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CHAPTER FIVE

Making Inferences from Data

To introduce the issue that is at the heart of this chapter, we will use our imaginary
experiment again. In this experiment we want to test the hypothesis that people who
are in a good mood perform better on intellectual tasks than people who are in a
neutral mood. To test this hypothesis, we create two conditions. In one condition a
group of participants watch a movie excerpt with humorous content (the experimental
condition), and in the other condition a different group of participants watch an excerpt
with an emotionally neutral content (the control condition). We expect that particip-
ants in the experimental condition will perform better on an intellectual task than
those in the control condition, because of a mood change induced by the experi-
mental condition. The level of intellectual performance is measured by presenting
participants with 10 logical problems. To decide if our hypothesis is correct we must
count the number of logical problems solved by participants in each condition of the
experiment.

Now, suppose that participants in the experimental condition generally solve more
logical problems than participants in the control condition (e.g., the mean number
of logical problems solved is higher in the experimental condition). This indicates
that our hypothesis ‘might’ be correct. However, finding that participants in the experi-
mental condition tend to solve more problems than those in the control condition is
insufficient to lead us to the conclusion that mood really has an effect on intellectual
performance. As we saw in Chapter 3, no meaningful conclusions can be drawn from
the results of an experiment if we have not previously ensured that our experiment
has validity. That means three things. First, we must make sure that our IV and DV
really measure ‘mood’ and ‘intellectual performance’ (construct validity). Second, we must
ensure that we are really observing the effects of the IV on the DV, and not those
of systematic NVs (internal validity). This is extremely important because if there are
systematic NVs affecting the DV, then we cannot claim to have a true experimental
design (we will discuss this notion at greater length later in this chapter). Third, we
must ensure that the effects of the IV on the DV that we observe can, as far as pos-
sible, be generalized to other people and situations (external validity). (See Figure 3.6
for a schematic illustration of what these three types of validity are about.)
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At this point, suppose we find the differences that we were expecting, and we are
confident that our experiment has validity. Will this be sufficient to conclude that
people who have a good mood perform better than people in a neutral mood?
Unfortunately it will not! The fact is that once we have reached this stage we have
to do still more things with our data. This is because there are still random NVs that
can affect our DV (intellectual performance) because they can never be completely
eliminated. Therefore, we need to use procedures that can ensure that random NVs
are not responsible for differences between scores in the experimental and control
conditions. Put differently, we need to deal with our data in a way that will allow
us to infer whether scores in the two conditions are sufficiently different to justify
the conclusion that the hypothesis is correct. These procedures concern the domain
of statistical inference.

Given that statistical inference is essentially about inferring that differences in scores
between conditions are not due to random NVs, it is important to discuss the nature
of NVs and the effects they may have on scores on the DV. In doing so, we will
necessarily repeat some of the ideas already expressed in Chapter 3.

Random NVs and their Effects on Scores in the DV

To explain the nature of random NVs, consider again the example used in Chapter 3.
Suppose that all the participants in our experiment come from the same university,
and that on the day preceding the experiment they attended a party where they had
several drinks and stayed until late. On the following day our participants might find
it difficult to concentrate on intellectual tasks and, as a consequence, they might gen-
erally perform worse on the logical problems than in normal circumstances. Clearly, this
implies that the scores on the DV would partly depend on the effects of the level of
participants’ concentration (that is, an NV).

Note that the effect of this NV would be potentially the same in both the experi-
mental (good mood) and control (normal mood) conditions. This is because, all
participants having attended the party, the intellectual performance of both those in
the experimental condition and those in the control condition would have the same
possibility of being influenced by tiredness. Therefore, it can be said that NVs are ‘a
nuisance’ because they introduce variability into the data, which makes it harder to
see the effects of an IV on scores on the DV.

Let us explain this notion more carefully. Imagine that the IV had no effect on
the DV, and that there were no random NVs affecting our DV. Then all scores in
both conditions would be the same (see Figure 5.1a for an example). If there were
still no NVs, but the IV did have an effect, we would have two possible scores, one
for each condition (see Figure 5.1b). In this case it is rather obvious that the IV has
affected scores in the two conditions differently. If there were no random NVs, our
data would always be clear like that, and there would be no need for inferential
statistics. Unfortunately, that is cloud-cuckoo land. There are always potential random
NVs and they make it harder to tell whether our IV has had an effect. In Figure 5.1c
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(a) expt. condition control condition
2 2
2 2
2 2
2 2
mean = 2 mean = 2

