ≤ x < 
1, equal to 2 if 1 ≤ x < 2, and equal to 3 if 2 ≤ x 
≤ 3. Draw a number y from a distribution uni-
form between zero and three. Set “doorguess” 
equal to one if 0 ≤ y < 1, equal to two if 1 ≤ y < 2, 
and equal to three if 2 ≤ y ≤ 3. If door = 1 and 
doorguess = 2 or 3, set switchguess = 1; if 
door = 2 and doorguess = 1 or 3, set switch-
guess = 2; if door = 3 and doorguess = 1 or 2, set 
switchguess = 3. If doorguess = door, add one to 
“stick” and if switchguess = door, add one to 
“switch.” Repeat from * until, say, a thousand 
x values have been drawn. For any original guess, 

sticking should work one-third of the time, but 
as is evident from the Monte Carlo structure, 
switching should work two-thirds of the time.

 B1 k = 3/4, found by setting the integral of kx(2–x) 
from 0 to 2 equal to one. E(x) = integral from 
0 to 2 of 3x2(2–x)/4 = 1. V(x) = Ex2 – (Ex)2 = 
1/5.

 B3 Try supply of 100. All units are sold and profit 
on each unit is $5, so expected profit is $500. 
Try supply of 200. All units are sold with a 
probability of 0.95, with profit of $1000. With 
probability 0.05, only 100 units are sold, with a 
profit $500 on the units sold but a loss of $1000 
on the units not sold for a net loss of $500. 
Expected profit is thus 0.95(1000) + 0.05(–500) = 
925. Try supply of 300. All units are sold with a 
probability of 0.85, with a profit of $1500; with 
probability 0.1 only 200 units are sold, with net 
profit of zero; and with probability 0.05 only 
100 units are sold, with a net loss of $1,500. 
Expected profit is thus 0.85(1500) + 0.1(0) + 
0.05(−1500) = 1200. For supply of 400 expected 
profit is 1100. That the supply of 300 is the 
supply that maximizes expected profit can be 
verified by calculating expected profit for sup-
plies of 299 and 301. The variance of profit 
if supply is 300 is calculated as 0.85(1500−
1200)2 + 0.1(−1200)2 + 0.05(−1500−1200)2 = 
585 000.

 B5 The probability of finding a minimum price of 
$2 is 1/8, namely the probability of checking 
three stores all of which have a price of $2. 
Expected price is thus 2 × (1/8) + 1 × (7/8) = 9/8.

 B7 (a) True. If α* is unbiased in small samples it is 
also unbiased in large samples.

 (b) False. Asy Var(α*) = (1/N) limN(4α/N + 
16α2/N2) = 4α/N

 (c) True, because α* is asymptotically unbi-
ased and the limit as N goes to infinity of its 
variance is zero.

 (d) Uncertain. Do not know about other esti-
mators, or if α* is MLE.

 B9 (a) Both have mean 5%. 1 has variance 302 × 6 
= 5400; 2 has variance 3 × 102 × 6 = 1800.

 (b) Variance of 2 becomes 102 × 6 + 102 (6 − 2 
× 3 + 6) = 1200.

 (c) False. In example of part (a) above, positive 
correlation will raise the variance of 2 above 
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Suggested Answers to Odd-Numbered Questions 3

1800, but it will not make it as large as 5400. 
Perfect correlation would make the variance 
5400.

 (d) False. Although it will have zero variance, 
it will have an expected return of 5%.

B11 (a) The expected value of x is (λ−10)/2; setting 
the mean of the data x  equal to the mean of the 
distribution we get λmm = 2x + 10.

 (b) V(λmm) = 4V(x)/N = (λ−10)2/3N.
B13 The formula for the variance of a nonlinear 

function of a random vector produces V(α*β*) = 
β*2V(α*) + α*2V(β*) + 2α*β*C(α*, β*) which 
when evaluated at estimated values yields 0.49, 
so the estimated standard error is 0.7.

B15 V(y) = [2V(x) + 2C(xt, xt−1)]/4. V(x) = σ 2/0.36, 
calculated by squaring both sides of the expres-
sion for xt, taking expected values and solving 
for V(x) = E(xt

2) = E(xt−1
2).

 C(xt, xt−1) = 0.8V(x), calculated by multiplying 
through the expression for xt by xt−1 and taking 
expected values. Using these values, V(y) = 
2.5 σ 2.

 C1 (a) Unbiased; it is as likely to be too steep as to 
be too flat, depending on the chosen observa-
tion. βi = yi/xi = β + εi/xi, so Eβi = β, where i 
denotes the chosen observation.

 (b) Variance is σ 2/(xi)2, the variance of εi/xi.
 (c) Choose the observation with the largest x 

value, to minimize variance.
 (d) No. As the sample size grows, the variance 

does not shrink to zero.
C3 (a) All three are unbiased. The variance of b*** 

is (8 + 4)/22 = 3.0, the smallest of the three, so it 
is preferred.

 (b) Any weighted average of the two unbiased 
estimates is unbiased, so one should choose 
that weighted average that minimizes variance. 
Choose the estimator aβ* + (1−a) b** whose 
variance, 8a2 + 4(1−a)2, is minimized for 
a = 1/3.

 (c) Pool the two data sets and run a single 
regression.

 C5 (a) b*** is unbiased, so choose a to minimize 
its variance: a = Vb**/(Vb*+Vb**).

 (b) When b* is a very precise estimator (Vb* 
small), more weight is given to b* in the 
weighted average, and similarly when b** is 
very precise more weight is given to b**. 

For the special case in which an estimator is 
perfect (zero variance), it is given 100% of the 
weighting.

 C7 (a) The average is unbiased with variance (VA + 
VB)/4. The first estimate’s variance, VA is smaller 
than this if VB is more than three times the size 
of VA.

 (b) No because in this case the unweighted 
average is not the optimal way of employing 
both pieces of information.

 D1 When MSE of zero (m2) exceeds MSE of the 
sample mean (σ 2/T).

 D3 MSE(β**) = a2Vβ* + (aβ−β)2 , minimized for 
a = β 2/(Vβ*+β 2). It is not used more often 
because it involves β which is unknown.

 E1 (a) The distribution of prices is a horizontal line 
of height one between one and two. The proba-
bility that p is the minimum price is the proba-
bility of obtaining price p in the first store and 
any price greater than p in the second store, plus 
the probability of obtaining price p in the sec-
ond store and any price greater than p in the first 
store. Both these probabilities are (2−p), so the 
distribution of the minimum price is 2(2−p) for 
1 ≤ p ≤ 2. Expected price is thus the integral 
from 1 to 2 of 2p(2−p) which is 4/3.

 (b) Have the computer produce two values 
from a U(1,2) distribution. Save the smaller 
value. Repeat this procedure to obtain a thou-
sand such numbers, say. Average these thousand 
numbers.

 F1 (a) Q is the average R2 from a regression restrict-
ing the w slope coefficient to be zero. By allow-
ing the computer to use w it will be more 
successful in minimizing the sum of squared 
errors and thus R2 will be higher, so S will be 
bigger than Q.

 (b) Adjusted R2 corrects for the addition of an 
irrelevant explanatory variable and so AQ and 
AS should be roughly equal.

 F3 (a) (i) Select values for α, β, δ, and σ 2 the vari-
ance of the error such that β is positive and δ is 
negative because of the context. (ii) Have the 
computer draw 25 errors from N(0, σ 2). (iii) 
Use these errors, the parameter values and the 
data on y and r to calculate 25 m observations. 
(iv) Regress m on a constant, y and r to get 
β*. Save it. (v) Regress m on a constant and y 

Apendix F.indd   3Apendix F.indd   3 12/20/2007   1:36:42 PM12/20/2007   1:36:42 PM



4 Suggested Answers to Odd-Numbered Questions

 to get β**. Save it. (vi) Repeat from (ii) 599 
times, say, to get 600 β*s and 600 β**s. (vii) 
Use the 600 β*s to estimate the bias, variance, 
and MSE of β*. Do the same for β** and 
compare.

 (b) Results expected are those associated with 
an incorrectly omitted (non-orthogonal) 
explanatory variable. β* should be unbiased, 
whereas β** should be biased (in this case 
upwards) but with a smaller variance than β*.

 (c) Positive correlation between y and r would 
cause the bias to be negative.

 (d) Bias would be zero.
F5 (a) Reduction in bias, variance, or MSE.
 (b) (i) Choose values for α0, α1, α2, α3, and σ 2, 

the variance of ε, making sure that α1 + α2 = 1. 
(ii) Choose sample size, say 35 and obtain 35 
values of x, q, and w, ensuring that they are not 
orthogonal. (iii) Get computer to generate 35 
errors from N(0, σ 2). (iv) Use these errors, in 
conjunction with the parameter values and the 
observations on the independent variables, to 
calculate 35 y values. (v) Regress y on a con-
stant, x, q, and w. Save α3*. (vi) Regress (y−q) 
on a constant, (x−q) and w to get the restricted 
least squares estimate α3**. Save it. (vii) Repeat 
from (iii) 499 times to obtain 500 α3* values 
and 500 α3** values. (viii) Use the 500 values 
of α3* to estimate its bias, variance, and MSE. 
Use the 500 values of α3** to estimate its bias, 
variance, and MSE. Compare.

 (c) Both should be unbiased. The variance and 
thus the MSE of α3** should be smaller.

 (d) α3** would be biased, its variance would 
still be smaller, but it is not possible to say 
which will have the smaller MSE.

G1 (a) Perfect multicollinearity between the con-
stant term and x. Estimation is not possible.

 (b) False. The CNLR model requires that the 
errors be distributed normally, not that the val-
ues of the independent variable come from a 
normal distribution.

 (c) True. This would imply that the variance of 
the error was not the same for all observations, 
violating one of the assumptions of the CLR 
model.

 (d) Uncertain. It depends on the criterion we 
adopt. A biased estimator, for example, may 
have a lower MSE.

G3  No. Its inclusion creates perfect multicollinear-
ity with the constant term, making estimation 
impossible.

G5  Write the relationship as E = α + βY + δF + ε 
with F = η + θY + u where ε and u are error 
terms. Substitution yields E = α + δη + (β+δθ)Y 
+ ε + δu. Regressing E on a constant and Y will 
produce a slope coefficient estimate which esti-
mates (β+δθ) rather than β. If δθ were negative 
this OLS estimate could be negative. This could 
occur, for example, if δ were positive (expendi-
ture is higher for a bigger family size, which 
seems reasonable) and θ were negative (family 
size is smaller when family income is larger, 
which is possible).

G7 Since the sample x values are all positive, the 
off-diagonal elements of the X'X matrix are 
positive and so the off-diagonal elements of the 
(X'X)−1 matrix are negative, implying a negative 
covariance between αOLS and βOLS. Thus if 
βOLS is an overestimate, it is more likely that 
αOLS is an underestimate. Draw an upward-
sloping line to represent the true relationship in 
the NE quadrant. Drawing in an estimating line 
with a higher slope, crossing the original line at 
the average of the y values, produces a lower 
intercept.

G9 (a) Consider the data measured as deviations 
from their means. Then δ OLS = Σsy/Σy2 = 
Σ(y−c)y/Σy2 = 1−Σcy/Σy2 = 1 − βOLS.

 (b) True. The residuals are the same for both 
relationships. s = δOLSy + εOLS implies c = 
βOLSy + εOLS.

 (c) False. SSE is the same, but the variation in 
S is less than the variation in C (assuming β > 
0.5), so SST differs.

G11 (a) All are unbiased. Variance of β* is 
σ 2/Σ(x– x )2, of β** is σ 2/Σx2, of β*** is Nσ 2/
(Σx)2, and of β**** is (σ 2/N2) Σ(1/x2).

 (b) All are linear and unbiased. Thus choose 
β** because it is the BLUE. 

G13 Both are easily seen to be unbiased. V(y–)= σ 2/N. 
and V(β ols x )=( x 2)V(β ols)=[(Σx)2/(NΣx2)](σ 2/N) 
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which is less than σ 2/N unless x is a constant, in 
which case it is equal to σ 2/N. Thus prefer 
β ols x .

G15 False. The 0.73 is one drawing from the sam-
pling distribution which is centered at the true 
value of the slope parameter with a standard 
error estimated by 0.2.

G17 Work backwards to discover that the original 
functional form is y = AeδtKαLβ so that the inter-
cept is an estimate of δ, the growth rate from 
technical change.

G19 (a) R2 and all parameter estimates are zero.
 (b) Intercept estimate zero, yhat coefficient 

estimate one, and R2 = 0.8.
 (c) Intercept estimate is the average y value, 

ehat coefficient estimate one, and R2 = 0.2.
H1 (a) OLS is unbiased so mean is 3. Variance is 

σ 2/Σ(x– x )2. Calculate numerator as Eε2 = 1/2, 
and denominator as 2 2 20x Nx− =∑ , so vari-
ance is 1/40. 

 (b) Estimator is unbiased because restriction is 
true, so mean is 3. 

 Variance is σ 2/Σx2 = 1/60.
H3 (a) Substitute R = P − D in the estimated equa-

tion to get 
 Dt = (1 − 0.891)Pt + 0.654 Dt−1 + (0.622 − 

0.654)Pt−1 with the same residual. The d statis-
tic is calculated from the residuals, so it should 
be the same. R2 is different because there is a 
different dependent variable and thus a differ-
ent SST.

 (b) The first standard error is the standard 
error of 1 minus the 0.891 estimate which is 
just the standard error of the 0.891 estimate, 
namely 0.027. Similarly, the second standard 
error is 0.092. The third standard error is 
the standard error of the 0.622 estimate 
minus the 0.654 estimate, estimation of which 
requires knowledge of their estimated 
covariance.

H5 (a) Guess is 2αOLS + 9βOLS + E(dice) = −6 + 18 + 
35 = 47.

 (b) Expected payoff is 60 − V(W) = 
60 − V(2αOLS + 9βOLS) − V(dice) = 60 − 
4V(αOLS) − 36C(αOLS, βOLS) − 81V(βOLS) − 
29.2 = 30.8 − 0.29σ 2 where σ 2 is V(ε).

