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CHAPTER NINE

Tests of Significance for
Interval Data

In this chapter we discuss two important statistical tests that are used for testing
hypotheses in an experimental design in which there are two conditions and the DV
is measured on an interval scale. These tests are the independent groups t-test, which
is appropriate when each condition of the experiment uses different participants, and
the related ¢-test, which is suitable for an experiment in which the same particip-
ants are employed in both conditions (i.e., a repeated measures design) or there are
matched pairs of participants. In addition, we will discuss the one-sample ¢-test, which
is used when just one set of scores is obtained.

Remember that the fact that the DV has been measured by means of an interval
scale is not in itself sufficient to warrant the use of a f-test. A t-test can be used
only when parametric assumptions are met (see Chapter 6 for a detailed discussion
on parametric and non-parametric data). More precisely, if a non-parametric test is
called for and you have different participants in the conditions of the experiment,
you should use the Mann-Whitney U test, while if the same participants or matched
pairs of participants are used in the two conditions, then you should use the
Wilcoxon Matched Pairs T test. These two non-parametric tests have been thoroughly
discussed in Chapter 8.

Interval Data

We offered a detailed discussion of the nature of interval measurement in Chapter 6.
However, we will briefly summarize this notion here. Basically, there are various ways
of measuring a variable, and they vary in terms of the properties that the measurement
scales possess. In an interval scale, not only do larger numbers mean more of what-
ever is being measured (which is a characteristic shared with ordinal scales) but, in
addition, the intervals between numbers represent equal differences of the measured
variable at all points of the scale. For instance, suppose that we are investigating the
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effect of noise on people’s memory for words; we may set up an experiment in which
we ask participants to read out 50 words either in a noisy environment or in a quiet
one, and then we count the number of words that are remembered, expecting that
participants who read the words out in the ‘noise’ condition would remember fewer
words than participants in the ‘quiet’ condition. Clearly, the DV is the number of words
remembered, and people can score from 0 (no words remembered at all) to 50 (all words
remembered). In this case (provided that the words are all of comparable memorabil-
ity), we may safely assume not only that, say, a score of 24 stands for a better memory
than a score of 20, but also that the interval between 24 and 20 is broadly the same
as that between 14 and 10 (or between 44 and 40, between 9 and 5, and so on).

The Independent-Groups t-test

Let us start by reminding you of the hypothetical experiment discussed in Chapter 2.
This will allow us to introduce the first of the tests presented in this chapter, that is
the ‘independent groups #-test’.

Selecting a test for our ‘mood’ experiment

In the fictitious experiment used in Chapter 2, we wanted to test the following hypo-
thesis: ‘when people have a positive mood, their intellectual performance will be enhanced’.
We therefore proposed to design an experiment involving two conditions. In the experi-
mental condition a group of participants watch a movie excerpt with a funny content;
in the control condition a different group of participants watch an excerpt with an
emotionally neutral content. This should lead participants in the experimental condition
to have a better mood than those in the control condition. To measure the level of intel-
lectual performance we proposed to ask participants to solve 10 logical problems.
(See Figure 2.1 for an overview of the experimental design.) Obviously, if our hypo-
thesis is correct we should find that participants in the experimental condition (mood
enhanced) tend to solve a higher number of logical problems (i.e., to have a better
intellectual performance) than participants in the control condition (mood unaltered).

In Chapter 4 we presented a table (see Table 4.1) showing a hypothetical set of
scores produced by respondents in both the experimental and the control conditions
- remember that each score represents the number of logical problems solved by a
specific participant. In that chapter we also calculated the mean score produced by
respondents in each condition of the experiment. This was 6.8 in the experimental
condition and 5.4 in the control condition. We can also tell you that the standard
deviation was 1.3 in the experimental condition and 1.5 in the control condition.
The means indicate that, as predicted, participants in the experimental condition did,
overall, solve more problems than participants in the control condition. However, as
we have often emphasized, the difference between means in itself cannot be used to
infer that our hypothesis is correct: in order to make a proper inference we need to
use a statistical test.
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Which test should we use in order to see whether our hypothesis is correct or not?
A careful look at Table 6.1 will help you to decide. We already know that, concerning
the nature of the research question, we are looking for a causal effect of one variable
(mood) on another (intellectual performance), which leads directly to the prediction of
a difference between means. We also know that, concerning the type of experimental
design that is used, we have allocated different participants to the two conditions
and that, therefore, we have used an ‘independent groups design’. (The reason why
we used this type of design was discussed in Chapter 3, particularly in the section
entitled ‘Participant variables’.) At this point the question we need to ask ourselves
is concerned with the type of measurement scale that we have used. Did we use a
nominal, ordinal, interval or ratio scale? Clearly, our scale was not a nominal one,
because different scores do not refer only to different qualitative characteristics of
the respondent, but refer to different degrees of our DV, that is ‘intellectual perform-
ance’. Next, we can ask whether our scale was limited to an ordinal level. The answer
is that it was not, because we may confidently assume that intervals between numbers
are broadly equivalent at all points of our scale. So, at this point we know that we
have at least an interval scale.

So, regarding our experiment on mood and performance, we now know that we
are looking for a difference between means, that our design is an independent groups
one, and that our DV is measured on at least an interval scale. If you look at Table 6.1
you will realize that we have only two options in terms of the statistical test to be
selected: either an independent groups #-test or a Mann-Whitney U test. To choose
between these two tests we need to decide whether parametric assumptions are rea-
sonably met or not. In Chapter 6 we offered some useful rules of thumb on how to
decide whether the parametric assumptions are met (see Figure 6.1 for a schematic
summary of these rules). On the basis of these rules we can be reasonably confident
that in our experiment the parametric assumptions are met. This is because (i) the
variance of the samples in the two conditions (1.3*= 1.69 and 1.5%= 2.25) does not
differ substantially, and because (ii) the frequency distribution of scores in each con-
dition is reasonably close to a normal distribution (see Figure 4.1 for histograms and
Figure 4.3 for frequency polygons for the data in the conditions of our experiment).
So, the statistical test we should use to ascertain whether our hypothesis is correct
is the independent groups f¢-test (consider that this specific test may also be defined
as an ‘unmatched t-test’, a ‘f-test for two independent means’, a ‘t-test for unrelated
samples’ and an ‘independent samples f-test’; so, don’t worry if other books use one
of these labels: what they mean is always the same thing!).