(b) expt. condition control condition

4 2

4 2

4 2

4 2
mean = 4 mean = 2

(c) expt. condition control condition

2 2

5 1

5 0

4 5
mean = 4 mean = 2

Figure 5.1 Effects of random NVs on scores: (a) no effect of IV and no random NVs; (b) effect of IV but
no random NVs; (c) effect of IV and effect of random NVs

you can see an example of what random NVs can do to the scores in the two con-
ditions of the experiment. Here, due to the effect of the IV, the difference between
means for the two conditions is the same as in Figure 5.1b but, because there are
also random NVs operating, this difference might have been caused by (1) the IV,
(2) random NVs just happening to pile up in favour of the experimental condition
on this particular occasion, or (3) some combination of the two. How can we decide
whether we should be persuaded that the IV had an effect? The clue is in how much
variability there is between scores within a condition. The variability within a condi-
tion cannot have been caused by the IV, because every participant within a condition
received the same treatment (i.e., the same level of the IV). So, the variability within
conditions must have been due to the chance effects of random NVs. Therefore, the
more differences there are within conditions compared to the mean difference between
conditions, the more likely it is that random NVs that caused the differences within
each condition could also have caused the difference between conditions.

What we really need to know is, given the amount of variability among scores
within each condition, just how likely it is that the obtained difference between means
(say, in Figure 5.1c) might have been entirely due to the effects of random NVs. This
is where a statistical test will help. It will tell us either that it is unlikely that random
effects could account for the data we obtained, in which case we will infer that our
IV probably did contribute to the difference, or that it is not that unlikely, in which
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case we will conclude that the difference between means might well have been due
to the cumulative effects of random NVs just happening (by chance) to pile up in
favour of the experimental condition on this particular occasion. In the latter case,
we could not claim that our experiment had shown there to be an effect of the IV
(look back at Figure 3.5 for a summary of the effects of systematic and random NVs).

But there is another very important point to consider: Whichever way the evidence
points, it is never conclusive. For example, we might conclude that the evidence is
not strong enough to persuade us that the IV had an effect, but that does not mean
that the IV definitely had no effect. It might just not have been big enough to show
up clearly against all of the variability produced by the random effects. At this point,
we need to be clear that we do not reach a cut-and-dried conclusion that the IV
definitely did or did not have an effect. OQur conclusion is necessarily probabilistic.
We conclude that random effects probably were not sufficient to have caused the dif-
ference between means (supporting an effect caused by the IV) or, alternatively, that
random effects probably were sufficient to have caused the difference (not supporting
an effect caused by the IV).

Also, remember that we cannot just assume that potential NVs will be random in
their effects. We saw in Chapter 3 that NVs can have systematic effects; that means
that they can affect only one condition of the experiment, thereby providing plaus-
ible explanations of a difference between scores in the two conditions of the experi-
ment, which compete with the explanation that it is the IV that caused the difference.
We also saw that potential systematic NVs should be controlled by holding them
constant, effectively eliminating them as variables, and, when this is not possible, they
should be controlled by turning them into random NVs. Once systematic NVs have
been made random, then they can be dealt with using inferential statistics. (Figure 5.2
recapitulates the main points in this argument that were made in detail in Chapter 3.)

So, how do we ensure that potential systematic NVs are made random? We must
use a procedure known as random allocation. However, at this point it is necessary
to make it clear that this procedure is logically distinct from another important pro-
cedure, which is known as random sampling. Now, since random allocation is often
confused with random sampling, and since, as we said, random sampling is an import-
ant issue, let us clarify what it is about, before we discuss random allocation.

Random sampling

In order to be able to say that the results of an experiment apply (can be generalized)
to the population from which the sample of people who participate in the experiment
is drawn, it is necessary that the participants are representative of the population.
(This is the issue of external (population) validity introduced in Chapter 2.) How can
we ensure that this is the case? In principle, a representative sample of participants
can be obtained by random sampling from a defined population. For example, we
might want to draw conclusions about all first year psychology students in our univer-
sity. This would entail putting the names of all of those students in a metaphorical
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Figure 5.2 Dealing with systematic (confounding) nuisance variables (NVs)

hat and pulling out the required number (the sample size) while blindfolded. A more
realistic alternative would be to assign a unique number to each student and then
use a random number table to select the required number of students. The point is
that every student must have an equal chance of being selected. The reality is that
random sampling from a defined population presents some difficulties (see Additional
information (5.1)), with the result that it is more an ideal than a procedure that is
commonly adhered to.