 (c) SSE = 10,300 − 500 = 9,800, so s2 = 100, so 
estimated expected payoff is $1.80.

I1 (a) True. On the Ballentine, use one circle for 
y, one for x and the third for the time trend. Call 
the area used by the computer to estimate the 
coefficient on x the blue area. The overlap of 
the residuals from regressing y on time and 
from regressing x on time is the blue area.

 (b) False. Both numerator and denominator of 
R2 have the same area removed, changing its 
value.

I3  Suppose lny = α + βx was estimated in 1981. If 
the relationship is unchanged, then ln(y/1.2) = 
α + βx should hold for the 1985 data. This 
implies lny = α + ln1.2 + βx suggesting that if 
the data are not scaled to 1981 dollars the slope 
coefficient should be comparable to the 1981 
slope estimate, but the intercept estimate will not 
be comparable to the 1981 intercept estimate.

I5  w* = 100w − 1, so w = 1 +w*/100. The new 
relationship is y = 300 + 6w = 300 + 6(1 + 
w*/100) = (300 + 6) + (6/100)w*. This implies 
that the new slope coefficient estimate is 6/100 
with estimated standard error 0.011, and the 
new intercept coefficient estimate is 306 with 
estimated variance 25 + 1.1 + 2 × 0.5 = 27.1.

I7  New relationship is y = α + (β/3)(3x) + ε so 
intercept estimate remains unbiased but slope 
estimate is now an unbiased estimate of β/3.

I9  New relationship is 2.2(W/2.2) = −180 + 5.0 × 
(2.5H)/2.5 which becomes (W/2.2) = −180/2.2 + 
5.0 × (2.5H)/(2.5 × 2.2) so that the new inter-
cept is 81.8 with variance 4 × (2.2)−2 = 0.83, and 
the new slope is 0.91 with variance 1 × (2.5 × 
2.2)−2 = 0.033.

I11  The research assistant must have measured 
returns differently. In particular, 6% must have 
been measured as 0.06 rather than 6.0.

I13  New relationship is lnw = 1 + 2ed − 2 × 12 + 2 × 
12 + 0.5male + 0.2ed × male − 0.2 × 12 × male + 
0.2 × 12 × male + 3 × exp − 0.1exp2 which 
becomes

 lnw = 25 + 2(ed − 12) + 2.9male + 0.2(ed − 12) × 
male + 3 × exp − 0.1exp2.

J1 Uncertain. With the help of the extra regressor 
minimizing SSE cannot be less successful, so 
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SSE should remain the same or fall, suggesting 
that the estimate of σ 2 should remain the 
same or fall. If σ 2 is estimated with a correction 
for degrees of freedom, however, it is possible 
that SSE could change by such a small amount 
that the reduction in the denominator of the 
estimator could cause the estimate to 
increase.

J3 In general, the variance of b* is larger than that 
of b**, but in general the estimate of the vari-
ance of b** is biased upward, so no firm con-
clusion can be drawn concerning these relative 
magnitudes.

J5 Expected pay = 10 − V(αOLS) − 2C(αOLS, βOLS) − 
V(βOLS) = 10 − 15 + 12 − 3 = 4.

J7 Estimate is θ* the sum of the estimated slope 
coefficients β* of experience and γ* of years 
with current employer. To calculate a confi-
dence interval we need to estimate the variance 
of this estimate. This could be done by using the 
formula for the variance of the sum of two ran-
dom variables. An easier way would be to sub-
stitute β = θ − γ into the estimating equation to 
create a new regression with θ as one of the 
parameters. OLS estimation will produce θ* 
and its estimated variance.

J9 A little algebra shows that θ = x B(β̂ – β̂B) =
X
–

BΩ(β̂ 
W– β̂ 

B) which takes the form Ax where is 
A is a matrix of constants and x is a random 
variable with variance V(x) the sum of the vari-
ances of β̂ 

W and β̂ 
B. The required variance is 

then obtained using the formula AV(x)A′.
J11 We want to estimate λ = 400β + θ. Substitute 

θ = λ – 400β to get a new estimating equation 
P = α + β (sqft – 400FR) + γ beds + ηbaths + 
λFR + ε.

K1 False. Imposing any constraint, regardless of its 
truth, inhibits the minimization of SSE and thus 
lowers R2.

K3 To incorporate the restrictions we regress 
(y−2w) on (x−w) without an intercept so that 
βx* = Σ(y−2w)(x−w)/Σ(x−w)2 = 90/14 and 
βw* = 2−βx* = −68/14.

K5 (a) Regress y on a constant, (2x+w) and z.
 (b) Smaller, since minimization of SSE is 

inhibited.
 (c) Yes, since the restriction is true.

 (d) Smaller, since incorporating more informa-
tion into estimation produces more efficient 
estimates.

 (e) Answers to (b) and (d) are unchanged. 
Answer to (c) is that θ estimate is in general 
(i.e., when the regressors are correlated) now 
biased.

K7 (a) Substituting the relationship for βi we get

 
 (b) β0* = 4, β1* = 5, β2* = 4 and β3* = 1.
 (c) β* = Aδ* where A is a 4×3 matrix with first 

row (1,0,0), second row (1,1,1), third row 
(1,2,4), and fourth row (1,3,9). V(β*) = AVA'.

L1 X is a column of ones, of length N. X'X = N. 
(X'X)−1 = 1/N. X'y = Σy.

 βOLS = ybar. ( ) 1
X X X ε ε−′ ′ = . V(βOLS) = σ 2/N. 

That the OLS estimate of m is the sample aver-
age, and that its variance is σ 2/N are well known 
and could have been guessed.

L3 (a) The restricted OLS estimator is given by
 β* = βOLS + (X'X)−1R'[R(X'X)−1R']−1(r−RβOLS)
 Eβ* = β + (X'X)−1R'[R(X'X)−1R']−1(r−Rβ) so bias 

is (X'X)−1R'[R(X'X)−1R']−1(r−Rβ).
 (b) 
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 Thus V(βOLS) − V(β*) = σ 2(X'X)−1R'[R(X'X)−1

R']−1R}(X'X)−1 which is seen to be nnd.
 NOTE: A quicker way to get V(β*) is 

to write
 β* = (X'X)−1R'[R(X'X)−1R']−1r + {I − (X'X)−1R'[R

(X'X)−1R']−1R}βOLS = A + BβOLS

 so that V(β*) = BV(βOLS)B'.
L5 (a) Let an alternative linear unbiased estimator 

be [x0(X'X)−1X' + d]y. Unbiasedness implies that 
dX = 0. Then find the variance–covariance 
matrix of this alternative estimator and show 
that it must be greater than that of x0βOLS for d 
nonzero.

 (b) x0βOLS − y0 = x0(X'X)−1X'ε − ε0.
 (c) σ 2[1 + x0(X'X)−1x0’]
 (d) Minimize x0(X'X)−1x0' − 2λ (Rx0'−1) with 

respect to x0', where R is a row vector whose 
first element is unity and all other elements are 
zero. First partial is 2(X'X)−1x0' − 2λR' whence 
the required value of x0' is [R(X'X)R']−1X'XR'. 
The special nature of R makes [R(X'X)R']−1 
equal 1/N and X'XR' equal the first column of 
X'X which is the sums of all the regressors. 
Thus [R(X'X)R']−1X'XR' is the average of all the 
x values in the data.

L7 (a) Eθ* = Ea'(Xβ + ε) = a'Xβ so a'X must equal 
c' for unbiasedness.

 (b) V(θ*) = Ea'εε'a = σ 2a'a
 (c) Minimize σ 2a'a − 2λ'(X'a−c) with respect 

to a. First partial is 2σ 2a − 2Xλ. Solving for a 
we get X(X'X)−1c so that θ* = c'βOLS.

 (d) Pick c to be a vector with ith element unity 
and all other elements zero. This result shows 
that the ith element of βOLS is the BLUE of the 
ith element of β. Repeat this for all i to show 
that βOLS is the BLUE of β.

 (e) If c is a vector of values of the independent 
variables associated with the dependent vari-
able for which we wish a forecast, this result 
shows that c'βOLS is the BLUE forecast.

L9. EθSSE = θσ 2(N−K) so bias = σ 2[θ (N−K)−1]. 
V(θSSE) = 2θ 2σ 4(N−K). Thus MSE(θSSE) = 
σ 4[θ (N−K)−1]2 + 2θ 2σ 4(N−K).

 Minimizing with respect to θ gives 
1/(N−K+2).

M1 (a) Write X as [X1' X2']'. Then X'X = X1'X1 + 
X2'X2 and X'y = X1'y + X2'y so that

 β OLS = [X1' X1 + X2' X2]–1 [X1' y + X2'y]
 = [X1' X1 + X2' X2]–1 [X1' X1 β1 OLS + X2'X2 β2 OLS]
 (b) The weight for β1

OLS is the ratio of the 
sum of the x squares for the first data set to the 
sum of the x squares for both data sets. This 
makes sense because the bigger the sum of 
x squares for a data set, the more precise is 
its estimate, so the bigger weight it should 
have.

M3 Use pooled formula from M1(a) above, calcu-
lating (X1'X1)−1, for example, from the variances 
and covariances of A's regression, divided by 
A's estimated error variance. This produces 
pooled estimates of α and β of 126/33 and 
96/33, respectively.

N1 It is a solution in the sense that it may lower the 
MSE of other coefficient estimates. The bias 
introduced by dropping the variable could be 
more than offset (in terms of MSE) by the 
reduction in variance.

N3 False. t statistics may be small, but this 
smallness reflects accurately the lack of preci-
sion with which coefficients are estimated. 
Inference is not biased. Although variances 
get bigger, estimates of these variances get 
bigger as well, keeping variance estimates 
unbiased.

N5 False. The explanatory variables could 
together do a good job of explaining variation 
in the dependent variable but because of 
collinearity each individually has a low t 
statistic.

N7 Questionable proposal because although it 
reduces variance, it introduces bias in the 
estimate of β1 by giving x1 credit for all 
variation in y that matches joint variation 
in x1 and x2. Note that the β2 estimate is 
unaffected. The Ballentine exposits this 
neatly.
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N9 Problem is multicollinearity, probably between 
the two price indices, and possibly between YD 
and POP. Address the former by replacing the 
price indices by their ratio, something that 
makes better economic sense. Address the latter 
by dropping POP; there is no good theoretical 
reason for its inclusion, since the consumption 
data are in per capita terms.

N11 (a) Σxy/(Σx2 + k).
 (b) Σx2/(Σx2 + k) = 1/(1 + k/Σx2).
 (c) Optimal shrinking factor is that minimizing 

MSE = β 2(1−θ)2 + θ 2σ 2/Σx2. This is minimized 
for θ = β 2/(β 2 + σ 2/Σx2) implying a value for k 
of σ 2/β2.

 (d) Neither σ 2 nor β 2 are known.
N13 (a) a'βOLS = λ'X'X(X'X)−1X'y = λ'X'y which can 

be calculated.
 (b) Eλ'X'y = Eλ'X'(Xβ + ε) = λ'X'Xβ = a'β. 

V(λ'X'y) = Eλ'X'εε'Xλ = σ 2λ'X'Xλ.
O1 (a) The intercepts for the males and the females, 

13 and 10, respectively, will not change. Call 
the new intercept a and the new dummy vari-
able slope b. Then for males the intercept in the 
new specification is a + 2b = 13 and for females 
is a + b = 10. Solving this for a and b we get 
a = 7 and b = 3, implying the new equation y = 
7 + 2x + 3D.

 (b) For males we have a + b = 13 and for 
females we have a − b = 10. Solving this we get 
y = 11.5 + 2x + 1.5D.

O3 (a) To avoid perfect multicollinearity.
 (b) No. Need to test the dummy coefficients all 

equal to one another, not all equal to zero. 
Further, this should be done using an F test. 
Restricted SSE from regression with intercept 
and no dummies. Unrestricted SSE as described 
in question. Numerator df = number of regions 
minus one. Denominator df = sample size minus 
number of regressors minus number of regions.

O5 Nothing. When expressed in raw data instead of 
logarithms, the dummy enters multiplicatively, 
ensuring that its influence is commensurate 
with the size of the economy.

O7 (a) No intercept difference between southern 
males and females.

 (b) No intercept difference between northern 
males and females.

 (c) β2 + β4 = 0.

 (d) The way in which dummy variables are 
defined affects the way in which hypotheses 
are tested.

O9 (a) ∂lny/∂K = β = (1/y)∂y/∂K
 (b) For males y = eαeβKeδ and for females y = 

eαeβK so the percentage change in going from a 
female to a male is 100(eαeβKeδ − eαeβK)/eαeβK = 
100(eδ−1)

 (c) It is a nonlinear function of δOLS and so its 
expected value is not equal to the nonlinear 
function of the expected value.

 (d) If ε is distributed normally, then δOLS is dis-
tributed normally with mean δ and variance 
V(δOLS). Thus exp(δOLS) is distributed log 
normally with mean exp[δ + 0.5V(δOLS)]. 
Thus exp[δOLS − 0.5V(δOLS)] is distributed with 
mean eδ. This suggests estimating 100(eδ−1) by 
100{exp[δOLS − 0.5V*(δOLS)] − 1} where the * 
indicates an estimate.

 (e) Expand exp(δOLS) in a Taylor series around 
EδOLS = δ to get exp(δOLS) = eδ + (δOLS − δ)eδ + 
(1/2)(δOLS − δ)2eδ + … .

 Dropping higher-order terms and taking expec-
tations we get that Eexp(δOLS) is approximately 
eδ [1 + (1/2)V(δOLS)] suggesting that 100(eδ−1) 
be estimated by 100{exp(δOLS) [1 + (1/2)V*
(δOLS)]−1 − 1}.

O11 It avoids the multicollinearity and improves R2, 
but is not a good idea. The coefficient on the 
treatment dummy will measure the difference 
between the base person in the treatment group 
and the base person in the control group. This is 
a case in which you need to write out the speci-
fication for each individual to deduce the cor-
rect interpretation of the dummy coefficient.