The logic of the independent groups t-test

Once you know that what you need is the independent groups #-test, all you have to
do is to enter your data into a computer package and use the appropriate procedure
to run the test (see SPSS operations and output (9.1) for how to run this test using
SPSS). The package will perform a series of calculations on your data, based on a
specific mathematical formula. Here we will explain the rationale behind this formula,
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but we will not explain its mathematical details, as this is beyond the scope of this
book. (See Formulae (9.1) if you want to see what one version of the formula for
the t-test looks like.)

The independent ¢-test focuses on two things. First, it looks at the difference between
the mean of the scores obtained by participants in the experimental condition and
the mean of the scores obtained by participants in the control condition. Second, the
t-test is interested in the variability of the scores obtained by participants within
each condition. What the formula does is to contrast the difference between the means
obtained in the two conditions with the general variability of the scores within each
condition. The f-value represents an indicator of this contrast, which is summarized
in the following verbal formula:

. difference between the mean scores in the two conditions

general variability of scores within each condition

Technically, the ‘general variability of scores within each condition’ is defined as the
‘standard error of the differences between means’, but don’t worry about that at this
stage. Just remember that the denominator in the equation is an estimate of how
‘spread out’ scores are within the two conditions. Broadly speaking, the more different
the two means and the less variable the scores within each condition, the higher the
value of t. On the contrary, the less different the two means and the more variable
the scores within each condition, the lower the f-value. Clearly, when the means in
the two conditions are very different and the scores within each group have little
variability, the difference between the two means is probably due to the fact that
participants in the two conditions were exposed to different levels of the IV (i.e., that
the difference is not due to chance). On the other hand, when the means are very
similar and the scores within each group have high variability, it is quite likely that
random variability would be sufficient to produce a small preponderance of higher
scores in one condition, and we can be almost certain that the difference between the
means is due to chance. That also implies that the higher the value of ¢ the smaller the
probability that the difference between the means is due to chance (i.e., random NVs).

Formulae (9.1) - The independent groups t-test

The formula for the independent groups t-test varies depending on whether the
number of participants in the two groups is equal or not. The simplest version
of the formula is the one that holds only when group sizes are equal, and that
is the formula given below:
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where the symbols mean:

X, = mean of scores in condition 1

X, = mean of scores in condition 2

s? = sample variance of condition 1 (see Formulae (4.2))
s2 = sample variance of condition 2

n = number of participants in each condition

So, the arithmetical operation that you see in the ‘numerator’ (i.e., the expression
on the top) calculates the difference between the mean obtained by participants
in the experimental condition and the mean obtained by those who were in
the control condition. On the other hand, the arithmetical operations that you
can see in the ‘denominator’ (i.e., the expression underneath) calculate the gen-
eral degree of variability of the scores obtained by participants within each con-
dition (broadly speaking, this is equivalent to the average standard deviation
within the two conditions).

If the number of participants in the two groups differs, the formula becomes
a bit more complicated because the two sample variances in the denominator
have to be weighted according to their sample sizes. The denominator in that
formula will thus provide a weighted average of the two sample variances,
usually referred to as a pooled variance estimate.

As you are unlikely ever to need to do these calculations by hand, you do
not need to worry about the details of the formulae for computing ¢, and we
are not even going to show you the formula that applies when sample sizes
are unequal. The formula that is used when sample sizes are equal will suffice
as an illustration in case you are interested in how the calculations are done.

If you do ever calculate a f-statistic yourself, or you are given a t-value without
being told anything about the probability of it having arisen by chance (i.e., its stat-
istical significance), provided you know the sample sizes of the two groups, you can
use a statistical table (as in Statistical Table 9.1, a partial version of which is shown
here) to see whether the f-value is large enough to be statistically significant. The
table gives the critical values of t (i.e., the minimum value needed for statistical
significance at various levels of probability) for different sample sizes.

To use the table, you need to know the calculated t-value (let’s suppose it is t = 2.62)
and the degrees of freedom (dfs) for your t-statistic. The concept of degrees of free-
dom was explained briefly in Chapter 4 (see Complications (4.2)). As two standard
deviations are computed on the way to calculating t for an independent groups design
(i.e., one for each group), two degrees of freedom are lost. So, instead of referring
directly to the total sample size (n, + n, = N), the table specifies the df for the
calculation of t (always N — 2 for an independent groups design, because one df is
lost for each group). As an example of using the table, suppose you had carried out
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Statistical Table 9.1 Critical values of t. t is significant when it equals or exceeds the
table value (partial table - full version in Appendix 1)

level of significance for a one-tailed test
.10 .05 .025 .01 .005 .001 .0005
level of significance for a two-tailed test
df .20 .10 .05 .02 |.01 | .002 .001
1] 3.08 6.31 12.71 31.82 63.66 318.31
2| 1.89 2.92 4.30 6.96 9.92 22.33
3 1.1.64 2.35 3.18 4.54 5.84 10.22
\/\/W\/\/\_/\/\/\/\_/_J\/\_W
/\/\\/_\/—/\/\/\/W-_\/\/\/\/\/_\
28 | 1.31 1.70 2.05 2.47 2.76 3.41
29 | 1.31 1.70 2.05 2.46 2.76 3.40
30 | 1.31 1.70 2.04 2.46 3.39
40 | 1.30 1.68 2.02 2.42 2.70 3.31
60 | 1.30 1.67 2.00 2.39 2.66 3.23
120 | 1.29 1.66 1.98 2.36 2.62 3.16
2000 | 1.28 1.65 1.96 2.33 2.58 3.09