Having clarified what random sampling is about, let us return to the issue of
random allocation, which, as we specified above, is a procedure used to ensure that
potential systematic NVs are made random, thereby allowing us to infer whether the
IV can account for the difference between DV means in the two conditions.
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Additional information (5.1) — The unreality of random sampling in
experiments

Random sampling procedures tend to be quite time consuming and are often
difficult to implement. For these reasons, they are rarely carried out in practice.
If a sample of first year psychology students were required, it is much more
likely that an opportunity sample (e.g., volunteers from a class) would be used.
The difficulty of obtaining a random sample from a population of all first year
psychology students in UK universities would obviously be even more prob-
lematic, and imagine the difficulty of trying to obtain a random sample of all UK
undergraduates. The broader the population of interest, the less likely it is that
a random sample will be obtainable. In fact, the extent to which generalization
to other people is possible is much more dependent on replication of the results
(i.e., showing that we get similar results) with different participants, than on
the existence of a random sample from a population. We would also like to be
able to generalize our conclusions to other specific situations (e.g., viewing alone,
with familiar others, with unfamiliar others, in a relaxed environment, in a formal
environment etc.). In this case, the argument about generalization being based
on replication applies even more strongly, because there is usually no attempt
to randomly sample from a population of possible situations of interest.

Random allocation

The random allocation of experimental units (participants and test occasions) to
conditions is the hallmark of a ‘true’ experiment. A true experiment is one in which
the only thing that differs systematically between conditions is the experimenter’s
manipulation of the level of the IV (e.g., mood-raising video versus control video).
Other NVs, such as individual characteristics of participants and particular environ-
mental conditions, will also affect the scores obtained on the DV, but we know that
so long as these do not affect one condition in a systematically different way than
they affect the other condition, they will not be a threat to the internal validity of
the experiment. Provided that any potential NVs are random in their effects, that is,
they have an equal chance of affecting scores in favour of either condition of the
experiment, any systematic effect can only have been the effect of the IV.

Random allocation of participants (and test occasions) to conditions is a way of
ensuring that the particular characteristics of participants (e.g., motivation, suggestibility,
alertness etc.) have an equal chance of affecting the mean score in either condition.
It is not the case that random allocation guarantees that the participant character-
istics in the two conditions will be equal. In fact, that is extremely unlikely. More
of the highly alert participants will probably be allocated to one or other condition,
but the point is that it could be either condition that benefits.

o



EDACO05 7/23/05 1:54 PM Page 68 $

68

MAKING INFERENCES FROM DATA

random allocation

/

of participants to conditions

T~

T~

of test occasions to conditions

/

conditions are NOT equated
in terms of effects of random NVs

v

BUT there is an equal chance of
either condition benefiting

v

inferential statistics tell us the

probability that our data could

have arisen due to the randomly
distributed effects of NVs

Figure 5.3 Using random allocation

The same argument applies to the allocation of available testing times to condi-
tions (see Figure 5.3). Unless participants will all be tested on the same occasion,
each available testing occasion should be allocated at random (e.g., by tossing a coin)
to one of the two conditions. The need for this aspect of random allocation is fre-
quently overlooked. Thus, experiments are often, incorrectly, carried out with par-
ticipants in the two conditions being tested in separate groups. That leaves open the
possibility that any systematic effect that is inferred from the data could have been
due to particular characteristics of the two test situations.

Additional information (5.2) — More on random allocation in experiments

Suppose we have a sample of 20 people who are going to take part in our
experiment. We can expect that they will differ from one another in all sorts
of ways that might affect their scores on our logical reasoning test (i.e., there
will be NVs). Now suppose that there is really no effect of our IV (type of video).
Then, if there were no NVs, we would expect everyone in the sample to get
the same score. But there are NVs, so that the participants get different scores
from one another, even though there is no effect of the IV. Now suppose that
the scores obtained by the sample of 20 people were:

o



EDACO5 7/23/05 1:54 PM Page 69 j\%

MAKING INFERENCES FROM DATA 69

Person 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20
Score 23 26 17 24 31 19 33 25 27 21 21 18 17 12 30 22 16 23 20 17

Then, suppose that the first 10 people had been randomly allocated to the experi-
mental (good mood) video condition and the remainder to the control (normal
mood) condition. The means for the two conditions would have been:

Experimental mean = 24.6
Control mean 19.6

We can see that the mean score in the experimental condition would have been
higher, but remember that the differences were due solely to NVs and not at
all to the different videos. Furthermore, if the people with the first 10 scores
had been put in the control condition, the mean score in that condition would
have been higher by the same amount. So, it is clear that, if there is no effect
of the IV, random NVs are equally likely to result in a higher or lower mean
for the experimental condition. That is not all - depending on which people
were randomly allocated to which condition, the difference between means in
the two conditions (in whichever direction) would vary. With most allocations,
individual differences would tend to roughly balance out across conditions, so
that the difference between means would be relatively small, but, with some
allocations, the difference would be relatively large. For example, if it just
happened that the ten people with the highest scores had all been in the experi-
mental condition, the means for the two groups would have been:

Experimental mean 26.4
Control mean =17.8

This looks like quite a strong advantage for the experimental condition, but we
know that in this case it was just due to NVs (e.g., individual differences among
the sample) and, as usual, if the allocation had been reversed, the apparent advant-
age would have been for the control condition.