O13 The intercepts are 4, 2.5, 6, and 1, for quarters 1 
through 4, respectively. If the new regression 
has the first quarter as its base, the new regres-
sion’s intercept has to be 4 to keep the first 
quarter intercept unchanged (i.e., it needs to 
increase by 3, the coefficient of D1 which will 
disappear with the change in base). Because the 
new regression’s intercept is bigger by 3, all the 
other slope coefficients need to decrease by 3 to 
keep their respective intercepts unchanged. The 
D2 coefficient becomes –1.5, the D3 coefficient 
becomes 2, and the D4 coefficient becomes –3. 
The D3 coefficient is the old D3 coefficient 
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(5) less the old D1 coefficient (3), so its vari-
ance will be the variance of the difference 
between these two coefficient estimates, namely 
the variance of the estimate 5 plus the variance 
of the estimate 3 minus twice their covariance.

 A more general way of solving here is to write 
the new specification as y = a + 2x + bD2 + cD3 
+ dD4. The intercepts will not change, so quar-
ter 1 intercept will be a = 4, quarter 2 intercept 
will be a + b = 2.5, quarter 3 intercept will be a 
+ c = 6, and quarter 4 intercept will be a + d = 
1. The new D3 coefficient is c = 6 – a = 1 + 5 – 
(1 + 3) = 5 – 3, so its variance is the variance of 
(5 – 3).

O15 (a) Savings of a person in the control group 
before the experiment.

 (b) (δ – γ) – (α + β – α) = θ = δ – γ – β.
 (c) 

       
P1 (a) Intercept estimate is the estimate of y for 

the females, and so must be 2, the average 
of the females. The sum of the intercept and 
slope estimates is the estimate of y for the 
males, and so must be 3, the average value 
of the males; this implies that the slope 
estimate is 1.

 (b) Numerator is 6 + 2 − 3 = 5. Use 10(X'X)−1 to 
get variances and covariances, where X'X has 
50 and 20 on the diagonal and 20 on the off-
diagonal. Denominator is square root of 9 × 
2/6 + 4 × 5/6 − 12 × 2/6 = 14/6.

 (c) As a standard normal; its square is 
distributed as a chi-square with 1 degree of 
freedom.

P3 The new regression results are y = 10 + 3x − 
6DM, so the numerator of the t statistic is −6. 
This −6 is obtained as 4 − 10, so its variance is 
V(4) + V(10) − 2C(4,10) = 1 + 4 − 1 = 4. The t 
statistic is −3.

P5 Set the thirty-fourth observation on lnw equal to 
zero; the negative of the slope coefficient on the 
observation-specific dummy is the forecast.

Q1 Set up d = α + βy + δp + θ1Dsp + θ2Dsu + θ3Dfa 
where the notation is obvious – the base cate-
gory is winter. Perform an F test to test θ1 = θ2= 
θ3. Obtain unrestricted SSE from regressing d 
on a constant, y, p, and the three dummies. 
Denominator degrees of freedom N − K = 
48−6 = 42. Obtain restricted SSE by regressing 
d on a constant, y, p, and a dummy that is zero 
in winter and otherwise one (i.e., Dsp + Dsu + 
Dfa). Numerator degrees of freedom, the num-
ber of restrictions, are two. Slightly easier to set 
up with one of spring, summer, or fall as the 
base category.

Q3 Whether the coefficients’ differences are signif-
icant can be tested by testing whether the obser-
vation in question is consistent with the 
relationship as estimated by using the other 
observations. Use a Chow test in which this sin-
gle observation is the second data set. Easiest is 
to use an observation-specific dummy.

Q5 (a) Test λ significantly greater than zero using a 
one-sided t test.

 (b) (i) −δ (ii) −θ.
 (c) Test δ = θ using either a t test or an F test. 

Restricted SSE for F test comes from regress-
ing y on a constant, Ed, IQ, Ex, Sex, and a 
dummy with value one if French only or if 
English only, zero if bilingual (DF + DE).

 (d) Test λ + δ = θ using either a t or an F 
test. Restricted SSE for F test comes from 
regressing y on a constant, Ed, IQ, Ex, a 
dummy with value two if a English-only male, 
one for other males and zero for all others 
(Sex + DE), and a dummy with value one if 
French only or if English only, zero if bilingual 
(DF + DE).

 (e) Include a variable ExSex that takes the 
value zero for females and the value of Ex 
for males. Test its coefficient against zero with 
a t test.

Q7 Write A’s regression results as G = α + βY + 
δ1DM + δ2DO + δ3DW and B’s as 

 G = ϕY + λ1DM + λ2DO + λ3DW + λ4DQ.
 (a) (i) δ2  (ii) λ4 − λ2. They should be the same 

because changing dummy definitions has no 
impact on estimates of fundamental parameters.

 (b) (i) Do a t test for δ2 = 0. (ii) Do a t test for 
λ4= λ2 or an F test in which the restricted SSE 
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is obtained by regressing G on y, DM, DW, and 
a dummy with value one for observations in 
either Ontario and Quebec and zero elsewhere 
(DO + DQ).

 (c) Run the regression G = α + βY + δ1DM + 
δ3DW + θYDQ, where YDQ is a variable taking 
value Y for all Quebec observations and zero 
elsewhere.

 (d) Get restricted SSE from regression of part 
(c). Get SSE unrestricted by running four 
regressions, one for each region, adding 
together the SSEs. Degrees of freedom for this 
are K = 8. Number of restrictions J = 3.

Q9 Restricted SSE from regression given in the 
question. Unrestricted by replacing CAT with 
four dummies for categories 2 through 5. 
Numerator df = difference between number of 
parameters estimated in unrestricted versus 
restricted regressions, in this case 8 − 5 = 3. 
Denominator df = N − 8.

R1 (a) Write the relationship as y = α + βx + θD + 
δDX where the dummy D takes the value one 
for x values greater than x* and zero otherwise, 
and the variable DX takes the value x for x val-
ues greater than x* and zero otherwise. This 
produces two different lines for x values above 
and below x*, but does not guarantee that these 
lines intersect at x = x*. For this to be true, α + 
βx* = θ + δx*.

 Building this restriction into the estimating 
equation above we get y = θ + δx* − βx* + 
βx + θD + δDX = θ (1+ D) + β (x − x*) + δ 
(x* + DX).

 (b) Testing continuity means testing whether 
or not the two lines intersect at x* (so there is 
no jump at that point), or that  α + βx* = θ + 
δx*. Easiest way to do this is to use an F test 
with the unrestricted regression that given at 
the beginning of part (a) above, and the 
restricted regression that given at the end of 
part (a).

R3 (a) Need a period-specific dummy for 1966, for 
1967, for 1968, for 1969, and a dummy with 
value zero before 1970, value one otherwise. 
Estimating eight parameters.

 (b) Five: α, β, and the three slopes of the cubic; 
the cubic intercept is just α.

 (c) Write the intercept during the transition 
period as int(1965+i) = α + α 1i + α 2i

2 + α 3i
3, 

where i is the number of years since 1965, run-
ning from zero (for 1965 and earlier) to 5 (for 
1970 and later). Write out the equation for each 
time period in the data and substitute this 
expression into this list of observations. It will 
be seen that we should regress on an intercept, 
x and the following three special variables: 
variable w1 with value zero before 1966, value 
1 in 1966, value 2 in 1967, value 3 in 1968, 
value 4 in 1969, and value 5 otherwise; vari-
able w2 with values the squares of the w1 val-
ues; and variable w3 with values the cubes of 
the w1 values.

S1 There is some truth in this if the distribution of 
the errors is not known, but if this distribution is 
known, building that knowledge into the esti-
mation procedure by using MLE creates better 
estimates.

S3 Let x be the unknown IQ. The score of 140 has 
resulted from drawing x from N(100, 400), in 
conjunction with drawing a testing error 140−x 
from N(0, 40). The likelihood is (2π)−1/2

(1/20)exp[−(1/800)(x−100)2](2π)−1/2(1/√40) 
exp[−(1/80)(140−x)2]. Maximizing yields xMLE = 
136.4. It is more likely that the score of 140 was 
obtained by a person with a lower IQ who had 
a lucky test, than by someone with an actual IQ 
of 140.

S5 (a) βOLS is BLUE, but αOLS is biased because 
Eε = λ/(λ−1) ≠ 0.

 (b) Yes. If λ is known, Eε is known, allowing 
the bias in αOLS to be removed.

 (c) Yes. If λ is known, σ 2 = V(ε) is known 
(equal to λ/[(λ−2)(λ−1)2]), implying that it 
need not be estimated in the formula 
σ 2(X'X)−1.

 (d) Use MLE to estimate all three parameters 
simultaneously.

S7 (a) The probability that x comes from group i is 
(2π)−K/2(detΣ)−1/2exp[−(1/2)(x−mi)'Σ

−1(x−mi)].
 It is more likely to have come from group 1 if 

exp[−(1/2)(x−m 1) 'Σ−1(x−m 1)] /exp[−(1/2)
(x−m2)' Σ−1(x−m2)] > 1

 manipulation of which produces the desired 
result.
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 (b) The probability above for x coming 
from group i must be multiplied by its prior 
probability before proceeding. Further, if the 
cost of misclassifying a group 1 observation is, 
say, 10 times the cost of misclassifying a group 
2 observation, then one would only classify 
into group 2 if the probability of it being from 
group 2 was at least 10 times the probability of 
it coming from group 1, to ensure that the classi-
fication decision minimizes expected cost. This 
implies that the numerator of the final expres-
sion in part (a) should be multiplied by 10.

S9 Let x = g(w) where g is an unknown function. 
Since the density of w is f(w) = 1, f(x) = |dw/dx| 
× 1 which we want to be 3e−3x. From this, w = 
e−3x and so values of x can be created by drawing 
a w from U(0,1) and calculating x = −(lnw)/3.

S11 (a) To create an unbiased estimate.
 (b) Dividing by N−1 creates a new estimate 

that can be written as [N/(N−1)] times the old 
estimate. So its variance is [N/(N−1)]2 times the 
variance of the old estimate.

T1 (a) Likelihood is (2πσ 2)−N/2exp[−(1/2σ 2) 
Σ(x−m)2 and log-likelihood is −(N/2)ln2π − 
(N/2)lnσ 2 − (1/2σ 2) Σ(x−m)2. First partial with 
respect to m is (1/σ 2) Σ(x−m) which when set 
equal to zero yields mMLE = x .

 (b) Second partial wrt m is −(1/σ 2)N. Second 
cross-partial (wrt σ 2) is −(1/σ 4) Σ(x−m), the 
expected value of which is zero, so the Cramer–
Rao lower bound is just the negative of the 
inverse of the expected value of −(1/σ 2)N, 
which is σ 2/N.

T3 Likelihood is kN exp(−kΣx) and log-likelihood 
is Nlnk − kΣx. The first partial is N/k − Σx which 
when set equal to zero yields kMLE = N/Σx. 
Second partial is −N/k2 so the Cramer–Rao 
lower bound is k2/N.

T5 (a) The MLE formula is given in question T4 
which for this case is 1.92.

 (b) From question T4 the variance of the MLE 
is α2/N the square root of which in this case is 
estimated as 0.19. The t statistic is 0.08/0.19 = 
0.42 so the null is accepted for reasonable sig-
nificance levels.

T7 (a) Likelihood is λΣxe−NλΠ(x!)−1 and the log-
likelihood is Σxlnλ − Nλ − Σln(x!). First partial 

is Σx/λ − N which when set equal to zero yields 
MLE xλ = .

 (b) Second partial is −Σx/λ2 Expected value of 
x is λ, so Cramer–Rao lower bound is λ/N.

T9 (a) m = λ/(λ+1) and V(x) = λ/(λ+2)( λ+1)2.
 (b) λMLE = −N/Σlnx.
 (c) mMLE = λMLE/(λMLE+1) = N/(N−Σlnx).
 (d) CRLB = λ2/N. 
 (e) Asy. Var mMLE = {∂[λMLE/(λMLE+1)]/

∂λMLE}2V(λMLE) = λ2/N(λ+1)4.
 (f) Sample mean is unbiased so E x  = m, and

its variance is given by a well-known formula,
σ 2/N, which in this case is λ/N(λ+2)(λ+1)2.

 (g) mMLE should have the smaller asy. var. 
because it is the MLE. This can be verified by 
showing that the ratio of V( x ) to V(mMLE) 
exceeds one.

 (h) The sample mean is BLUE and so in small 
samples is attractive. In sufficiently large sam-
ples, however, the properties of the MLE are 
superior.

T11 (a) prob(yes) = prob(blue) × prob(cheat) + 
prob(green) which can be solved for prob(cheat) 
as a function of the data which provides 
prob(yes) and the other two probabilities which 
are known.

 (b) Use maximum likelihood to estimate. 
Write prob(cheat) as a function of income and 
a dummy for gender and insert in the expres-
sion above for prob(yes). The likelihood func-
tion is formed using this probability expression 
for each yes answer and one minus this expres-
sion for each no answer.

T13  −(N/2)ln2π − (N/2)lnσ 2 − (2σ 2)−1Σ (yδ − α + 
βx)2 + Nlnδ + (δ−1) Σlny. The last two terms 
come from the Jacobian.

T15 (a) EP = ∫PθPe−θ/P! = θ∫θP−1e−θ/(P−1)! = θ.
 (b) ΣP(α+βx) − Σexp (α+βx) − Σln(P!).
U1 The informed prior will not be centered over the 

true value of β (except by accident), so β* will be 
biased; as the sample size grows, however, the 
influence of the prior falls, so β* is consistent. 
Because it incorporates additional information, 
the variance of β* is smaller than that of βOLS.

U3 Expected loss of β* is the integral from zero to 
β* of 4(β*−β)β plus the integral from β* to one 
of 2(β−β*)β. This turns out to be β*3 − β* + 2/3. 
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Minimizing this with respect to β* yields the 
point estimate 1/√3.