Source: The entries in this table were computed by Pat Dugard, a freelance statistician.
For an independent groups (between Ss) test, df = N — 2 (where N is the total number of
scores in both groups)

For a related (within Ss or matched pairs) test, df = N — 1 (where N is the number of pairs
of scores)

an experiment with 20 participants in an experimental condition and 15 participants
in a control condition. Then N = 20 + 15 = 35 and the dfs are 35 — 2 = 33. So, you
look for 33 in the left-hand column of the table. If, as in this case, the required df
value is not shown in the table, the cautious solution is to select the nearest smaller
value (df = 30, in this example), and enter the table at that row. Next, you need to
decide what alpha level (level of significance) you want to test for. Suppose you are
interested in a two-tailed test at alpha = .01. You should look down that column
third from the right and locate the critical value of ¢ at its intersection with the row
where df = 30. The critical value is 2.75. As the obtained t-value (2.62) is not as big
as the critical value (2.75), you should conclude that the difference between the experi-
mental and control means did not reach statistical significance at the 1% level (i.e.,
p > .01) in a two-tailed t-test.

Note that had you been testing a directional hypothesis (say, the experimental mean
is greater than the control mean), you might have decided to use a one-tailed test
and would have been looking down a different column (fourth from the right) and
the critical value for * would have been 2.46. In that case, provided the experimental

o mean was indeed greater than the control mean, you would have concluded that the
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predicted difference in favour of the experimental condition was statistically signi-
ficant at the 1% level (p < .01) in a one-tailed test.

We remind you (see Complications (5.1)) that, rather than just looking down the
column containing critical values for a pre-selected alpha level, in practice, some
researchers scan the columns to see what is the lowest level of significance that can
be reported for the t-value they obtained. Thus, with 20 dfs and #-values of 2.12 and
3.12 for two related experiments, a researcher might refer to Statistical Table 9.1 and
report that the effect in the first experiment was significant at the 5% level (p < .05)
and that the effect in the second experiment was significant at the 1% level (p <
.01), both in two-tailed tests. We also remind you (see Complications (5.4)) that no
such exploratory strategy can be used to decide whether to report a one- or two-
tailed level of significance. The decision to use a one- or two-tailed test must always
be made in advance.

On the subject of one- and two-tailed tests, Statistical Table 9.1 (in common with
several of the other statistical tables in this book) is particularly useful for the way
it makes clear the relationship between critical values for the statistic and signi-
ficance levels for one- and two-tailed tests. Looking at the top of the table, you can
see, for example, that any value of ¢ that is significant at the 10% level (p < .10) in
a two-tailed test will be significant at the 5% level (p < .05) in a one-tailed test. The
general rule is: whatever the probability that the obtained value of a statistic can be
attributed to chance in a two-tailed test, the probability that it can be attributed to
chance in a one-tailed test will be half of that (see ‘One- and two-tailed tests’
in Chapter 5 for an explanation of this rule). An example of an analysis using an
independent groups t-test is given in ‘SPSS Operations and Output (9.1)".

SPSS operations and output (9.1) - Computing an independent
groups t-test

The data we will use in this example analysis are those shown, albeit in a different layout, in Table 4.1. To
perform an independent groups t-test in SPSS, you must devote one column to the IV and one to the DV. In
the column concerning the IV (which, with reference to our fictitious experiment, we might label as ‘mood’)
you specify which condition each participant in the experiment belongs to (usually coded as 1 and 2). In the
column about the DV (which we could label as ‘perform’) you specify the scores produced by all participants
in the experiment. Then proceed as follows:

()  Click on Analyze, from the menu at the top of the screen. Then click on Compare means, and then on
Independent Samples T-test.

(i) Move the DV from the rectangular box on the left side of the window into the box called Test variable.

(i) Move the IV from the rectangular box on the left side of the window into the box called Grouping
variable.

(iv)  Click on Define groups and then type in the numbers used in your data file to refer to each condition
(i.e., each independent group of participants) in your experiment. For instance, regarding our fictitious
experiment, if we had used 1 = good mood and 2 = neutral mood we would type 1 in the Group 1 box
and 2 in the Group 2 box.
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(v)  Click on Continue followed by OK.

(vi)  If you want to look at the shapes of the distributions of scores in the two conditions to see whether they
are approximately normal, click on Data, then Split File. Click on the radio button Organize output by
groups and move the IV into the Groups Based on box and click OK.

(vii) Click on Graphs, then Histogram. In the box on the left, select the DV and move it into the Variable
slot, then click on Display normal curve, followed by OK.

The output includes the following (we have not reproduced the histograms because they can be seen in

Figure 4.1):
Group Statistics
Std. Error
MOOD N Mean Std. Deviation Mean
PERFORM  good mood 20 6.8000 1.2814 .2865
neutral mood 20 5.3500 1.4609 .3267
Independent Samples Test
Levene’s Test for
Equality of Variances t-test for Equality of Means
95% Confidence
Interval of the
Difference
Sig. Mean | Std. Error
F Sig. t df | (2-tailed) |Difference|Difference| Lower | Upper
PERFORM  Equal variances 511 479 | 3.337 38 002 | 1.4500 | .4345 5703 | 2.3297
assumed
Equal variances 3.337 | 37.365 002 | 1.4500 | .4345 .5699 | 2.3301
not assumed

The SPSS output (9.1) refers to the data set (see Table 4.1) based on our imaginary
‘mood and intellectual performance’ experiment. The mean and standard deviation
for each condition of the experiment can be seen in the ‘Group Statistics’ table. In
the table called ‘Independent Samples Test’, you can see, among other things, the
value of ¢ (which in this case is 3.337), the df (38) and the probability of obtaining
that specific value of t by chance in a two-tailed test of the hypothesis (which is
.002) - see column labelled ‘Sig. (2-tailed)’.