Random allocation is the best way to ensure that there is an equal chance
of the advantage going to either condition. Whatever the outcome, we know
that the effects of the NVs will be randomly distributed between conditions, so
that if there is really no effect of the IV, any apparent effect we see will be
due to chance. Our statistical analysis uses the fact that most differences between
means caused by random NVs are relatively small to tell us how confident we
can be that an obtained difference between means is large enough to make it
unlikely to have been caused by random NVs (chance), and was therefore prob-
ably due to the systematic effect of the IV (provided there are no confounding
variables) (see Figure 5.3).
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The Process of Statistical Inference

At this point, we are ready to discuss the details of the process of statistical infer-
ence that allows us to decide whether, on the basis of the data we have collected,
a hypothesis is probably correct or not. So, we will now discuss what you should
do in order to decide whether differences between conditions are due to chance (i.e.,
the effects of random NVs), or to the effects of the IV, as predicted. Let us start by
introducing some technical terms that will allow us to provide a formal explanation
of this process.

Experimental hypothesis and null hypothesis

In Chapter 2, we discussed that what is meant by a hypothesis, in the context of an
experiment, is a prediction about an effect of an IV on a DV. We will call this the
experimental hypothesis. We can also talk about a contrary hypothesis, one that
predicts that the IV will not have an effect on the DV. This is referred to as the null
hypothesis.

Statistical significance

Another important concept is that of statistical significance. We talk about a dif-
ference between means being statistically significant when there is a low probability
that it could have arisen as the result of random error, that is, the chance effects
of random NVs. But what do we mean by a low probability? Total certainty that
random error was responsible would be represented by a probability of ‘1’ and total
certainty that random error was not responsible would be represented by ‘0’. By con-
vention, we take ‘low probability’ to be a 1 in 20 chance (that is 5 in 100, which is
a probability of .05) or, if we are feeling more conservative, a 1 in 100 chance (which
is a probability of .01) or, if we are feeling really conservative, a 1 in 1,000 chance
(that is, 0.1 in 100, which is a probability of .001). These levels of confidence are
described as alpha (@) levels and the o level you are willing to accept as evidence
of an effect is supposed to be set before data are collected. Then, if the probability
level obtained when a statistic is calculated (more on this later) is below the designated
a level, we can conclude that the null hypothesis can be rejected and the effect of
our IV is said to be statistically significant. (Note that researchers prefer to say that
‘the null hypothesis can be rejected’, rather than say that ‘the experimental hypo-
thesis can be accepted’; see Additional information (5.5) for an explanation of why
this is the case). Thus, if o has been set at .05 and the obtained probability (p) when
a statistic is calculated is .04, we can claim that the effect of our IV was statistically
significant but, if p is .06, we have to conclude that the effect was not statistically
significant (the effect is then usually described as being ‘non-significant’).
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Complications (5.1) - Reporting the lowest p-value possible

Not everyone agrees that a pre-defined significance level (i.e., « level)
should be set, and the null hypothesis rejected if the probability of obtain-
ing the data when the null hypothesis is true is less than the pre-defined
o level. There is a view that focusing narrowly on whether the prob-
ability is below (reject null hypothesis) or above (fail to reject null hypo-
thesis) the critical o value is too crude. For example, with o set at .05,
a probability of p = .049 would be reported as significant (i.e., p < .05),
whereas a probability of p = .051 would be reported as non-significant
(i.e., p > .05). As the consequences of finding an effect to be statistic-
ally significant or non-significant can be considerable - not least in
determining whether a study is published in a journal - we might ques-
tion the logic of this all-or-none decision. Another example may help
you to see the problem. Suppose, once again, that « is set at .05. Then,
probabilities of p = .051 and, say, p = .87 would both be reported
as non-significant, with no distinction made between them. Similarly,
probabilities of p = .049 and p = .0001 would both be reported as
significant, again with no distinction made between them. An altern-
ative is to focus on the actual value of the probability. In this view,
p = .0001 would be reported as ‘highly significant’ or perhaps as
‘significant (p < .001)’, and p = .051 might be described as ‘approach-
ing significance’. Against this argument, some researchers regard it as
‘suspect’ to decide what level of significance to report after seeing the
result of the analysis. Nonetheless, it is common for researchers to report
the lowest conventional level (.05, .01, .001 etc.) of probability that
their analysis permits. The justification claimed for this is that the
probabilities are best treated as ‘indicative’ of levels of confidence rather
than as rigid decisions. There does seem to be a gap between the
classical (predetermined ¢ level) approach expounded in most statistic
texts and what many researchers actually do.