U5 (a) The t statistic for testing the null β =1 is 1.28 
which is less than the one-sided 5% critical 
value 1.65 so the null would be accepted and 
the venture not undertaken.

 (b) A normal distribution with mean 2.28 and 
variance 1.

 (c) Area under posterior to right of 1.0, divided 
by remaining area = 0.9/0.1 = 9.

 (d) The Bayesian will decide not to undertake 
the project if 1800 × prob(β≤1) > Q × prob(β≥1) 
or if Q < 1800 × prob(β≤1)/prob(β≥1) = 200.

U7  Find the area under the predictive distribution 
for yT+1 below the value yT.

U9 Posterior is proportional to θ 0.5(1−θ)3.5

θ 5(1−θ)95 = θ 5.5(1−θ)98.5 which is a beta distribu-
tion with mean 6.5/(6.5+99.5) = 0.061. Because 
of the quadratic loss function, this is the 
Bayesian point estimate.

U11 The posterior distribution of the forecast is 
normal with mean 6.4 and standard error 0.1. 
The Bayesian probability of a fall in the interest 
rate is the probability that it will be below 6.3, 
which is the probability of a normal variable 
being one standard deviation or more below its 
mean. This is found from the normal tables 
to be about 16%. The expected payoff to the 
hedging strategy is .16 × 20 000 − .84 × 5000 = 
−1000; she should invest in the guaranteed 
investment certificate.

U13 Expected payoff is the probability of a number 
being correct times that number. Guessing 52 
maximizes this expected payoff (52 × 0.0685 = 
3.562).

V1 (a) Mean = 0.8η; variance = 0.026η2.
 (b) Write g2 as proportional to (η/2)0.5[1− 

(η/2)]0.5. Then η/2 has mean one-half, implying 
that η has mean one. Variance of η/2 is 1/16 so 
variance of η is 1/4.

 (c) The prior on the returns to scale parameter 
is centered at constant returns to scale. When 
all inputs are increased by the same percentage 
amount, what fraction of the output is 
attributable to the increased labor input? 
The prior on α is centered such that this frac-
tion is 0.8.

V3 (a) Uniform prior for lnσ  implies that σ  has 
prior proportional to dlnσ /dσ  = 1/σ .

 (b) Uniform prior for ln[θ/(1−θ)] implies that θ 
has prior proportional to dln[θ/(1−θ)]/dθ = 
[θ (1−θ)]−1.

 (c) Uniform prior for ln[ρ2/(1 − ρ2)] implies 
that ρ has prior proportional to absolute value 
of dln[ρ2/(1 − ρ2)]/dρ, or [ρ (1 − ρ2)]−1.

V5 ρ2 with prior (ρ2)−0.5(1 − ρ2)−0.5 implies that ρ 
has prior proportional to absolute value of 
(ρ2)−0.5(1 − ρ2)−0.5 dρ2/dρ, or (1 − ρ2)−0.5. Note 
that this differs from the answer to 3(c) above.

W1 This Monte Carlo procedure creates 5000 t val-
ues for testing the true null that bz = 4. The 
4750th value should cut off the upper 5% of the 
t distribution with 17 df, so from the t tables it 
should be 1.74.

W3 This Monte Carlo procedure calculates 2000 F 
values with 3 and 3 degrees of freedom. The 
20th value should cut off the lower 1%. This 
can be found as the inverse of the tabulated F 
value that cuts off the highest 1%. This is the 
inverse of 29.46 = 0.034.

W5 (a) (i) choose parameter values, say θ = 2, 
δ = −.2 and σ 2 = 6, ensuring that β = 1; (ii) set 
ctr = 0; (iii) draw 25 ε values from N(0,6); 
(iv) create 25 m values as 2 + y − 0.2r + ε; (v) 
regress m on y and calculate the t statistic for 
testing β = 1, namely t = (bols-1)/sb where sb is 
the standard error of bols; (vi) add one to ctr if 
t > 1.714; (vii) repeat from (iii) to produce 4000 
t values; (viii) divide ctr by 4000 to produce an 
estimate of the type I error.

 (b) By omitting a relevant, correlated explana-
tory variable, bols is biased, in this case upwards 
since both δ and the correlation are negative. 
This should cause the t values to be biased 
upward, making the type I error exceed 5%.

W7 (a) See if 4 is unusual relative to the 1000 z 
slope estimates, say, in the 2.5% tails.

 (b) In the bootstrapping procedure calculate 
the t statistic for testing the z slope equal to 5, 
to obtain 1000 t values. Then see if the t value 
calculated from the original regression is 
unusual relative to these 1000 t values.

W9 (i) Specify regression model, say y = α + βx + 
δw + ε and choose values for α, β, and σ 2, 
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the variance of ε. Set δ = 0. (ii) Set sample size = 
23, say. Select 23 values for x and w. (iii) Get 
computer to generate 23 errors from N(0, σ 2) 
and use these to calculate the 23 corresponding 
y values. (iv) Regress y on a constant, x and w. 
Save the t statistic on the w coefficient estimate. 
(v) Repeat from (iii) until you get 10 000 t sta-
tistic values, say. (vi) Order these t values from 
smallest to largest. (viii) Check that the values 
from the t table for degrees of freedom 20 are 
matched by the appropriate values in your set of 
10 000. For example, from the t table the value 
2.086 is such that it cuts off the upper 5% tail, 
so the value 9500 in your list of t values should 
be very close to 2.086.

W11 The 2000 numbers you have calculated should 
be distributed as a chi-square with 1 degree of 
freedom. Value 1900 should cut off the upper 
5% tail. From the chi-square table this critical 
value is 3.84.

W13 (a) (i) Choose sample size 60, 60 x values, and 
parameter values α = 2 and β = 1, ensuring 
thereby that the null is true, required for calcu-
lation of the type I error. (ii) Set ctr = 0. (iii) 
Draw 60 ε values from a distribution uniform 
between −1 and 1. (iv) Calculate 60 y values as 
2 + x + ε. (v) Regress y on x, compute the t sta-
tistic t* for testing β = 1. (vi) Add one to ctr if t* 
exceeds the 5% critical value in absolute value. 
(vii) Repeat from (iii) to obtain 800 t* values. 
(viii) Estimate the type I error as d* = ctr/800.

 (b) The type I error estimate d* is a sample 
proportion whose standard error under the null 
hypothesis is se* = square root of d(1−d)/800 
where in this case d = 0.05. To test if the type I 
error is different from 5%, calculate the abso-
lute value of (d*−0.05)/se* and compare to the 
1% critical value from the normal distribution.

X1 Your best guess of the distribution of a sample 
average is the mean and variance associated 
with your first sample. Consequently, you 
should conceptualize the average of the second 
sample as being drawn out of this distribution. 
Any average equal to, higher than, or slightly 
smaller than the mean of this distribution will 
cause the null to be rejected, so your best guess 
should be slightly over 50%.

X3 No. Should pool the data. If assume s2 is same 
for both samples, then pooled t statistic is 2.8.

X5  With such a large sample it is not surprising that 
variables are statistically significant (the too-
large sample size problem). The low R2 may 
result from the fact that the variance of the error 
term is quite high – it is not uncommon in cross-
sectional data for the error term to be playing a 
dominant role.

X7 Uncertain. If the null hypothesis is true, the t 
test statistic should continue to take values 
obtained conceptually from a t distribution. But 
if the null hypothesis is false, it should become 
very large in absolute value.

X9 When testing a set of linear restrictions the high 
value of the F statistic arises from violation in 
either positive or negative directions and so is a 
two-sided test, albeit one with only one critical 
value. When testing equivalence of variances, 
however, as in the Goldfeld–Quandt test, it can 
be constructed as either one-sided, to test one 
variance different from the other in a specific 
direction, or two-sided, without specifying a 
specific alternative. In the latter case the two 
critical values are inverses of one another.

X11 Type I error stays at its chosen level, by tradi-
tion often chosen to be 5%; type II error shrinks. 
So as more and more information becomes 
available the traditional methodology devotes it 
entirely to shrinking the type II error.

Y1 False. If σ 2 becomes larger, the variance of βOLS 
becomes larger, which makes it more difficult 
to reject the null hypothesis – power falls.

Y3 Size = type I error = .5/5 = 10%; power = 
15.5/20 = 77.5%.

Y5 (a) The variance of the sample mean here is 
256/64, so its standard deviation is 2. When the 
true mean is 40, the probability of a sample 
mean greater than 43 is the probability of a z 
value greater than (43−41)/2 = 1.5 which is 
6.7%, the probability of a type I error.

 (b) When the true mean is 41, the probability 
of a sample mean greater than 43 is the proba-
bility of a z value greater than (43−41)/2 = 1.0 
which is 16%, so power is 16%. When the true 
mean is 43, 45, and 47, power is 50%, 84%, 
and 97.7%, respectively.
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Z1 Ridiculous; the OLS residuals sum to zero, so 
the test will always accept the null.

Z3 (a) The first equation is a restricted version 
of the second, where the restriction is that 
β3 = −β2. Consequently, the unrestricted 
equation, the second equation, will have the 
higher R2.

 (b) Prefer α2* since it incorporates the true 
restriction – it is unbiased and has a smaller 
variance than the others.

 (c) Numerator of the t test is β*3 + β*2. 
Denominator is the square root of the sum of 
their estimated variances plus twice their esti-
mated covariance.

 (d) Restricted SSE from first regression, unre-
stricted SSE from second regression, number 
of restrictions is one, and other degree of free-
dom is N − 4.

Z5  Elasticity is β1 + 2β2lnQ. For this to be unity, we 
must have β1 = 1 and β2 = 0. Use F test with 
unrestricted SSE from original regression, 
restricted SSE from regression of lnC − lnQ on 
a constant, numerator degrees of freedom equal 
2 (the number of restrictions), and denominator 
degrees of freedom N − 3.

Z7  Estimate lny = λ + αlnL + βlnK + θL + δK and 
test θ = δ = 0.

Z9  Unrestricted SSE from original regression. 
Restricted SSE from regression that results 
from substituting for each βi the expression 
involving the δi and grouping on the basis of the 
δi. Since the number of coefficients directly 
estimated has been reduced by two, there are 
two restrictions implicit in this structure. The 
other df is N − 6.

Z11  Specify y = α + βx + θw + α1D1 + α2D2 + 
β1D1x + β2D2x + θ1D1w + θ2D2w + ε where 
D1 is a dummy equal to one in the first period, 
zero otherwise, and D2 is a dummy equal to 
zero in the second period, zero otherwise, and 
then test β1 = θ1 = β2 = θ2 = 0. Numerator F df 
is 4; denominator df is N − 9.

Z13 RESET: Obtain the predicted values from the 
original regression and form a new variable 
c2 by squaring them and a new variable c3 by 
cubing them. Rerun the regression adding c2 
and c3 as extra explanatory variables and 

test their coefficients jointly against zero. 
Rainbow: Create observation-specific dummies 
for the three observations with the highest y val-
ues and for the three observations with the low-
est y values. Rerun the regression with these six 
dummies as extra explanatory variables and test 
their coefficients jointly against zero.

Z15 Estimate with a Box–Cox transformation on x 
to get the unrestricted maximized log-likeli-
hood. Run the first regression to get the restricted 
maximized log-likelihood for the null of equa-
tion (1). Use an LR test to test the Box–Cox 
coefficient λ equal to zero. Run the second 
regression to get the restricted maximized log-
likelihood for the null of equation (2). Use an 
LR test to test λ equal to unity. Both specifica-
tions could be accepted, both rejected, or one 
accepted and the other rejected.

AA1 SSE for first regression is 0.605 × (39−5) = 
20.54. For second and third regressions SSE is 
25.22 and 57.87, respectively. ΔSSE = 12.11. 
Number of restrictions is 5. F statistic is 
(12.11/5)/(45.75/66) = 3.49, greater than the 
5% critical value of 2.37, so the null that the 
parameters are the same is rejected.

AA3 (a) F = ((130–100)/2)/(100/(24−4)) = 3.
 (b) F = ((130−80)/4)/(80/(24−6)) = 2.81.
 (c) (i) Choose values for α, β for the first 

period, and different values for the second 
period. Choose a common value for σ 2. (ii) 
Select 24 observations on x and set counters m 
and n equal to zero. (iii) Get the computer to 
generate 24 errors from N(0, σ 2) and calculate 
the corresponding 24 y values. (iv) Perform the 
first Chow test and if it rejects the null, increase 
the counter m by one; perform the second Chow 
test and if it rejects the null, increase the coun-
ter n by one. (v) Repeat from (iii) say 500 
times. (vi) If m > n the first Chow test is more 
powerful.

AA5 The numerator of the t statistic is 0.75 + 0.4 − 
1 = 0.15, and the denominator is the square root 
of 0.015 + 0.015 + 2 × 0.005 = 0.2, yielding t = 
0.75, so the null is accepted.

AA7 Use a Wald statistic to test the nonlinear restric-
tion β1β2−1 = 0. (This is more reliable than test-
ing β1−1/β2 = 0; if possible avoid writing 
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restrictions with denominators). The numerator 
is 0.04, the square of β1β2−1 evaluated at the 
parameter estimates. The first derivative vector 
of β1β2−1 is (β2, β1)′ which evaluated at the OLS 
estimates is (0.2, 4.0)′. The estimated variance 
of β1β2−1 using the usual formula for the vari-
ance of a nonlinear function is 1.12 and the W 
statistic is 0.04/1.12 = 0.036. The critical value 
at the 5% significance level for a chi-square 
with one df is 3.84, so the null is not rejected.

AA9 (a) θ1θ2+ θ3 = 0.
 (b) First derivative vector is (θ2, θ1, 1)′. W sta-

tistic is given by 0.25/[(0.5,3,1)V**(0.5,3,1)′] 
where V** is the block of V* omitting the inter-
cept ingredients.

BB1  E[SSE/σ 2] = N−K, so E(SSE) = σ 2(N−K). Thus 
Es2 = E(SSE)/(N−K) = σ 2. V(SSE/σ 2) = 2(N−K), 
so V(SSE) = 2σ 4(N−K). Thus Vs2 = V(SSE)/
(N−K)2 = 2σ 4/(N−K).