Note that the result of another test (using the statistic, F, which is not dealt with
in this book) is presented towards the left of the ‘Independent Samples Test’ box.
This is a test to see whether the parametric assumption of ‘equality of variances’ is
met. If the variances differ significantly, you should look across the ‘Equal variances
not assumed’ row of the table. Otherwise, as in this case, you should look across the
‘Equal variances assumed’ row. The probability (.002) is the same in both rows in
this example because the variances in the two conditions are very similar (see squares
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of SDs from the ‘Group Statistics’ box - i.e., 1.2814* = 1.64 and 1.4609* = 2.13).
Note that the df in the ‘Equal variances not assumed’ row is slightly reduced from
df = 38. This is how the program makes allowance for non-equality of variances,
though the reduction in df is too small in this case to affect the probability (.002).
If you ever need to report the df for an ‘Equal variances not assumed’ solution, you
should round the df down to a whole number, in this case from 37.365 to 37.

Finally, note that SPSS often produces additional output that exceeds your cur-
rent needs (e.g., ‘Std. Error Mean’, ‘ Standard Error Difference’ and ‘95% Confidence
Interval of the Difference’ in the output above), and that at present you can safely
ignore.

Drawing inferences about our ‘mood’ experiment by using a t-test

As we explained in Chapter 5, experimental psychologists normally accept a value of
t that has less than a 5% probability of being obtained by chance, as an indication
that the experimental hypothesis is supported. So, if we submit the data collected in
our experiment on the effects of mood on performance to a t-test, we end up with
t = 3.34 (note that it is usually sensible to report statistical values to a maximum of
two decimal places). The probability of obtaining this specific -value by chance, in a
study involving two groups of 20 participants (i.e., df = 38), are two in one-thousand,
or, if you prefer, 0.29% (experimental psychologists and statisticians express this idea
as p = 0.002, as explained in Chapter 5). Obviously, this probability is less than 5%
(and, indeed, less than 1%), and so, provided we had a valid experimental design,
we can infer that our manipulation probably had a strong effect, in the sense that
participants in the experimental condition (good mood) performed better than par-
ticipants in the control condition (neutral mood). Therefore, we may conclude that
our experimental hypothesis - that ‘when people have a positive mood, their intel-
lectual performance will be enhanced’ - was supported (or, technically speaking, the
null hypothesis can be rejected).

Remember that t = 3.34 is not necessarily associated with p = 0.002. This is so in
our experiment given the specific number of participants in each condition. However,
with a different number of participants per condition, this t-value would be associ-
ated with a different value of p. This is because in that case our experiment would
have different degrees of freedom (reported as ‘df’ in the SPSS output). Basically,
given the same value of ¢, the more the degrees of freedom, the smaller the value
of p. Putting it another way, the more degrees of freedom, the smaller will be the
value of t needed for a given level of statistical significance.

You should also remember another thing. We are assuming that our hypothesis is
correct on the basis of the values of ¢ and p, but this is only because we know that
the mean score in the experimental condition was bigger than the mean score in the
control condition (thereby showing that intellectual performance was better under
good mood). But consider that, had the means been the other way around (i.e., 5.4
in the experimental condition and 6.8 in the control condition), you would have obtained
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the same t-value (except that it would have been a negative value, i.e., t = —3.337)
and the same p-value. However, in this case, the difference between the scores on
intellectual performance in the two conditions would not, as indicated by the neg-
ative value of ¢, have been in the predicted direction! It goes without saying that, in
this case, the hypothesis would have probably been wrong, and the null hypothesis
could not have been rejected. In other words, our hypothesis was a directional hypo-
thesis (i.e., we predicted not only that the two conditions would produce significantly
different scores, but also the direction of this difference), therefore, only a difference
in favour of the scores in the experimental condition will allow us to reject the null
hypothesis. (See Chapter 5 for more information on the notion of directional hypo-
theses.) If we had decided, before collecting our data, to carry out a one-tailed test
of the directional hypothesis, we would need to halve the two-tailed probability
provided in the SPSS output, i.e., the one-tailed probability would be .001. If we had
opted for a one-tailed test, therefore, even a p-value of .10 or less in the SPSS output
would have been sufficient for us to report a significant one-tailed effect.

Additional information (9.1) - Effect size

If you use a great many participants, your experiment has a high power, and
it is unlikely to miss a real effect even if it is very small (see Chapter 5, specific-
ally in the section on ‘Statistical decision errors’ and in Additional information
(5.6) for a discussion of ‘power’). A very small effect that is picked up because
the experiment has high power may be of limited theoretical or practical
significance. Therefore, in addition to the usual information about statistical
significance, it is useful to know whether the effect that was found is a large
or small effect. Indeed, an increasing number of psychology journals now insist
that information about effect size is reported along with the usual information
about statistical significance. There are several measures of effect size in use.
An intuitively meaningful one - in relation to the parametric analyses discussed
in this chapter - is that defined as the difference between means in units of
standard deviation. This is known as a standardized measure of the kind dis-
cussed in Chapter 4 in the section on ‘z-scores’. The point about standardized
measures is that they provide a stable interpretation of differences between
measures regardless of the scale on which they are measured. For example, know-
ing that the mean number of problems solved in the two conditions of the mood
experiment were 6.80 and 5.35 does not give us much idea of whether this is
a ‘big’ or a ‘small’ difference. If we tell you, however, that the two means dif-
fer by 1.06 standard deviations and that an approximate guide to effect size
(see Cohen in the ‘brief list of recommended books’) is that a difference of
.2 of a SD is a small effect, a difference of .5 SD is a medium effect and a dif-
ference of .8 SD is a large effect, you can immediately conclude that the effect
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we found was quite large, as well as being statistically significant. The calcu-
lation of effect size (signified by ‘d’), is straightforward:

Xl i Xz
SD

d=

where SD is the mean standard deviation of the two groups. Remember that
equal variances (and of course SDs) in the populations from which the sam-
ples are drawn is a required assumption for parametric tests and the average
of the two sample SDs is the best estimate we have of the joint population SD.
(Note that if the numbers of participants in the two groups are not the same,
a weighted average of the SDs has to be calculated - see Howell in the ‘brief
list of recommended books’.)