Imaginary distributions

Now, we come at last to an explanation of how the statistical decision is reached.
First, you need to make an imaginative leap. We have only done the experiment
once, of course, and we got a particular set of data, with a particular mean for each
of the two conditions. If we could wipe out all memory of the experiment and do it
again, we would almost certainly get a different set of data and different values for
each of the condition means. Now, the imaginative leap. Imagine that we were able
to repeat the experiment thousands of times in this way. Each time we would get
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Additional information (5.3) — An intuitive rationale for the
conventional alpha levels

What is the rationale for adopting p < .05, p < .01 etc. as the critical values that
we use to decide whether to reject the null hypothesis? The answer is that they
are really convenient, and ultimately, arbitrary, conventions. They do, however,
map reasonably to our intuitive notions about chance events. Let’s do a mind
experiment about when you decide that some outcome is more likely to have
resulted from some systematic effect than from the operation of chance (random
effects). Imagine that I show you 10 coins and bet you that I can toss them so
that more of them come down ‘heads’ than ‘tails’. You take on the bet, reason-
ing that you have an even chance of winning, and we agree that I will give you
10p for every coin that comes down tails and you will give me 10p for every
coin that comes down heads. I toss the first coin, it comes down heads and you
hand over 10p. The same happens with the next coin, and the next, and so on.
After how many heads in a row would you become suspicious that this was not
a game of chance? After how many would you become convinced that something
systematic was causing the run of heads - that I really did have the knack of
tossing coins so that they came down heads or, more likely, that I had a set of
weighted coins? When we have asked these questions to classes of students, there
has always been a majority that become suspicious after five heads in a row
and convinced after seven in a row. The probabilities of two, three, four etc. up
to 10 heads in a row are shown in Figure 5.4. There you can see how students’
intuitions map on to the conventional values of & = .05 and o = .01. The prob-
ability of a run of heads drops below .05 for the first time when there have been
five in a row and below .01 for the first time when there have been seven in
a row. Of course, if the stakes were higher you might be inclined to challenge
me sooner or, if there was a penalty for an incorrect challenge, you might wait
for the probability to drop lower. These are analogous to the deliberations that
lead a researcher to choose a higher or lower « level for statistical significance.

No. heads in a row Probability Conventional
significance levels

1st head =S

2nd head DI=1.5 X .5 =25

3rd head p=.25x.5 =.125

4th head p=.125x.5 =.063

5th head p=.063x.5 =.031 & p<.05
6th head p=.031x.5 =.016

7th head p=.016x.5 =.008 < p<.01
8th head p=.008x.5 =.004

Figure 5.4 An intuitive rationale for the conventional levels of statistical significance
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Figure 5.5 Hypothetical distribution of differences between means when the null hypothesis is true

different specific values for the experimental and control means. For either condi-
tion, we could imagine plotting the frequency with which different mean scores were
obtained. These would be frequency distributions like those discussed in Chapter 4
and illustrated in Figure 4.3, but they would of course be imaginary (or hypothetical)
distributions, because we did not really repeat the experiment thousands of times.

Now, imagine what the means for the two conditions would be like if the null
hypothesis were true, that is, the difference between the means was entirely due to
the chance effects of random NVs. Most often, the means would be very similar but
sometimes the chance effects would happen to pile up in favour of one or other mean
and, occasionally, the chance effects would pile up to create a really big difference
between the means. Just as we could plot imaginary distributions for each mean, we
could also plot the frequency of various sizes of difference between the two means
- that is, a hypothetical distribution of the differences between means. If we did
that, and the null hypothesis were true, we would be likely to see something like
the distribution of means shown in Figure 5.5. This shows the frequency with which
various values for the difference between means might be expected just on the basis
of chance effects of random NVs; that is, it is based, not on real data, but on our
understanding of chance effects, as they occur, for example, in coin-tossing experi-
ments. The most frequent differences would be very close to zero, and the frequencies
would decrease for progressively larger differences in either direction.