BB3 (a) A t statistic is the ratio of a standard normal 
to the square root of an independent chi-square 
divided by its degrees of freedom. The recur-
sive residuals are iid as N(0, σ 2) so that their 
sum is distributed as N(0, (T−k) σ 2). Thus (Σet) 
σ −1(T−k)−1/2 is distributed as a standard normal, 
forming the numerator of the t statistic. The 
expression in curly brackets is a chi-square 
divided by its degrees of freedom, providing 
the es are divided by σ . This σ  cancels out 
with the σ  in the numerator, leaving the t 
statistic.

 (b) Their expected value is zero, their variance 
is σ 2, and they are independent of one another.

 (c) No. The variance of each OLS residual is 
not σ 2, and they are not independent of one 
another.

BB5  If the CNLR model applies, under the null 
hypothesis (β1

OLS − β2
OLS) is distributed nor-

mally with mean zero and variance V, say, and 
(β1

OLS − β2
OLS)′V−1(β1

OLS − β2
OLS) is distributed 

as a chi-square with degrees of freedom equal 
to the number of elements in β. Because the two 
regressions are run separately, β1

OLS and β2
OLS 

are independent of one another. Thus V = 
[σ 12(X1'X1)−1 + σ 22(X2'X2)−1], which when esti-
mated and employed in the formula above gives 
rise to the suggested statistic.

BB7 (a) Get residuals from regressing y on a con-
stant and x. Use NR2 from regressing these 
residuals on a constant, x, w, and z. These are 
the derivatives of the specification with respect 
to the parameters.

 (b) Dividing by two, the number of restric-
tions, creates an “asymptotic” F, with 2 and 
“infinity” degrees of freedom. (This matches 
producing a chi-square from an F by multiply-
ing the F by the number of restrictions.) NR2 is 
a chi-square; dividing by the number of restric-
tions produces the numerator of the F statistic. 
The denominator is s2/σ 2. For an infinite sam-
ple size, s2 becomes σ 2 causing the denomina-
tor to become unity.

BB9 (a) Numerator is βOLS− (δOLS)2 and denomina-
tor is the square root of V*(βOLS) − 
4δOLSC*(βOLS, δOLS) + 4(δOLS)2V*(δOLS) 
where * denotes estimate of. This comes from 
the formula for the variance of a nonlinear 
function of random variables.

 (b) Square the asymptotic t to get a W, a chi-
square with one df.

BB11 Log-likelihood is Nlnθ − θΣx, first partial is N/
θ − Σx and second partial is −N/θ 2, so θMLE = 
N/Σx and Cramer–Rao lower bound is θ 2/N. 
W is (N/Σx − θ0)2(Σx)2/N and LM is (N/θ0 − 
Σx)2θ0

2/N, both of which equal 
(N – θ0Σx)2/N.

CC1 (a) Likelihood is (2πσ 2)−N/2 exp[−(1/2σ 2) 
Σ(x−m)2], maximized at m = x .

 Likelihood ratio λ is 
 exp[–(1/2σ 2)Σ (x–m0)

2 + (1/2σ 2)Σ(x– x )2]
 LR = −2lnλ = (1/σ 2) Σ(x−m0)2 − (1/σ 2) 

Σ(x− x )2 = ( x −m0)2/(σ 2/N), the square root of 
which is the usual test statistic.

 (b) W = ( x −m0)'[V( x −m0)]−1( x −m0) = ( x
−m0)2/(σ 2/N).

 (c) Partial of log-likelihood wrt m is (1/σ 2) 
Σ(x−m), equal to Q = (N/σ 2)( x −m0) when 
evaluated at m0.

 LM = Q'[V(Q)]−1Q = (N/σ 2)2( x − m0)2 
[(N/σ 2)2(σ 2/N)]−1 = ( x  − m0)2/(σ 2/N).

CC3  Write y1 as x'Ax where x = (x1,x2)' and A is 
a matrix with top row 1/2, −1/2, and bottom 
row −1/2, 1/2. Write y2 as x'Bx where x = 
(x1, x2)' and B is a matrix with top row 1/2, 1/2 
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and bottom row 1/2, 1/2. Confirm that A and B 
are both idempotent with trace 1 and that AB = 
0. Use theorem that x'Ax is distributed as a chi-
square with df trace A if A is idempotent. And 
that x'Ax and x'Bx are distributed indepen-
dently if AB=0.

CC5 The relation 1 − [SSER/(N−K)]/v > 1 − [SSEU/
(N−K+J)]/v can be manipulated to become 
(N−K−J)SSER < (N−K)SSEU. This same 
expression can be obtained by manipulating 
[(SSER – SSEU)/J]/[(SSEU/N−K−J)] < 1.

DD1 (i) Specify model as, say, y = α + βx + δw + ε. 
Choose values for α, β, and σ 2. (ii) Set sample 
size N = 35, say, and select 35 values for x and 
for w. (iii) Set δ = 0. (iv) Get computer to gen-
erate 35 errors from N(0, σ 2) and use to calcu-
late 35 corresponding y values. (v) Run 
regression and test δ = 0. (vi) If null is accepted, 
set δ* = 0. If null is rejected, set δ* = δols. Save 
δ*. (vii) Repeat from (iv) until, say, 500 values 
for δ* have been obtained. (viii) Use the 500 
values of δ* to estimate the MSE of δ*. This 
gives the height of the risk function for zero 
degree of falseness of the restriction δ = 0. (ix) 
Change the value of δ and repeat from (iv) to 
graph different points on the risk function.

DD3 Not a good suggestion. Pretest bias continues 
to exist and should be worse because using a 
smaller sample for the test means it will have 
less power.

EE1 Use a non-nested F test or a J test.
EE3 For the first equation the data allow estimation 

of diff = β (lnNl − lnNs) and for the second 
equation diff = ϕ (e−δNs − e−δNl). Use a nonlin-
ear J test. First, run nonlinear least squares 
to estimate the second equation and obtain 
predicted diff values diff2. Then run OLS on 
the first equation adding diff2 as an extra 
regressor. Accept or reject the first equation 
using a t test of the diff2 coefficient. Second, 
run OLS on the first equation and obtain pre-
dicted diff values diff1. Then run nonlinear 
least squares on diff = ϕ (e−δNs − e−δNl) + θdiff1. 
Accept or reject the second equation using a t 
test on θ. Alternatively, a P test could be 
employed.

FF1 4(i) Specify y = α + βx + ε and choose values 
for α and β, say 1 and 2. (ii) Set sample size 
N = 35, say, and select 35 values of x. (iii) Get 
computer to draw 35 errors from N(0,1), multi-
ply each by the square of its corresponding x 
value to create heteroskedasticity, and use to 
calculate the 35 corresponding y values. (iv) 
Run regression and calculate t statistic for test-
ing β = 2. Save it. (v) Repeat from (iii) until you 
have, say, 500 t statistics. (vi) Calculate the per-
cent of these t values that are greater than 1.645. 
Inference will be biased if this number is not 
close to 5%.

FF3 (i) Specify y = α + βx + ε and choose values for 
α and β. (ii) Set sample size N = 40, say, and 
select 40 values of x. (iii) Get computer to draw 
40 errors from N(0,1), multiply the last 20 of 
these by 2, and use to calculate the 40 corre-
sponding y values. (iv) Run OLS and save βOLS. 
(v) Run OLS on first 20 observations to esti-
mate 2

1s , run OLS on last 20 observations to 
estimate 2

2s , transform the last 20 observations 
by multiplying them by s1/s2. Obtain βEGLS by 
regressing using first 20 observations and last 
20 transformed observations. (v) Repeat from 
(iii) until you have, say, 500 βOLS and 500 βEGLS. 
(vi) Use the 500 βOLS to estimate the bias, vari-
ance and MSE of βOLS; use the 500 βEGLS to 
estimate the bias, variance and MSE of βEGLS. 
Compare.

FF5  Suppose the sample size is 25 and the original 
error ε is such that εt = ρεt−1 + ut where u is a 
spherical error with variance σ 2. Then the vari-
ance of ε is σ 2/(1−ρ2). Obtain ε1 by having the 
computer draw an error from N[0, σ 2/(1−ρ2)]. 
Have the computer draw errors u2 through u25 
from N(0, σ 2) and use these (and ε1) to compute 
ε2 through ε25 using εt = ρεt−1 + ut.

FF7 (i) Run the regression and obtain the parameter 
estimates, the residuals and the Goldfeld–
Quandt statistic. (ii) Use the residuals to calcu-
late 2

1s  and 2
2s  the estimated error variances 

for the first and second halves of the data, 
respectively. (iii) Divide the first half residuals 
by s1 and the second half residuals by s2 to create 
a set of residuals called the adjusted residuals.
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 (iv) Use the estimated parameter values and 
draws with replacement from the adjusted 
residuals to create a new set of data on y. (v) 
Calculate the Goldfeld–Quandt statistic. (vi) 
Repeat from (iv) to obtain, say, 1000 Goldfeld–
Quandt statistics. (vii) See if the original 
Goldfeld–Quandt statistic is in the tails of the 
distribution of these 1000 values.

GG1 False. OLS always provides the best fit 
(highest R2).

GG3 Bad proposal. Both OLS and GLS are unbi-
ased regardless of the presence of nonspherical 
errors, so under both the null and the alterna-
tive their difference has expectation zero.

GG5 No because GLS is BLUE.
HH1 The transformation renders the errors hetero-

skedastic, but since OLS is unbiased in the 
presence of nonspherical errors, no bias 
results.

HH3 Although the R2 may be affected, this is not of 
consequence because we are interested in the 
important properties of bias and efficiency.

HH5 False. Regressing (y+w) on x produces coeffi-
cient estimate Σ(y+w)x/Σx2 = βOLS + αOLS: the 
estimates are identical.

HH7 Sum the equations for the tth time period to get 
Ct = β0Nt + β1Yt + εt* where εt* = Σεi has mean 
zero and variance σ 2Nt. Use the GLS estima-
tor, found by dividing all data by the square 
root of Nt before running OLS.

HH9 The two equations must be written as a single 
equation, the constraints incorporated and a 
transformation made for heteroskedasticity. 
Left-hand side vector is a column of ys on top 
of a column of (p−w)s. Columns of observa-
tions on explanatory variables are for α0 a col-
umn of ones on top of a column of zeroes; for 
β0 a column of zeroes on top of a column of 
ones; for α1 a column of xs on top of a column 
of −ws; for α2 a column of zs on top of a col-
umn of zs; and for β2 a column of zeroes on top 
of a column of qs. All observations in the bot-
tom half must be multiplied by the square root 
of two.

HH11 OLS is BLUE (the unconditional variance is 
constant), but may not be the estimator of

 choice because a nonlinear estimator that 
incorporates a correction for the conditional 
heteroskedasticity may be more efficient.

HH13 Should be multiplying through by s2/s1. But 
more importantly, all that the Goldfeld–Quandt 
test tells us in this context is that there is het-
eroskedasticity associated with x; it does not 
tell us that the form of this heteroskedasticity 
is such that there are two different variances 
for the two sets of data. The heteroskedasticity 
could be that the error variance is connected in 
some more continuous way to x, such as that 
the variance is proportional to x or x squared. 
Further testing should be done to better deter-
mine the nature of the heteroskedasticity.

HH15 Correct. The variance of a sample proportion 
is p(1−p)/N where p is the true proportion and 
N the sample size. This variance can be esti-
mated for each district. Transforming the data 
by dividing by the square root of this esti-
mated variance and then running OLS is the 
standard correction for heteroskedasticity.

HH17 E(u*) = 0 because E(ε̂ ) = 0.
 V(u*) = E(u*2) = (1+√5)/(2√5)[(1−√5)/2]2 ε̂ 2 

+ [1−(1+√5)/(2√5)] [(1−(1−√5)/2]2 ε̂ 2 which 
equals ε̂ 2.

II1 (a) For a 2-week period data, we have y* = 2α 
+ βx* + ε*, where * denotes the sum of the 2 
weeks data. The error ε* is spherical, with 
variance 2σ 2 (where V(ε) = σ 2), so OLS is 
applicable.

 (b) For the moving average data, we have 
yt* = α + βtxt* + εt*, where yt* = (yt−1+yt+yt−2)/3, 
xt* = (xt−1+xt+xt−2)/3, and εt* = (εt−1+εt+εt−2)/3. 
Although εt* is homoskedastic, with variance 
σ 2/3, there is autocorrelation. Adjacent εt* 
have covariance 2σ 2/9, εt* two periods apart 
have covariance σ 2/9 and all other covari-
ances are zero. Thus GLS should be used, 
with the error variance–covariance matrix 
having 3s down the diagonal, 2s beside the 
diagonal, 1s beside these 2s and all other ele-
ments zero.

II3 (a) Use a Wald test. See answer AA9.
 (b) Incorporating the restriction, the equation 

can be rewritten as yt − α2yt−1 = α1 + α3 

Apendix F.indd   17Apendix F.indd   17 12/20/2007   1:36:56 PM12/20/2007   1:36:56 PM



18 Suggested Answers to Odd-Numbered Questions

 (xt − α2xt−1) + εt. Estimate by doing an iterative 
search over α2. Select a value for α2 and 
regress yt − α2yt−1 on a constant and xt − α2xt−1 
Change the value of α2 and repeat, continuing 
until SSE is minimized.

 (c) The relationship can be written as yt − 
α2yt−1 = α1 + α3(xt − α2xt−1) + εt or (1 − α2L)yt = 
α1 + α3(1 − α2L)xt + εt. This implies yt = α1/
(1 − α2L) + α3xt + εt/(1 − α2L) or yt = α1/(1 − 
α2) + α3xt + ut where ut = α2ut−1 + εt, a first-
order autocorrelated error.

 (d) That finding a first-order autocorrelated 
error may imply a dynamic misspecification 
rather than a genuine autocorrelated error.