Reporting results (9.1) - The independent groups t-test

In a report of the experiment (assuming that a two-tailed test had been decided
on) the result could be described as follows:

In an independent groups t-test of the hypothesis that positive mood would result
in higher intellectual performance than neutral mood, the difference in number
of problems solved was in the predicted direction (positive mood mean = 6.80;
neutral mood mean = 5.35) and was statistically significant (¢ (df = 38) = 3.34;
p < .05; two-tailed). The effect size was given by d = 1.06.

Recall that some researchers would report the lowest conventional level of
statistical probability reached (i.e., p < .01), rather than a predetermined alpha
level (e.g., p < .05).

The Related (Repeated Measures) t-test
An imaginary experiment

Let us now consider another fictitious experiment. Suppose that we are studying
‘spider phobia’. Then suppose that we have a theory according to which, because there
are many venomous spiders, during evolution the human species has developed an
‘adaptive’ fear of spiders. This theory also holds that, because there are many more
venomous spiders among the hairy than among the non-hairy ones, humans will
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find hairy spiders more scary than non-hairy ones. This theory sees phobia of spiders
as just an exaggerated expression of this ‘natural’ fear, and therefore it predicts that,
although spider-phobic people are afraid of all spiders, they tend to fear hairy spiders
more than non-hairy ones. Now, in order to test this hypothesis, we can recruit 20
individuals who have been diagnosed as spider phobic, and show them a series of,
say, 10 three-dimensional, very vivid pictures of different spiders, five of which belong
to hairy species and five of which belong to non-hairy ones. While participants observe
the different pictures, we can assess their level of anxiety by recording their pulse-rate.
(Obviously, the order of presentation of pictures should be counterbalanced, as it is
possible that the spiders observed later would elicit less anxiety than the ones observed
earlier because of habituation.) Clearly, we expect that pulse-rate will be higher when
participants see pictures of hairy spiders then when they see pictures of non-hairy
ones. Finally, suppose that we find that, on average, participants’ pulse-rate is 108.50
beats per minute (with a standard deviation of 10.20) when exposed to pictures of
hairy spiders, and 105.75 beats per minute (with a standard deviation of 9.16) when
exposed to pictures of non-hairy spiders.

Selecting a test for the ‘spider phobia’ experiment

Although the means indicate, as predicted, that viewing hairy spiders produces higher
pulse-rates than viewing non-hairy ones, which statistical test should be used to test
statistically the hypothesis that spider-phobic people find hairy spiders more scary
than non-hairy ones? As usual we must start by deciding what we are testing for.
We are clearly testing for a difference between conditions, as we want to know whether
seeing different types of spiders produces different emotional responses. Second, we
need to consider the type of research design we are using. Basically, we have two
conditions, one in which participants are shown hairy spiders, and one in which the
same participants are shown non-hairy spiders. Now, this is clearly a repeated meas-
ures design, as the same people are employed in both conditions of the experiment.
Third, we must decide what kind of scale we have used to measure the DV, which
is about the level of fear prompted by the view of spiders. We can consider our scale
as an interval scale, as the intervals between the various levels of pulse-rate can be
understood as being broadly the same. Finally, we need to know whether parametric
assumptions are met. Given that the variability of the scores in the conditions is
similar, as indicated by the standard deviations (10.20 and 9.16), and providing that
the distribution of the pulse-rates for each type of spider was broadly similar to a
normal distribution, we can say that parametric assumptions are reasonably met. At
this point we can choose our statistical test; we are looking for a difference between
conditions, we have a repeated measures design, we have used an interval measurement
scale, and parametric assumptions are met: the test to be used is the related #-test!
Had the parametric assumptions not been reasonably met, the test of choice would
be the Wilcoxon Matched Pairs T test (see Table 6.1).
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Additional information (9.2) — Control conditions

When we first introduced the notion of experimental and control conditions in
Chapter 2, we explained that not all experiments include a control condition.
This is the case in the spider phobia experiment. Here, the presentation of
non-hairy spiders pictures is intended to produce an effect on participants
(unlike the neutral condition in the mood experiment), and so it cannot be strictly
defined as a ‘control’ condition. Therefore, conditions should not be labelled
as experimental and control conditions; instead, they should be given descrip-
tive names (e.g., hairy and non-hairy). Whether or not it is referred to as
such, a control condition is one that involves a treatment that is the same as
in the experimental condition in all respects except the critical one that is
the subject of the hypothesis. A clear example of this is in treatment (e.g.,
drug) evaluation studies, where the control condition involves the giving of a
placebo (something that appears the same as the treatment, but lacks the active
ingredient).

At this point you should proceed as usual. That is, you enter your data into a data-
file and analyse it using SPSS (see SPSS operations and output (9.2)). With alpha set
at .05, a probability of p < .05 will allow you to reject the null hypothesis (see SPSS
operations and output (9.2) to find the t-value and the two-tailed probability of obtain-
ing that t-value by chance).