A COIN-TOSSING ANALOGY

Let’s pursue the analogy of a coin-tossing experiment, to stand in for an experiment
in which there happen to be only random (chance) effects operating. Suppose you
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and I each have 10 coins, which we can assume are ‘unbiased’, that is, they are equally
likely to come down heads or tails when flipped. If we each flipped our 10 coins
thousands of times and each time recorded the number of heads, the most frequently
obtained difference between number of heads and tails would be zero, with small
differences in either direction also being relatively frequent and large differences being
infrequent. In fact, if the frequencies were plotted we would have an approximately
normal distribution very like the one shown in Figure 5.5 (and earlier, in Figure 4.6).
Suppose now that I provide each of us with a new set of 10 coins and bet you that
I can use my telekinetic powers to make all of your coins come down one way and
all of mine the other way. You take on the bet and we flip the coins and, lo and
behold, all mine come down heads and all yours come down tails. When you get
over the surprise, you will probably conclude that you just witnessed a systematic
effect rather than a random (chance) effect, because you (rightly) believe that the
chances of a difference of 10 heads between us, in the absence of some systematic
biasing effect, would not be zero but would be extremely low. Of course, you will
probably soon begin to entertain the unworthy thought that the systematic effect
may have been biased coins rather than my telekinetic powers!

THE IMAGINARY DISTRIBUTION OF A NEW STATISTIC

Now, we have already explained that if the probability of getting a difference between
means as great as that we obtained, just by chance (given the amount of variability
among scores within each condition), is lower than the o value specified (e.g., .05),
we should conclude that the difference is statistically significant (i.e., we should reject
the null hypothesis at the .05 level of probability and conclude that the experimental
hypothesis is supported). So, if the obtained difference between means is among the
5% largest possible differences in the distribution in Figure 5.5 (i.e., 2.5% largest in
either direction), we conclude that the difference in means is statistically significant
at the 5% level. This is actually a slight over-simplification. The ‘difference between
means’ is a statistic - a value calculated from a sample of data, just as a mean of
a sample of data is a statistic - but we use a slightly more complex statistic in prac-
tice, because, in this case, for example, we need to take account of the wvariability
among scores within conditions as well as the difference between means for the two
conditions. The reason why we take account of the variability of scores within con-
ditions is that the bigger the effects of random NVs, the greater the variability they
create among scores within each condition and the more plausible it becomes that
the random NVs alone could account for the difference between means (i.e., without
there being any effect of the IV).

There are a number of different statistics available. Which one it is appropriate to
use depends on details of the experimental design and the type of data we are col-
lecting. These statistics will be introduced in later chapters, but the point to hang on
to now is that they are all used in the same way to summarize the data (just like
the difference between means) in order to see whether the value of the statistic is
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extreme enough to make it unlikely (e.g., probability < .05) that it would have arisen
just by chance when the null hypothesis is true. Just how each different statistic tells
us what the probability is of chance having produced the difference between condi-
tions will be dealt with in the following chapters.

Statistical inference — a concrete example

In order to make the argument about statistical inference more concrete, we will repeat
it using the example of the experiment from Chapter 2 - that was the example about
the effect of viewing a mood-enhancing video (compared with viewing a neutral video)
on performance on a test of logical reasoning. Participants are randomly allocated
to one of the video conditions and all participants are shown the relevant video and
then tested on the set of logical problems at the same time in the same laboratory.
This means that situational variables have been largely eliminated (not entirely,
of course - one participant may have an uncomfortable chair or be sitting in a
draught, for example). Individual difference variables, on the other hand, will clearly
have an effect (some participants will simply be better than others at solving logical
problems irrespective of their moods, some will be more motivated to do well, and
So on).

Individual difference variables (and any remaining situational differences) will, how-
ever, function as random NVs. This is because participants were randomly assigned
to conditions and (although this was not explicitly stated) participants should have
been randomly allocated seating positions in the laboratory. When participants’ scores
have been recorded, the means for the two groups are obtained and a statistic is cal-
culated from the data. An appropriate statistic in this case would be the independent
groups (or unrelated) t-statistic. This statistic will be explained in Chapter 9. For the
moment, all we need to know is that the value of the statistic gets bigger as the
difference between the means increases and the variability among scores within
each condition (due to the random NVs) decreases. The distribution of values of the
statistic when the null hypothesis is true can be specified for each possible sample
size (number of participants). The distributions for a small, medium and large number
of participants (say N = 5, 30 and 100, per group) are shown in Figure 5.6. When,
in the calculation of f, one mean is subtracted from the other to obtain the difference
between means, the value will be positive or negative depending on the direction of
the difference (which mean was larger).