II5  The DW statistic is not relevant here because 
the data are cross-sectional. An exception is if 
the data are ordered according to the value of 
an independent variable, in which case the DW 
statistic may indicate a nonlinearity.

JJ1 Use a Goldfeld–Quandt test. Run the regres-
sion using the Nm male observations to get s 2m 
and using the Nf female observations to get 
s 2m. Then s 2m/s 2f is distributed as an F with Nm 
and Nf degrees of freedom.

JJ3  F = (45/(18−3))/(14/(10−3)) = 1.5 which is 
less than the 5% critical value of 3.51 for 
degrees of freedom 15 and 7 so the null is 
accepted.

JJ5 The low DW in a cross-sectional context may 
mean that the data have been ordered accord-
ing to the value of x and an inappropriate 
functional form is being used. The high 
Breusch–Pagan statistic may mean that z 
should appear as an explanatory variable.

KK1 (a) βOLS = 3; β GLS = 4.
 (b) V(βOLS)   = (X’X)−1X’VX(X’X)−1 = 1.7/9; 

    V(βGLS)  = (X’V−1X)−1 = 1/8.
 (c) (εOLS’εOLS/2)(X’X)−1= 4/3.
 (d) (εGLS’V−1 εGLS/2)(X’V−1X)−1 = 1.0.
KK3 (a) Divide the data by the square root of x to 

deal with the heteroskedasticity. This produces 
transformed observations 3, 5, 5 on y and 1, 2, 
3 on x. Running OLS on this gives βGLS = 2. 
Estimated variance is (εGLS’εGLS/2)(X’X)−1= 
(3/2)/14 = 3/28.

 (b) (X'V−1X)−1X'V−1y = 28/14 = 2. Estimated 
variance = (εGLS'V−1εGLS/2)(X'V−1X)−1 = 
(3/2)/14 = 3/28.

 (c) (X'V−1X)−1/(X'X)−1(X'VX)(X'X)−1 = (1/14)/
(794/98 × 98) = 0.86, so GLS is about 14% 
more efficient.

KK5  The OLS estimate is the sample mean, 2. To 
correct for the heteroskedasticity, divide each 
observation by the square root of its variance. 
Applying OLS to the transformed data we 
get 1 (the average of 1, 1, and 1).

LL1  Both estimators are unbiased. V(K*) = E(1/4) 
(ε1+ ε2+ ε3+ ε4)2 = (1/16)E(u−1 + 2u0 + 3u1 + 3u2 
+ 2u3 + u4)2 = (28/16)(1/3) = 7/12.

 V(K**) = E(1/2)(ε1+ ε4)2 = (1/4)E(u−1 + u0 + 
u1 + u2 + u3 + u4)2 = (6/4)(1/3) =1/2. Thus pre-
fer K** since it has a smaller variance.

LL3 (a) βOLS = 24/5.
 (b) The V(ε) matrix is 9 times a matrix with 

rows 1, 0.5 and 0.5, 1. Putting this into the 
GLS formula produces βGLS = 5.

 (c) V(βOLS) = (X'X)−1(X'VX)(X'X)−1 = 63/25. 
V(βGLS) = (X'V−1X)−1 = 9/4.

LL5  GLS formula is (X′Ω−1X)−1X′Ω−1y where X is a 
2×1 vector of ones, Ω is a 2×2 matrix with 2 
and 3 on the diagonal and 1 in the off-diagonal 
positions, and y is a 2×1 vector containing 10 
and 7. This yields the estimate 9.

MM1  Write the two relationships as one so that the 
vector of observations on the dependent vari-
able consists of the N observations on y1 fol-
lowed by the N observations on y2, and the 
column of observations on the regressor is N 
ones followed by N zeroes. The error vector’s 
variance–covariance matrix is V⊗I where V is 
a matrix with rows 2, 1 and 1, 2 and I is a N×N 
identity. Using the GLS formula produces 
β GLS = y–1−(1/2)y–2.

MM3 (a) Write the two relationships as one so that 
the vector of observations on the dependent 
variable consists of the observations on y 
followed by the observations on q, and the 
column of observations on the first regressor 
is the x observations followed by a vector 
of zeroes; the column of observations on the 
second regressor is a vector of zeroes followed 
by the w observations. The error vector’s 
variance–covariance matrix is V⊗I where V is 
a matrix with rows 2, 1 and 1, 3. Using 
the GLS formula produces αGLS = 2/5 and 
β GLS = 9/10.
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 (b) From the GLS calculation earlier we can 
also calculate V(αGLS) = 0.5, V(βGLS) = 3.0, 
and C(αGLS, βGLS) = 0.5. So V(2αGLS − βGLS) = 
2.0 + 3.0 − 1.0 = 4.0. The required t value is 
−0.1/2 = −0.05, below any reasonable critical 
value, so the null is accepted.

 (c) Regress y on x to get αOLS = 3/4; SSE = Σy2 
− αOLSΣxy = 22.75, so estimate V(u) as 2.275. 
Regress q on w to get βOLS = 1; SSE = 32, so 
estimate V(v) as 3.2. Estimate covariance by 
Σ (y − ŷ) (q − q̂) / 10 = (Σyq − Σqŷ − Σyq̂ + 
Σŷq̂) / 10 = 1.24. This last calculation exploits 
the coefficient estimates, so that, for example, 
Σq ŷ= (2/5) Σqx.

NN1  Uncertain. If β* is a better (i.e., smaller vari-
ance) estimate of β than that produced by 
regressing y on x and w, then the statement is 
true, but if β* is a bad estimate, this sugges-
tion will produce a worse estimate of δ.

NN3 (a) The stochastic prior information is incor-
porated as an additional observation, namely a 
y-value of 6 and an x-value of 1. To correct for 
heteroskedasticity this extra observation should 
be multiplied through by 2. The new Σxy is 
186 + 24 = 210, and the new Σx2 = 30, so the β 
estimate is 7.

 (b) Variance is 16/30. Variance without incor-
porating additional information is 16/26, 
about 15% higher.

NN5  Add an extra, artificial observation to the bot-
tom of the current data. Add a one to the bot-
tom of the y vector, a zero to the bottom of the 
column of ones for the intercept term, and ones 
to the bottom of the columns of observations 
on K and L. From the original regression, find 
s2 the estimate of the variance of the error term. 
Adjust the row of artificial observations by 
multiplying them all by s/0.1. Run OLS on the 
extended data.

NN7  If we have VALUEi = α + βAREAi + γYEARi + 
εi for the ith property, then we know 750 000 = 
α + 900β + 1965γ  so we have exact extraneous 
information. This can be incorporated in the 
usual fashion – solve for one of the unknown 
parameters in the second equation and substi-
tute into the first equation to find a new esti-
mating equation with one less parameter.

OO1  Minimize the generalized sum of squared 
errors (y−Xβ)'Ω−1(y−Xβ) subject to the con-
straints to obtain β* = βGLS + (X'Ω−1X)−1

R'[R(X'Ω−1X)−1R']−1(r−RβGLS).
OO3 (a) The W matrix is block diagonal with a dif-

ferent Xi matrix in each block. When Σ is diag-
onal then Σ−1⊗I is block diagonal with σ i−2I in 
each block. When multiplied out this produces 
(Xi’Xi)

−1 Xi’yi for the ith equation’s parameter 
estimates.

 (b) The W matrix is block diagonal with X in 
each block and so can be written as I⊗X. So 
[W'(Σ−1⊗I)W]−1 = [(I⊗X')(Σ−1⊗I)(I⊗X)]−1 = 
[(I⊗X')(Σ−1⊗X)]−1 = [Σ−1⊗X'X]−1 = Σ⊗(X'X)−1. 
Similarly W'(Σ−1⊗I)y = (Σ−1⊗X')y so SURE = 
[I⊗(X'X)−1]y.

PP1  From a regression of y on X, the regression 
sum of squares is ( ) ( ) ( )OLSˆ ˆy y y y X Xβ ′′− − = . 

) ( ) ( ) ( )2 1 2OLSX N y y X X X X y N yβ −′ ′ ′ ′− = − . This 
implies that from a regression of y y−  on X, 
the regression sum of squares is ( y y− ) 
'X(X’X)−1X'( y y− ), since the average of 
y y− y- is zero.

 (e2–s*2)Z(Z'Z)−1Z'(e2−s*2)/2s*
4
 = (1/2)[(e2/

s*2−1]Z(Z'Z)−1Z'[(e2/s*2−1] which is one-half 
the regression sum of squares of [(e2/s*2−1] 
regressed on Z, since the average of the [(e2/
s*2−1] is zero.

PP3 (a) To allow this formulation to include a case 
of homoskedasticity.

 (b) Only the first element of α is nonzero.
 (c) exp(lnk + θlnw) = kwθ; α1 = lnk, α2 = θ and 

x2 = lnw.
PP5 (a) βIV = (W'X*)−1W'y* = (X'P−1PX)−1X'P−1

Py = βOLS.
 (b) Estimated V(βIV) = s2(W'X*)−1W'W

(X*'W)−1 = s2(X'X)−1X'P−2X(X'X)−1.
 (c) This is s2 times the heteroskedasticity-

consistent estimate of the variance–covariance 
matrix of the OLS estimator.

QQ1 (a) Arrange the observations so that the two 
observations on the first household appear, 
then the two observations on the second house-
hold, and so on. The variance–covariance 
matrix is then seen to be the variance of ε times 
a block-diagonal matrix with 2 by 2 blocks 
containing ones down the diagonal and ρ on 
the off-diagonal.
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 (b) Transform each household’s observations 
as though you had data on just that household. 
The first observation is multiplied by √(1−ρ2) 
and the second observation has ρ times the 
first observation subtracted from it.

QQ3  plimβOLS = β + plim(Σyt−1εt/N)/plim(Σyt−1
2/N).

 Numerator is σ 2 and denominator is (2βσ 2 + 
2σ 2)/(1 − β2) so bias is (1 − β)/2.

QQ5  The GLS estimator m* = (X'W−1X)−1X'W−1y is 
the BLUE, where X is column of ones, y is a 
vector with observations x1, x2, and x3, and W 
is a 3×3 matrix with ones down the diagonal 
and zeros on the off-diagonal except for the 
(1,2) and (2,1) positions in which there is 0.5. 
This produces m* = (0.5×1 + 0.5×2 + 
.75×3)/1.75. The variance of the sample mean 
is (X'X)−1X' WX(X'X)−1 = 4/9. The variance of 
m* is (X'W−1X)−1 = 0.75/1.75, which is 
smaller.

RR1  Setting the derivative with respect to y equal to 
zero and solving for y gives

 yt = θy*t + (1−θ)yt−1 where θ = α1/(α1+α2). 
This can be rewritten as yt = yt−1 + θ (y*t − yt−1) 
which is a partial adjustment model.

RR3 (a) Use L without a subscript to denote the lag 
operator and write YPt as Yt/[1–(1−λ)L]. Thus 
Ct = (β−αθ)Yt/[1−(1−λ)L] + αLt−1 + εt which 
when multiplied through by [1−(1−λ)L] yields 
the estimating equation

 Ct = (1−λ)Ct−1 + (β−αθ)Yt + αLt−1 − α (1−λ)
Lt−2 + εt − (1−λ)εt−1.

 (b) Main estimating problem is that θ and β 
are not identified. Also the MA error term is 
contemporaneously correlated with Ct−1.

RR5 (a) From the partial adjustment equation Kt = 
(1−λ)K t−1 + λθYt + εt, which when substituted 
into the gross investment equation yields

 It = (δ−λ)Kt−1 + λθYt + εt. If δ is known, λ and 
θ are identified; if δ is not known, none of the 
parameters is identified.

 (b) Kt = (λθYt + εt)/[1−(1−λ)L] where L is the 
lag operator. Thus

 It = (δ−λ)λθYt−1/[1−(1−λ)L] + λθYt + 
εt/[1−(1−λ)L] and thus

 It = (1−λ)It−1 + (δ−λ)λθYt−1 + λθYt − (1−λ)λθYt−1 
+ εt so

 It = (1−λ)It−1+ (δ−1)λθYt−1+ λθYt + εt.

 Both λ and θ are over-identified if δ is known; 
if δ is not known, all parameters are just 
identified.

 (c) Setting Yt = Yt−1 and It = It−1, the coefficient 
on Y in the long-run relationship is δθ. It makes 
sense for λ to drop out in the long run, since it 
reflects the speed of short-run adjustment. δθ 
makes sense because it just says that in the long 
run an increase in income requires an increase 
in investment to cover the depreciation on the 
higher capital stock.

RR7 (a) yt − αyt = η − α∆yt + β0xt + β1xt − β1xt + 
β1xt−1+ εt

 yt = η/(1−α) − [α/(1−α)]∆yt + [(β0 + β1)/
(1−α)]xt − [β1/(1−α)]∆xt + εt/(1−α).

 (b) yt − yt−1 = η − (1−α)yt−1 + β0xt + β1xt − β1xt + 
β1xt−1+ εt

 Δyt = (1−α){η/(1−α) + [(β0 + β1)/(1−α)]xt − 
yt−1} − β1∆xt + εt

 (c) y and x are growing at the same rate.
SS1  Must recognize that the αs are not identified, so 

only examine estimation of the βs. (i) Set values 
for the parameters, including V(ε1) and V(ε2). 
(ii) Select sample size, say 35, and choose 35 
values for the exogenous variables Y and A. (iii) 
Solve for the reduced form to obtain equilib-
rium expressions for P and Q in terms of the 
parameters, the exogenous variables, and the 
error terms. (iv) Get computer to draw 35 ε1 and 
35 ε2 values. (v) Use these errors and the reduced 
form expressions to calculate the corresponding 
35 values for P and for Q. (vi) Use the data to 
run OLS to get βOLS and 2SLS to get β2SLS. 
Save these estimates. (vii) Repeat from (iv) 
until you have, say, 800 sets of these estimates. 
(viii) Use the 800 OLS estimates to estimate the 
bias, variance, and MSE of OLS and use the 
800 2SLS estimates to estimate the bias, vari-
ance, and MSE of 2SLS. Compare.