The logic of the related (repeated measures) t-test

As with the independent groups ?-test, once you know that what you need is the
related f-test, you only need to enter your data into a computer package and use the
appropriate procedure to run the test (see SPSS operations and output (9.2) for how
to run a related t-test using SPSS). The rationale behind the formula for a related ¢-test
is basically the same as for the independent groups f-test. The principal difference
is that the scores in the two conditions are converted to a single set of difference
scores. For each participant, the score in one condition is subtracted from the score
in the other condition. The analysis is then carried out on these difference scores. If
the null hypothesis is true, we should expect the positive and negative differences
to approximately balance out. So, under the null hypothesis, the mean of the differ-
ences is predicted to be zero. Technically, the mean of the hypothetical population
of difference scores, of which our difference scores are a sample, is hypothesized to
be zero.
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Additional information (9.3) — Analysis of data from a matched
pairs design

A matched pairs design is also analysed using a related #-test. Here there are
different participants in the two conditions, but each participant in the ‘hairy’
condition has been matched with a participant in the ‘non-hairy’ condition. The
variable on which they have been matched will be one, such as ‘severity of
phobia’, which is likely to have a strong effect on the DV (pulse-rate) regard-
less of which condition the participant is in. Thus, a severe phobic is likely to
have higher pulse-rates than a less severe phobic both in the hairy and non-
hairy conditions. For this reason, each matched pair of participants can be treated
as though they were the same participant being exposed to both conditions and
the difference between their scores in the two conditions can be used in a related
t-test, just as for a repeated measures design where it really is the same par-
ticipant being exposed to both conditions. (See Additional information (6.1) for
a discussion of the extent to which participant NVs are effectively controlled
in a matched pairs design.)

As with the independent groups t-test, the related f-test contrasts two things. In this
case, it contrasts the extent to which the mean of the sample of difference scores
deviates from a population mean of zero with the variability within the sample of
difference scores. Again, the t-value is an indicator of this contrast and may be sum-
marized in the following verbal formula:

. difference between sample and population means of difference scores
variability of difference scores within the sample

Technically, the ‘variability of difference scores within the sample’ is defined as the
‘standard error of the mean’ of the difference scores, but, once again, you do not
need to be concerned about that at this stage. You just need to know that the denom-
inator in the equation is an estimate of how ‘spread out’ the difference scores are.
As with the independent groups f-test, the greater the difference in the numerator
and the smaller the variability in the denominator, the higher the value of t. In this
case, it can be inferred that the higher the value of t the smaller the probability that
the deviation of the mean of difference scores from zero is due to chance (i.e.,
random NVs). The statistical formula can be seen in Formulae (9.2).
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Formulae (9.2) - The related (repeated measures) t-test

D-o0
t:

where the symbols mean:

D = mean of difference scores

sp = standard deviation of difference scores (standard error of their mean)

n = number of difference scores (number of participants when repeated meas-
ures or number of matched pairs)

So, the arithmetical operation that you see in the numerator calculates the
difference between the mean of the participants’ difference scores and the
hypothetical population mean of zero. On the other hand, the arithmetical opera-
tions that you can see in the denominator calculate the degree of variability
of the sample of difference scores.

Once again, as you are unlikely ever to need to do these calculations by hand,
you do not need to worry about the details of the formulae for computing t.

If you ever calculate a related f-statistic yourself, or you are given a related
t-value without being told anything about the probability of it having arisen by chance
(i.e., its statistical significance), provided you know the number of pairs of scores
(usually, the total number of participants, but it would be the number of matched
pairs of participants if you were using a matched pairs design), you can use the same
statistical table (Statistical Table 9.1) to see whether the f-value is large enough to
be statistically significant. The critical values of ¢ given in the table are interpreted
in the usual way (i.e., they are the minimum values needed for statistical significance
at various levels of probability) for different sample sizes. Note, however, that the
degrees of freedom for a related #-test are N — 1, where N is the number of pairs of
scores (i.e., difference scores). This is because only one standard deviation has to be
computed on the way to obtaining a related t-value (see Formulae (9.2)).

SPSS operations and output (9.2) - Computing a related t-test

To perform a related t-test in SPSS, you must create two columns, one for each condition of the experiment.
That is, under one column you will include scores produced by each participant in one condition, and under
the other column you will type scores produced by the same (or matched) participants in the other condition.
For instance, concerning our ‘spider phobia” experiment, you may create a column called ‘hairy’ (meaning
‘hairy spiders’) and a column called ‘nonhairy’ (meaning ‘non-hairy’ spiders) and enter participants’ average
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Paired Samples Statistics

Std. Error
Mean Std. Deviation Mean
Pair  hairy spiders 108.5000 20 10.1955 2.2798
1 non-hairy spiders | 105.7500 20 9.1587 2.0479
Paired Samples Correlations
N Correlation Sig.
Pair  hairy spiders & 20 754 .000
1 non-hairy spiders
Paired Samples Test
Paired Differences
95% Confidence
Interval of the
Diffi
Std. Std. Error erence Sig.
Mean | Deviation Mean Lower Upper t df (2-tailed)
Pair  hairy spiders — 2.7500 6.8509 15319 | -.4563 | 5.9563 1.795 19 .089
1 non-hairy spiders

Std. Dev =10.20

Mean = 108.5
N =20.00
90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0

hairy spiders

7
Std. Dev=9.16
Mean = 105.8
N =20.00

85.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 125.0
— non-hairy spiders
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pulse-rate when seeing each type of spider in the relevant column (by ‘average’ we mean that, given that
participants’ pulse-rate was taken five times for each type of spider, you need to calculate the mean of these
five measures of pulse-rate). Then proceed as follows:

1. Click on Analyze, from the menu at the top of the screen. Then click on Compare means, and then on
Paired Samples T-test.