You can see in Figure 5.6 that both large negative and large positive values of
will be rare when the null hypothesis is true (i.e., the tails of the distribution). If the
value for f that we obtain in our experiment falls in one of the tail areas, we can
conclude that the mean difference between problem scores in the two video conditions
was statistically significant, that is, the null hypothesis (that the mean difference was
due to chance effects of random NVs) can be rejected with a known maximum prob-
ability (the value at which o was set) of being mistaken. If the value of o (the level

o



EDACO05 7/23/05 1:54 PM Page 76 $

76 MAKING INFERENCES FROM DATA

no. participants = 100

no. participants = 30

no. participants =5

Frequency of t of different sizes

=

=

-3 -2 -1 0 1 2 3
C>E Possible values of t E>C

Figure 5.6 Hypothetical distribution of ¢ for a small, medium and large number of participants when the
null hypothesis is true

of statistical significance sought) was set at .05, and the obtained value of t falls
within the .05 (5%) most extreme values in the tails (.025 at the end of each tail), the
difference between means will be statistically significant at the 5% level. If the obtained
value falls closer to the centre of the distribution than that (i.e., outside of the rejection
regions in the tails), we will have to conclude that the null hypothesis cannot be
rejected at the 5% level; that the difference between means is non-significant at that
level of confidence. Figure 5.7 illustrates how statistical inferences about the null
hypothesis and, indirectly, the experimental hypothesis are arrived at. The left-hand
side shows a value of ¢ that falls in one of the ‘tails’ of the hypothetical distribution and
is therefore statistically significant. The right-hand side shows a value of ¢ that falls
outside of the tails (i.e., closer to the mean of the distribution) and is therefore non-
significant. Tables giving the minimum size of ¢ that will fall in the 5%, 1% or .1% most

Complications (5.2) — The truth about the null hypothesis

It is quite common for students (and researchers, for that matter) to refer
to the probability of the null hypothesis being true. This is a miscon-
ception. The null hypothesis is either true or it is false. It refers to a
‘state of the world’. There are no ‘probabilities’ associated with the truth
or falsity of the null hypothesis. The probability that statements about
statistical significance refer to is the probability that the data we obtained
might have arisen just by chance when the null hypothesis is true.
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experimental hypothesis (Hg)
E-C

!

null hypothesis (H,)
E=C

!

2.5%

distribution of inferential
statistic when H, is true

Statistic value

Statistic value

statistic unlikely to be so
extreme when H, is true

!

effect of IV is statistically

statistic quite likely to be
this extreme when Hy is true

!

effect of IV is statistically

significant non-significant
reject Hy, fail to reject H,

(p < .05, two-tailed)

!

support for Hg

(p> .05, two-tailed)

!

no support for He

Figure 5.7 Experimental hypothesis and null hypothesis

extreme areas of the tails are available for different numbers of participants (i.e., the
minimum f values needed for statistical significance at various ¢ levels). Such a table
is provided in Appendix 1 and also in Chapter 9, where t-tests will be considered in
detail. Discussion of how to use the table will be held over to that chapter.
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Additional information (5.4) — Statistical inferences from samples to
populations

A formal treatment of the inference process we have been describing asks the
question: How likely is it that our two samples of scores were drawn from popu-
lations with the same mean? In order to understand how an answer to this
question is sought, we need to be clear that a population refers to all of the
possible objects of a particular kind. It does not necessarily refer to people (e.g.,
the population of first year university students in the UK) or even to tangible
entities of any kind (e.g., stars in the Milky Way, traffic lights in London). It
can refer to an entirely imaginary set of all possible scores that could have
been obtained by an infinite number of participants in an experiment. When
we carried out our experiment, however, we only had a small number of par-
ticipants and the scores they obtained are regarded as a random sample of the
population of scores that we could have obtained if we had tested an infinite
number of participants with the same characteristics as our sample. We can
acknowledge that our sample of participants is unlikely to be a random sam-
ple from the population of possible participants that we are interested in, but
this does not affect our (reasonable) assumption that the obtained scores are a
random sample of the imaginary distribution of all possible scores (i.e., the
imaginary population of scores). In fact, we have two samples of scores in our
experiment, one sample for each condition. If the null hypothesis is true, the
means of the populations of scores from which these samples are drawn will
be equal; there will be, effectively, a single population of scores with a single
mean. Still assuming that the null hypothesis is true, we have two random sam-
ples from the same population and the means of the samples will differ by chance
alone. The means of some pairs of random samples (sets of scores obtained in
particular experiments) would happen to differ a lot, so that they would look
like samples drawn from two populations with different means. A statistical
test ascertains the probability of getting, just by chance, two samples of scores
that differ as much as those we obtained in our experiment. If the probability
is below the value we set for &, we will conclude that it is unlikely that the
two samples came from the same imaginary population, and that it is more
likely that the null hypothesis is false and the samples came from two differ-
ent populations of scores (one for each condition) with different means; that
is, there was a statistically significant effect of our IV on our DV.
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Additional information (5.5) — Why test the null hypothesis instead of
the experimental hypothesis?