TT1 Uncertain. Both estimators are biased in small 
samples, the sample mean ratio is asymptoti-
cally unbiased but has a larger variance than 
βOLS which is asymptotically biased.

TT3 (a) With variables expressed as deviations 
about their means, the equation of interest is 
y* = βx* or in terms of measured variables, y = 
βx − βε − ε.
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 plimβOLS = plim(Σxy/N)/plim(Σx2/N) = β − 
(β+1) σ 2/(Q+ σ 2)

 where Q is the plim of Σx*2/N.
 (b) The bias is negative, which tends to dis-

credit the argument in question.
TT5 (a) Slope coefficient estimates are still BLUE, 

but intercept estimate has bias −2α2.
 (b) Estimates are BLUE except that the esti-

mate of α2 is actually an estimate of α2/1.15.
 (c) All estimates are biased, even asymptoti-

cally. (The intercept estimate is a biased esti-
mate of α0−2α2.)

UU1 (a) Predicted X is W = Z(Z'Z)−1Z'X, so 
(W'W)−1W'y = [X'Z(Z'Z)−1Z'Z(Z'Z)−1Z'X]−1X'Z
(Z'Z)−1Z'y = (Z'X)−1Z'Z (X'Z)−1X'Z(Z'Z)−1Z'y = 
(Z'X)−1Z'y = βIV.

 (b) Suggests σ 2(W'W)−1 = σ 2[X'Z(Z'Z)−1Z'Z
(Z'Z)−1Z'X]−1 = σ 2(Z'X)−1Z'Z (X'Z)−1.

UU3 (a) Both estimators are unbiased. MSE of βOLS 
is σ 2/Σx2 = σ 2/6. MSE of βIV is σ 2Σw2/(Σxw)2 = 
14σ 2/49. Their ratio is 7/12.

 (b) βIV is 10, so numerator is 2. Residuals are -
11, 4 and 1, so s2 = 69. Thus denominator is 
square root of 69(14/49).

UU5 (a) Using m as an instrument for i produces β* 
= Σm2/Σmi. Regressing i on m produces a coef-
ficient estimate Σmi/Σm2. The reverse regres-
sion estimate of β is the inverse of this, so these 
two estimates are identical.

 (b) Use an instrument for i that takes the i val-
ues when i is determined exogenously and the 
m values when m is determined exogenously.

UU7 (a) Regress h on w and z and obtain the pre-
dicted h values, hhat. Perform a Hausman test 
by regressing h on w, z, and hhat and testing the 
coefficient of hhat against zero.

 (b) Regress y on i and hhat to produce the iv 
estimator.

VV1  False. OLS provides the best fit. Other methods 
outperform OLS on other criteria, such as 
consistency.

VV3 (a) The suggested estimator is 2SLS.
 (b) No. The equation is not identified.
VV5 (a) βOLS is 100/50 = 2. β2SLS is 90/30 = 3. βILS 

is (90/80)/(30/80) = 3.
 (b) None; the first equation is not identified.
VV7 (a) Use OLS since x is exogenous.

 (b) 2SLS is Σxy2/Σxy1. Reduced form is y2 = 
αβx plus error, so ILS is (Σxy2/Σx2)/(Σxy1/Σx2) 
= Σxy2/Σxy1 = 2SLS.

 (c) Second equation is just identified.
 (d) We know from theoretical considerations 

that 2SLS is asymptotically unbiased. Should 
u2 change, u1 will likely change because they 
are not independent, causing y1 to change. 
This implies that y1 and u2 are not indepen-
dent. Consequently, OLS is asymptotically 
biased. OLS will have a smaller variance, 
however.

 (e) The result that recursive simultaneous 
equations can be estimated unbiasedly by 
OLS requires that the errors be independent 
across equations.

VV9  Under (i) supply equation is a linear function 
of Pt−1. Under (ii) it is a linear function of Pt−1 
and lagged Q. Under (iii) it has only an inter-
cept. Choose by testing the coefficients on 
lagged P and lagged Q against zero.

WW1 Ridiculous test – since the OLS residuals are 
orthogonal to X by construction, the coeffi-
cient vector in question is always zero.

WW3 (a) Zero, since in this case both estimators are 
unbiased.

 (b) E(X'X)−1X'ε [(X'X)−1X'ε − (Z'X)−1Z'ε]' = 
E(X'X)−1X'εε'X(X’X)−1 − E(X'X)−1X'εε'Z
(X'Z)−1 = 0.

 (c) βIV = βOLS − q, so V(βIV) = V(βOLS) − 
2C(βOLS,q) + V(q) = V(βOLS) + V(q) so that 

 V(q) = V(βIV) − V(βOLS).
 (d) q'[V(q)]−1q is distributed as a chi-square 

with degrees of freedom = dimension of q.
 (e) Null is that X and ε are independent so that 

under null both OLS and IV are unbiased. 
Alternative is that X and ε are not indepen-
dent, so that OLS is biased in both large and 
small samples, and IV is asymptotically 
unbiased.

WW5 (a) OLS is 6.5 with variance 100/220 = 0.45. 
IV is 7.2 with variance 0.5. Difference is 
0.7 with variance 0.05. Chi-square is 0.49/
0.05 = 9.8.

 (b) Regressing y on x and z gives coefficient 
estimate for z of 15.4 with variance 22. Square 
of resulting normal statistic is 10.78.
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 (c) Regressing x on z gives coefficient esti-
mate of 2 which produces w observations 2, 
4, −4, 8, and −10. Regressing y on x and w 
gives w coefficient estimate of 7.7 with vari-
ance 5.5. Square of resulting normal statistic 
is 10.78.

WW7 Under the null hypothesis that Y is exogenous, 
researcher B’s estimates play the role of OLS 
in a standard Hausman test, and researcher 
A’s estimates play the role of IV.

XX1  (i) Choose values for the intercept α and slope 
β. (ii) Set sample size, say 35, and select 35 x 
values. (iii) For each x value calculate y* = α 
+ βx + ε, where ε is a drawing from a standard 
normal. Choose some critical value, say zero, 
and set y = 1 if y* is greater than zero, other-
wise set y = 0. (Choose this critical value so 
that your coefficient values and x values do 
not create y observations that are almost all 
zero or almost all one.) (iv) Regress y on x 
and an intercept, saving the slope coefficient 
estimate β*. (v) Repeat from (iii) until you 
have, say, 500 β*s. (vi) Average these 500 
estimates to estimate the expected value of 
the OLS estimate; compare this to βf(α + βx) 
evaluated at the mean of the x values, where f 
is the density of a standard normal. 
Alternatively, the comparison could be with 
F(α + βx + 1) – F(α + βx) evaluated at the 
mean of the x values, where F is the cumula-
tive standard normal.

XX3 (a) Find the log-odds ratio of the dependent 
variable (i.e., ln(f/(1−f))), which is then 
regressed on the explanatory variables.

 (b) (i) Select values for β and the variance of 
the error term, choose a sample size N and N 
values for the explanatory variables. (ii) Draw 
N errors e. (iii) Use Xβ + e to create N log-
odds ratios q. (iv) Calculate N f values as 
eq/(1+eq). (v) Regress f on X to obtain your 
estimates β*, and regress q on X to obtain 
your friend’s estimates β**. (vi) The influ-
ence of an explanatory variable on f is the par-
tial of f with respect to that explanatory 
variable. For you this is just β*, but for your 
friend it is the partial of the logit function, 
estimated by β**f*(1−f*). This depends on 

the X values and so the comparison will 
depend on the X values chosen. Choose the 
average X values. (vii) Repeat from (ii) to 
obtain, say 500 β* and 500 β**f*(1−f*) val-
ues. (viii) Average both of these 500 values 
and see which is closest to βf#(1−f#) where f# 
is the value of f calculated using the true β and 
the average X values.

 (c) Regress the log-odds ratio on the explana-
tory variables to obtain the parameter esti-
mates and N residuals. Using these parameter 
estimates and draws with replacement from 
the residuals, create new log-odds values. 
Run the regression again and calculate the 
estimated first partial as in part (b) above. 
Repeat to obtain, say, 900 such estimated first 
partials. Compute the sample variance of 
these 900 estimates.

YY1 (a) prob(getting a loan) = ew/(1+ew) where 
 w = α + βGPA + δAGE + θSEX + ϕ MA + 

ηPHD 
 where SEX is one for males and zero for 

females, MA is one for MA students and zero 
otherwise, and PHD is one for PhD students 
and zero otherwise.

 (b) The likelihood function is the product of 
45 terms. For the 25 students who were 
offered a loan, these terms take the form 
ew/(1+ew) and for the 20 students who were 
not offered a loan, these terms take the form 
1/(1+ew).

 (c) Probability estimated as ew/(1+ew) where 
w is α* + 3.2β* + 23δ* + θ* where * denotes 
the MLE estimate.

 (d) LR is easiest. Estimation with and without 
the restriction is easy to accomplish with the 
logit package. For W and LM tests, variances 
and partial derivatives are awkward to 
compute.

 (e) Wish to test ϕ = η = 0. Run logit unre-
stricted to obtain lnLU the unrestricted maxi-
mized log-likelihood. Run restricted (by not 
including the last two explanatory variables) 
to obtain lnLR the restricted maximized log-
likelihood. Calculate LR = 2(lnLU − lnLR), 
which is distributed (asymptotically) as a chi-
square with 2 degrees of freedom.
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YY3 (a) Model the probability of being at the limit 
as ew/(1+ew) where w = α + βSIZE + δIN1 + 
θIN2 where SIZE is firm size, IN1 is firm size 
for industry type 1, zero otherwise, and IN2 is 
firm size for industry type 2, zero otherwise.

 (b) Use an LR test to test δ = θ = 0.
YY5  For the ith individual, with row vector xi of 

characteristics, prob(yes) = prob(xiβ + εi ≥ wi) = 
prob(εi ≥ wi − xiβ)

 Estimate as a probit or logit with the coeffi-
cient on w restricted to equal one.

YY7 (a) It tests if all the slope parameters are jointly 
equal to zero. It is calculated as twice the dif-
ference between the maximized log-likelihood 
using all the explanatory variables and the 
maximized log-likelihood using only the 
intercept.

 (b) (i) Calculate xb* where x is a row vector of 
values of the characteristics of the new obser-
vation (first element unity for the intercept) 
and b* is the estimated parameter vector from 
the probit estimation procedure. The probabil-
ity of this observation being a one is given by 
the integral from minus infinity to xb* of the 
standard normal; this can be found from the 
normal tables. Predicting a one or a zero for 
this observation requires knowledge of the 
appropriate loss function to combine with this 
estimated probability. (ii) xb* is now calcu-
lated using the estimated parameter values 
from the logit estimation procedure. The prob-
ability of this observation being a one is calcu-
lated as exp(xb*)/(1+exp(xb*)). Predicting a 
one or a zero for this observation requires 
knowledge of the appropriate loss function to 
combine with this estimated probability.

 (c) 60 y = 1 predictions, 48 of which were 
correct.

 (d) Computer has 66 of 100 correct for 66% 
correct. The y = 1 competitor gives 70 of 100 
correct for 70% correct.

 (e) One possibility is to compare the average 
of the percentage of 1s that are correct and the 
percentage of 0s that are correct. On this crite-
rion the computer scores  (48/60 + 18/40)/2 = 
62.5% and the y = 1 competitor scores (60/60 
+ 0)/2 = 50%.

YY9 (a) Regressions without an intercept produce 
unreliable R2 values, possibly outside the 
zero–one range.

 (b) Use ordered logit or ordered probit.
YY11 None of the suggestions is appropriate 

because the slope is an estimate of the 
change in log-odds ratio, not an estimate of 
the change in probability. For a given x 
value you can calculate the probability of a 
one, then repeat this calculation for that x 
value increased by one unit. The difference 
between these two probabilities measures 
the desired influence of the x variable. But 
because of the nonlinearity this measure 
will depend on the x value chosen. One 
tradition is to choose the average of the 
explanatory variables. A competing method 
is to calculate this measure for every observa-
tion in the sample and then average the 
results.

YY13  Greater than, because the S curve is steeper at 
0.4 than at 0.8.

YY15  (a) The likelihood is exp(Kα)*[1+exp(α)]−N 
and the log-likelihood is Kα – N*ln(1+exp(α)).

 (b) First partial is Kα – N*ln(1+exp(α)), so 
αMLE = ln[K/(N−K)] and pMLE = K/N. No sur-
prise, the estimate of the probability of a one 
is the sample proportion of ones.

 (c) Second partial is –N*[exp(α)/
(1+exp(α))]*[1 − exp(α)/(1+exp(α))] so 
Cramer–Rao lower bound is V(αMLE) = 
[Np(1−p)]−1. The variance of pMLE is 
(∂p/∂α)2*V(αMLE) = p2(1−p)2 = p(1−p)/N. No 
surprise, this is the traditional estimate of the 
variance of the sample proportion statistic.

 (d) LR is 2*{[KαMLE – N*ln
(1+exp(αMLE))] − [0.3K – N*ln(1+exp(0.3))]}

 LM is [0.3K – N*ln(1+exp(0.3))]2*N*0.3*0.7.
 W is (αMLE – 0.3)2*N*0.3*0.7.
ZZ1 No. There is a selection bias problem – to enter 

the sample of male professors one has to live 
long enough to become a professor, invalidat-
ing the comparison.

ZZ3 Suppose the regression is true rent y = Xβ + ε. 
For those units under controls we know only 
that the y value is greater than or equal to the 
measured rent ym so that 
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 ym ≤ Xβ + ε or ε ≥ ym − Xβ. Estimation is via 
the Tobit model, in which observations on rent 
controlled units enter the likelihood function 
as the integral from ym − Xβ to infinity.

ZZ5 These data are censored from above and trun-
cated from below. To accommodate the latter, 
each term in the likelihood must be divided by 
one minus the probability that the error term is 
such as to make income less than $5000. To 
accommodate the former, each observation 
with income of $100 000 must enter the likeli-
hood as an integral from 100 000 − Xβ to 
infinity.