2. Click on the two variables that you want to compare (e.g., hairy and nonhairy). As they are highlighted,
move them into the box called Paired variables by clicking on the arrow button.

3. Click on OK.

4. In order to look at distributions of scores in the two conditions, click on Graphs, then Histogram. In the
box on the left, select one of the conditions and move it into the Variable slot, then click on Display
normal curve, followed by OK. Repeat with the other condition entered in the Variable slot.

The SPSS output (9.2) refers to a data set (see Table 9.1) based on imaginary results
that emerged from our hypothetical ‘spider phobia’ experiment. The mean and standard
deviation for each condition of the experiment can be seen in the ‘Paired Samples
Statistics’ table. In the table called ‘Paired Samples Test’, you can see, among other things,
the value of ¢, which in this case is 1.795, the df, which is 19 and the probability of

Table 9.1 Hypothetical data for a repeated measures design: pulse-rates (beats per minute)
of spider phobics when viewing hairy and non-hairy spiders

Participant IV: type of spider
hairy non-hairy
1 110 113
2 115 111
3 110 103
4 111 104
5 103 98
6 111 107
7 130 125
8 89 91
9 116 110
10 121 117
11 112 112
12 104 87
13 119 108
14 100 99
15 104 110
16 104 100
17 98 113
18 115 110
19 110 103
20 88 94
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obtaining that specific value of t in a test of a two-tailed hypothesis, which is .089
(see column labelled ‘Sig. (2-tailed)’.

The information in the ‘Paired Samples Correlations’ table simply tells you that there
is a fairly strong positive relationship between scores in the two conditions. Measures
of relationship (or correlation) between variables will be discussed in detail in Chap-
ter 10. For the moment, just remember that a positive correlation implies that people
who have relatively high pulse-rates in the ‘hairy’ condition tend also to have relatively
high pulse-rates in the ‘non-hairy’ condition, and those with relatively low pulse-rates
in the ‘hairy’ condition tend also to have relatively low pulse-rates in the ‘non-hairy’
condition. This suggests that a repeated measures design was a good choice because
participant differences have a marked effect on the DV and are therefore well worth
controlling (see Chapter 3 under the heading ‘Controlling participant nuisance variables’).

As the histograms indicate that both distributions of scores approximate to normal
distributions and their variances do not differ greatly (10.20*= 104.04 and 9.16° =
83.91), the assumptions required for a parametric test may be considered met. Note
that for the related t-test, SPSS does not provide any adjustment for non-equal vari-
ances and it would be particularly unwise to use the parametric related #-test on data
with substantially different variances in the two conditions. In that case, the altern-
ative (non-parametric) Wilcoxon Matched Pairs T Test should certainly be preferred.

Recall that it is desirable to report effect size as well as statistical significance infor-
mation. In this case, effect size (d) is given by the difference between the means for
the two conditions divided by the standard deviation of the difference scores, which
is given in the ‘Paired Samples Test’ table as 6.8509. So d = (108.50 — 105.75)/6.85
= .40. Using Cohen’s convention, this is a small to medium effect.

Reporting results (9.2) - related t-test

The way the result would be described in a report of the experiment (assum-
ing that alpha was set at .05 and a two-tailed test had been decided on) would
be something like this:

In a related #-test of the hypothesis that spider phobics would have higher pulse-
rates when viewing hairy spiders than when viewing non-hairy spiders, the dif-
ference was in the predicted direction (hairy mean = 108.50; non-hairy mean =
105.75) but was statistically non-significant in a two-tailed test (¢ (df = 19) = 1.80;
p > .05). The effect size was d = .40.

Note that, even though a directional prediction was made, it is not ‘wrong’ to
decide on a two-tailed test. But note, also, that had a one-tailed test been decided
on before the data were collected, the difference would have reached statistical
significance because the one-tailed probability would have been .089/2 = .044
(i.e., p < .05).
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The One-Sample t-test

In some circumstances you may want to obtain scores on a DV in just one condition
in order to compare the mean of those scores with some already known mean of
another set of scores on that DV. As only one sample of scores is used in the analysis,
the parametric test used is known as the ‘one-sample f#-test’. The usual parametric
assumptions apply even though one of the means was obtained on a previous occa-
sion, probably by a different researcher.

An example of an occasion when it might be appropriate to collect a single set of
scores would be when you wanted to know whether the mean reading age of a group
of 10-year-old children, who had been selected for participation in a remedial read-
ing experiment, was significantly lower than that of the population of 10-year-old
children in the schools from which the sample came. Provided that the reading test
to be used had previously been administered to a representative sample of the popu-
lation of 10-year-olds in the schools in question, the test could now be administered
to the ‘remedial’ sample and a one-sample f-test could be used to test the difference
between their mean reading age and that of the representative sample of 10-year-
olds. Another example would be when it was required to establish that a group of
people who were to take part in an experiment were ‘typical’ of the population from
which the sample was drawn; that is, that the sample mean did not differ significantly
from the known population mean on the DV (e.g., intelligence; reading age; reaction
time). Another possibility would be that you intended to do an experiment similar
to one you had seen reported and would like some assurance that the participants
you had selected were similar to the participants in the reported experiment in some
important respect. You might want the assurance so that you could make compar-
isons between the results of the reported experiment and the one that you would be
carrying out.

The logic of the one-sample t-test

Essentially, the one-sample t-test is a more general version of the related t-test, because
the known mean that the single set of scores is compared to can be any value. In
the first example above, if the mean reading age of a representative sample of 10-
year-olds in the relevant schools were 9.5 years, that would be the mean against
which the scores of the ‘remedial’ sample would be tested. In another scenario, the
mean IQ (intelligence quotient) of the UK population of 10-year-olds is often set at
100, with ‘more intelligent’ children having scores ranging above 100 and ‘less intel-
ligent’ children having scores ranging below 100. If we wanted to establish whether
a sample of 10-year-olds whom we intended to use in an experiment were typical
of the UK population of 10-year-olds, we would test the 1Qs of our sample against
the known mean of 100.