ZZ7 (a) No adjustment is needed for a limited inde-
pendent variable, although you may want to 
warn readers that the results may not apply to 
those under age 25.

 (b) Need to avoid the perfect multicollinearity 
with household size by dropping household 
size as a regressor. May want to warn readers 
that the results may not apply to other than 
childless married couples.

 (c) A sample selection bias correction proce-
dure should be considered here, such as maxi-
mum likelihood or Heckman two-stage.

ZZ9 There is no sample selection problem here – 
calculation of the IMR and use of the Heckman 
two-stage procedure is inappropriate. The split 
between high and low income observations 
gives rise to a dummy which can be used in the 
usual way to check if the intercept and/or 
slopes differ between the two categories.

AB1 (a) The cumulative distribution of w is 1 − e−λw, 
so the probability that someone’s unemploy-
ment duration is greater than w is e−λw. The 
likelihood function is the product of λe−λx for the 
Nx individuals currently employed, times the 
product of e−λy for the individuals still unem-
ployed. The log-likelihood is thus Nxlnλ − λΣx − 
λΣy which is maximized at λMLE = 
Nx/(Σx+Σy).

 (b) The second derivative of the log-likeli-
hood with respect to λ is −Nx/λ2, so the 
Cramer–Rao lower bound is λ2/Nx. Thus esti-
mate variance by Nx/(Σx+Σy)2.

 (c) Ew = 1/λ. Model 1/λ as a function of 
variables representing local conditions, then 

replace λ in the likelihood by the inverse of 
this function and maximize with respect to the 
parameters of this function.

AC1  In reality, y = η + λx + θz + ε. Suppose there is 
some collinearity between x and z so that z = δ 
+ γx + u where u is a random error with mean 
zero. Substituting for z we get y = η + θδ + (λ 
+ θγ)x + ε + θu so that in the regression of y on 
only x, the coefficient on x is actually estimat-
ing λ+θγ. This will be biased downward as an 
estimate of λ if θγ  is negative. This will hap-
pen if z and x are positively correlated and the 
influence of z on y is negative, or if z and x are 
negatively correlated and the influence of z on 
y is positive.

AC3  The relevant substitute for Brazilian coffee is 
other brands of coffee, not tea, so there is a 
major misspecification.

AC5  The specification is inappropriate; the influ-
ence of inches of rainfall, for example, depends 
on the number of acres. A more appropriate 
specification is to regress output per acre on 
seed per acre, inches of rainfall, and hours of 
sunshine.

AC7  High collinearity between the two price vari-
ables can be addressed by using the ratio of the 
two prices. High collinearity between GDP 
and aggregate consumption can be addressed 
by dropping GDP; both are capturing the same 
influence, with the latter making more sense.

AC9 Individual income is a linear function of age 
and whether or not the individual has a univer-
sity education. Aggregating over a census tract 
and dividing by the population of the census 
tract we get average census tract income a lin-
ear function of average age and the fraction of 
the census tract population with a university 
degree. The error term for this relationship is 
an average error for the people in the census 
tract and so will be heteroskedastic because 
pop is different in each census tract. Transform 
the data by multiplying all observations 
(including the intercept!) by the square root 
of pop.

AC11  The impact of percent body fat on weight 
should be different for a large person than for 
a small person (because it is measured as a 
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percent), so a better specification would be to 
enter F interactively with H.

AC13 State GDP should be per capita. For cross-sec-
tional data, the DW statistic has nothing to do 
with autocorrelated errors unless the data have 
been ordered in some special way. The hetero-
skedasticity correction should be accomplished 
by dividing the data by the square root of GDP, 
although this heteroskedasticity problem may 
disappear once per capita GDP is used. The 
dummy coefficients being nonzero in this 
specification without an intercept simply 
means that the intercepts for all the regions are 
different from zero; it does not mean the inter-
cepts are different across regions. A significant 
coefficient on advertising does not mean adver-
tising should be increased; we have to know 
how much increasing advertising costs relative 
to how much extra profit is created by the 
resulting increase in demand.

AC15 (a) If a dummy for each year (except the first) 
is introduced, the specification says that the 
log price is determined by the quality variables 
plus an intercept amount unique to each year. 
The required price index is calculated by track-
ing this intercept over time. In particular, if 
a75 is the coefficient estimate for the 1975 
dummy and a76 the coefficient estimate for 
the 1976 dummy, then the quality-adjusted 
percentage change in price during 1976 is esti-
mated by exp(a76 – a75) − 1. Normalizing the 
first period price index to 100, the rest of the 
index is calculated by adjusting the index from 
year to year by the percentage changes calcu-
lated from year to year as indicated above. An 
easier way to do this would be to define the 
dummies differently, so that, for example, the 
dummy for 1976 would be unity for 1976 and 
all subsequent years, rather than just for 1976. 
This means that the estimated coefficient 
on the 1975 dummy now becomes an estimate 
of the difference between the 1975 and 1976 
intercepts, facilitating the calculation given 
above.

 (b) A constant quality-adjusted percentage 
price change would require a time trend in 
the specification instead of the dummies. 

 This would produce the restricted sum of 
squared errors to contrast with the unrestricted 
sum of squared errors from the specification 
with the dummies, enabling an F test. The 
numerator degrees of freedom would be the 
number of parameters estimated in the unre-
stricted version less the number of parameters 
estimated in the restricted version, namely the 
number of dummies less one.

AC17 Put in a dummy equal to one for close to the 
dump, zero otherwise, and a dummy equal to 
one for 1991, zero otherwise. Also add an 
interaction dummy which is the product of 
these two dummies. The interpretation of 
the coefficient on the interaction dummy 
is the impact on price of the dump, beyond an 
overall price change over time. This is some-
times called the difference in differences 
method.

AC19 The low DW value has probably resulted 
from an incorrect functional form. If the data 
were ordered from smallest to largest D val-
ues (or reverse), a linear functional form 
would give rise to a low DW because for 
small D there should be practically 100% 
putts made and for large D practically 0% 
putts made. A logistic functional form would 
be more suitable.

AC21 Could consider a logistic functional form. 
Conclusions (a), (b), and (c) are OK. Conclusion 
(d) requires a test. A female scores an extra 10 
points if in the tech group. A comparable 
male scores an extra 10, less 6 because of the 
interaction term tech*male, plus 5 for being 
male. The difference is 1, in favor of the 
female. The variance of this difference is the 
variance of the sum of the estimated coeffi-
cient of male and the estimated coefficient of 
tech*male.

AC23 (a) With coding one for male and zero for 
female, the percentage difference of males 
relative to females would be estimated as 
exp(b*) – 1 where b* is the gender dummy 
coefficient estimate. The new coding gives 
rise to an estimate exp(−b*) – 1, derived in the 
same way in which the original formula was 
derived.
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 (b) Use a Box–Cox regression and test the 
null that the Box–Cox parameter lambda 
equals unity (linearity) and test the null that 
lambda equals zero (semilogarithmic), in both 
cases against an alternative of an unrestricted 
lambda, using two LR tests.

 (c) Run the regression using the female data 
and obtain s2f, the estimate of the variance of 
the error. Run the regression using the male 
data and obtain s2m. Calculate s2f/s2m and 
compare it to the F value that cuts off the 
upper 5% (for example) of the F distribution 
with df 67 and 55.

 (d) Transform all the male observations 
(including the intercept) by multiplying them 
by the square root of s2f/s2m. Run OLS on all 
the observations (the original female observa-
tions and the transformed male observations). 
The benefit of the EGLS procedure is that it 
increases efficiency and avoids inference 
problems characterizing OLS in the presence 
of heteroskedasticity.

 (e) Use mixed estimation. In this case there 
would be five additional, artificial observa-
tions, one for each of the five parameter esti-
mates. An EGLS procedure is necessary, with 
the full estimated variance covariance matrix 
from the earlier results appearing as a block 
in the lower right of the error variance–cova-
riance matrix for the artificial regression.

AC25  She is regressing a stationary variable on a 
nonstationary variable (Canadian GDP is grow-
ing and so is nonstationary) which does not 
have available another nonstationary variable 
with which it can cointegrate. By putting in the 
time trend this problem is solved – after remov-
ing the time trend, Canadian GDP must be sta-
tionary, allowing a sensible regression via this 
cointegration. Interpretation should take the 
form of “Newfoundland unemployment 
decreases whenever Canadian GDP exceeds its 
equilibrium as given by its time trend.”

AC27 The negative sign probably is due to sample 
selection – the less productive firms were 
quick to apply for the grants. One way of pro-
ceeding would be to take the difference 
between the firms’ productivity measures in 

the first and second years and use that as the 
dependent variable and the second year’s 
observations on grant, sales, and employees 
as the explanatory variables. If it is believed 
that the grant only increases productivity with 
a lag, the difference between the firms’ pro-
ductivity measures in the first and third years 
could be used as the dependent variable and 
the third year’s observations on grant, sales, 
and employees as the explanatory variables. 
Even better here would be to exploit the panel 
nature of the data by using fixed or random 
effects estimation. In this case, the productiv-
ity levels would be retained as the dependent 
variable observations.

AC29 (a) The D67 coefficient is the change in the 
intercept from 1966 to 1967.

 (b) The D67 coefficient is the difference 
between the 1967 intercept and the “base” 
common intercept from 1959 through 1964.

 (c) Not equivalent. The first specification has 
the intercept increasing to 1968 and steady 
thereafter at the 1968 level; the second speci-
fication has the intercept dropping back to the 
1959–1964 base level after 1968.

AC31 The difference between these two definitions 
is that the former is looking at long-run cau-
sality whereas the latter is looking at both 
long- and short-run causality. If β1 = β2 = 0 is 
rejected but β1+β2 = 0 accepted, there is 
short-run causality but no long-run causality. 
It is not obvious that one definition is more 
appropriate than another; it depends on the 
purpose of the analysis.

AC33 (a) The concern about spending double one’s 
income on food is misplaced. The squared 
income term has a negative coefficient, so 
that with appropriate measurement units for 
income the results could be reasonable.

 (b) In its current form, the coefficient on NC 
provides directly a measure of the difference 
between the cost of feeding an adult versus a 
child. The proposed method will produce 
exactly the same measure by taking the dif-
ference between the coefficient on number of 
adults and the coefficient on NC. But calcu-
lating its variance will be more awkward, and 
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because it is the same measure, there is no 
gain in efficiency.

AC35 Should suggest using a logistic functional 
form because the dependent variable varies 
between zero and one. Should suggest using 
police expenditures per capita. If OLS is to be 
used should suggest a correction for hetero-
skedasticity because the dependent variable 
will be calculated using different county pop-
ulations. Finally, need to worry about simul-
taneity, requiring IV estimation: higher crime 
may induce higher expenditure on police.

AC37  The long-run impact of x is smaller than its 
short-run impact.

AC39  The easiest way is to create the following 
dummies:

 DD = 1 for observations on hours during the 
experiment, otherwise zero.

 DE = 1 for observations on individuals in the 
experiment, otherwise zero.

 Regress hours on an intercept, DD, DE, and 
DD × DE. The slope on DB × DE is the dif-
ference in differences measure.

AD1 (a) This program is producing 2000 t values 
that can be used to estimate the sampling dis-
tribution, under the null β = 2, of the t statistic 
for testing β = 2.

 (b) The t value obtained from the actual data 
is 2.50; because it lies within the two-tailed 
5% critical values of −2.634 and 2.717, we 
fail to reject the null at this significance level.

AD3 (a) The bias is estimated by av – 2.
 (b) The square root of var estimates the stan-

dard error.
 (c) The t statistic for testing the null is the 

estimated bias divided by the square root of 
its estimated variance, namely sqrt of 
var/4000.

 (d) The confidence interval is given by the 
interval between the 200th and the 3800th r 
values, adjusted for any bias (i.e., if bias is 
estimated to be .01, then .01 should be sub-
tracted from the 200th and 3800th r values.

AD5  The following describes how to bootstrap 
with specification A as the null; it must be 
repeated with specification B as the null to 
complete the J test.

 Perform the J test with A as the null. This 
requires obtaining the predicted y from running 
regression B and then running regression A 
with this predicted y as an additional regres-
sor. Call the t value associated with this addi-
tional regressor tA. Ordinarily tA would be 
compared to a t table to accept or reject speci-
fication A. The bootstrapping procedure cre-
ates new critical values tailored to this specific 
application of the J test.

 Run regression A to obtain parameter esti-
mates and residuals eA.

 Using these parameter estimates and errors 
drawn with replacement from eA, create new 
observations for y.

 Using these new y values, run regression B 
and obtain predicted y values. Continuing to 
use these new y values, run regression A with 
this predicted y as an additional regressor. 
Call the t value associated with this additional 
regressor t1.

 Repeat from (3) above to obtain a thousand of 
these t values, t1–t1000.

 Order these t values from smallest to largest 
and find the new 5% critical values, the 25th 
and the 975th of these t values. If tA falls 
inside (outside) this interval, accept (reject) 
specification A. 

AD7 (a) A Hausman test. The null is that the fixed 
and random effects estimates are equal. 
Sometimes this is described in terms of the x 
variables being uncorrelated with the “ran-
dom” intercept.

 (b) Misleading means that the type I error is 
not what it is supposed to be (typically chosen 
to be 5%).

 (c) The errors may not be normally distrib-
uted, or the sample size may be quite small.

 (d) Begin by performing the Hausman test to 
obtain the test statistic H0. Then do the 
following:

1. Perform fixed effects estimation, saving the 
slope estimates, the intercept estimates ints and 
the residuals resids.

2. Using these slope estimates, and drawing 
with replacement from ints and from resids, 
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create new y values. (Drawing the intercepts 
randomly ensures that the intercepts are not 
correlated with the explanatory variables, so 
the null is true.)

3. Perform the Hausman test using these new y 
observations, obtaining test statistic H1.

4. Repeat from 1 to obtain a thousand H values, 
H1–H1000.

5. Order the H values from smallest to largest
and see if H0 is smaller than H950, in 
which case the null is accepted at the 5% 
level.
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