In the case of the related #-test, the situation is more constrained. Then, we are always
working with a sample of difference scores and the hypothetical mean difference against
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which they are compared is always zero. In this sense the related #-test can be seen
as a special case of the one-sample #-test, because the comparison mean for the related
t-test is always the same - zero.

Another way of construing the relation between these two tests is to think of the
sample of scores used in the one-sample t-tests as a set of difference scores, in which
the second score to be subtracted from the first is zero. It is as though the first
condition contained the single sample scores and the second condition contained a
column of zeros. So, the formula for one-sample ¢ (see Formulae (9.3)) is effectively
the same as that for related ¢, the difference being that the value in the numerator
that is subtracted does not have to be zero. This means that in SPSS it is neces-
sary to specify the value of the population mean that is to be subtracted from the
sample mean.

Formulae (9.3) - The one-sample t-test

X —
t = H
5

Vn

where the symbols mean:

X = mean of scores in the single sample

U = known mean of population from which the sample is drawn
s

n

standard deviation of scores in the single sample
number of scores (i.e., participants) in the single sample

Remember that the related #-test and the one-sample f-test are effectively doing the
same job. In fact, if you wished, you could compute related t using the SPSS pro-
cedure for a one-sample f-test (the procedure for a one-sample f¢-test is shown
in SPSS operations and output (9.3)). All you would need to do would be to specify
the value of the ‘Test Value’ (i.e., the population mean) as zero. Conversely, you
could compute one-sample ¢ using the SPSS procedure for a related -test (see SPSS
operations and output (9.2)). In this case, all you would need to do would be to
enter the sample scores under the first condition and a column of zeros under the
second condition.

An illustrative set of IQ scores is provided for a sample of 15 10-year-olds in
Table 9.2. In this example, the reason for calculating a one-sample #-value might be
to establish whether the mean of the sample scores differs significantly from the known
10-year-old population mean of 100.
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Table 9.2 Hypothetical data for a one sample design:
1Q scores of a sample of 10-year-old children

Participant 1Q score
1 95
2 87
3 101
4 96
5 105
6 116
7 102
8 81
9 97

10 90

11 123

12 86

13 95

14 104

15 83

SPSS operations and output (9.3) - Computing a one-sample t-test

To perform a one-sample t-test, you must enter the sample scores in one column and then proceed as follows:

(i)  Click on Analyze, from the menu at the top of the screen. Then click on Compare Means, and then on
One-Sample T test.

(i) Move the DV scores for the sample into the Test Variable(s) box.

(i) Enter 100’ in the Test Value box and click OK.

One-Sample Statistics

Std. Error
N Mean | Std. Deviation | Mean
IQSCORE 15 | 97.4000 11.7096 3.0234
One-Sample Test
Test Value = 100
95% Confidence
Interval of the
Sig. Mean Difference
t df (2-tailed) | Difference | Lower Upper
IQSCORE -.860 14 404 -2.6000 -9.0845 3.8845
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The SPSS output (9.3) refers to the imaginary IQ data set in Table 9.2. The mean
(97.40) and standard deviation (11.71) of the sample of DV scores are shown in the
table called ‘One-Sample Statistics’. The ‘One-Sample Test’ table shows the value of
t (—.860). This is a negative value because the sample mean is lower than the popu-
lation mean of 100. That table also shows the df (N — 1 = 14) and the two-tailed
probability of obtaining the specific value of # when the null hypothesis is true.
Once again, we should report effect size as well as statistical significance informa-
tion. In this case, effect size (d) is given by the difference between the mean of the
sample and the population mean divided by the standard deviation of the popula-
tion (which is set at 15 by the IQ test constructors). So d = (97.4 — 100)/15 = —.17
(the minus sign can be ignored). Using Cohen’s convention, this is a very small effect.

Reporting results (9.3) - One-sample t-test

The way the result would be described in a report of the study (assuming that
alpha was set at .05 and a two-tailed test had been decided on) would be some-
thing like this:

In a one-sample t-test of the hypothesis that the mean 1Q of a sample of 10-year-
olds would differ from the population mean of 100, the sample mean of 97.40
did not differ significantly from the population mean (¢ (df = 14) = .86; p > .05;
two-tailed). It is therefore reasonable to treat the sample as representative of the
population with respect to 1Q. The effect size was given by d = .17.

SUMMARY OF CHAPTER

In an experiment, when the DV has been measured on an interval scale (or
a scale intermediate between ordinal and interval) and parametric assump-
tions are met, the statistical test to be used is a t-test.

With an independent groups design the specific #-test to use is the inde-
pendent groups t-test. This contrasts the difference between the mean scores
in the two conditions of the experiment with the general variability of the
scores within each condition. The t-value represents an indicator of this con-
trast. The higher the value of #, the lower the probability that the observed
difference between means emerged by chance. If the probability of obtain-
ing a specific value of t is less than 5%, and the difference between means
is in the right direction, the null hypothesis can be rejected.

When the experiment is based on a repeated measures design, the #-test to
be used is the related t-test. This contrasts the mean difference between
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participants’ scores in two conditions with a difference of zero assumed for
a hypothetical population of difference scores when the null hypothesis is
true.

e When the experiment is based on a matched pairs design, we use the related
t-test again. This test contrasts the mean difference between matched pairs
of participants’ scores in two conditions with a population difference of zero.

e When a single sample design is used, the #-test to be used is the one-
sample ?-test. This is similar to the related #-test, but in this case the mean
of the single sample of scores is contrasted with the known mean of the
population of scores from which the sample was drawn.