It does seem tortuous to set up a null hypothesis and subject it to a test to see
if we can reject it rather than setting up the research hypothesis and testing it
directly. The reason for testing the null hypothesis is that it is a specific hypo-
thesis (the difference between the means of two populations of scores is zero).
That allows us to construct an imaginary sampling distribution, showing the
probabilities of obtaining a statistic of various sizes when that hypothesis is
true. The research hypothesis, on the other hand, is a non-specific hypothesis.
If you wanted to test the hypothesis that the difference between means is 1 on
our DV scale, you could set up a sampling distribution and test that hypothesis,
just as you could for any other specific difference between means. The problem
is that you do not usually have a particular value in mind. To test all of the
possible differences between means that you might wish to consider, you would
need to set up a sampling distribution for each one. So, we end up setting up the
specific null hypothesis, seeing if we can reject it at some level of probability,
thereby allowing us to infer that the means do differ.

Statistical decision errors

When we make a statistical decision, we recognize that it might be mistaken. After all,
the statistical inferences are all statements of probabilities rather than certainties. There
are two ways we can be mistaken. First, we might reject the null hypothesis when
it is in fact true, that is, there was no systematic effect - the difference between
means in the two conditions was entirely attributable to random NVs. Because the
difference between means created by the combined effects of the random NVs hap-
pened to be large — a difference that would happen, say, less than 5% of the time
by chance - we were led to conclude that the difference was probably caused by a
systematic effect (of the IV, we hope), whereas, assuming we set o equal to .05, it
was in fact one of those 5% of occasions when a large difference was due to chance.
This kind of mistake is called a Type I error and the probability of making it is
known (i.e., the value at which we set ).

The other mistake we can make is to fail to reject the null hypothesis when it is
in fact false, that is, there was a systematic effect but we failed to detect it. This may
happen when the variability of scores within conditions is large relative to the dif-
ference between means, so that we are misled into concluding that random error was
probably great enough to account for the difference between means. This kind of
mistake is called a Type II error and the probability of it occurring is denoted by
the symbol . As with ¢, we can, in principle, set the value of § at a level that suits
us. A level that, by convention, is often thought acceptable is .2 (20%). That is, we
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accept a 20% risk of failing to find a significant effect of the IV when it does in
fact have an effect. The fact that most researchers are prepared to accept a con-
siderably bigger risk of missing a real effect (20%) than of finding an effect that is
really just due to chance (5%) reflects a general belief that the theoretical (and maybe,
practical) consequences of concluding that an IV has an effect when it does not are
more serious than the consequences of missing an effect.

Just as there are two ways of being mistaken, there are two ways of being right.
You can correctly reject the null hypothesis - the probability of this outcome is 1 — 8
(that would be 1 — .2 = .8, or 80%, using our example above). This value (1 — f) is
known as the power of the statistical test, that is, the likelihood of the test finding a
significant effect when one does in fact exist. In practice, it is usually this power
probability that is decided on by the researcher, and this automatically determines
the value of f3, the probability of a Type II error. The other way of being right is to
correctly fail to reject the null hypothesis. The probability of this outcome is 1 — o

Complications (5.3) - What to conclude if you fail to reject the
null hypothesis

If the statistical decision is to reject the null hypothesis, the inference
is clear. The value of the statistic that was calculated (based, for example,
on the difference between means and the variability of scores within
conditions) is sufficiently extreme to persuade us that it is unlikely to
have occurred by chance (random NVs) alone. We therefore conclude
that the data probably arose at least partly as a result of an effect of
the IV. In other words, we have found support for our experimental
hypothesis.

If the statistical decision is to fail to reject the null hypothesis, the
situation is less clear. Does that mean that the null hypothesis should
be assumed to be true? The answer is ‘no’. The null hypothesis might
still be false, but the effect of the IV might be small relative to the
effects of NVs and, therefore, hard to discern. The null hypothesis states
that there will be zero difference between population means of the two
conditions. With a small difference between population means, we would
be unlikely to identify a significant difference from our sample data,
unless we had extremely good control over random NVs and/or a very
large sample of scores, in which case we might well be finding an effect
that is too small to be of interest. This is not unlikely, since the null
hypothesis is almost never erxactly true.

Although people sometimes talk about accepting the null hypothesis
when it cannot be rejected, it is probably safer to refer to ‘failing to reject
the null hypothesis’ or ‘retaining the null hypothesis’ (i.e., provisionally).
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Additional information (5.6) — The power of a test

The power of a test to find an effect when one actually exists depends on a
number of factors

e Qur ability to control random NVs. The more they are controlled (kept
constant), the less variability there will be within each condition and the
easier it will be to attribute a difference between means to the IV.

e The size of effect that we do not want to risk missing. The larger the effect,
the easier it is to reach statistical significance. To some extent, a researcher
can maximize an effect by selecting values for the IV that are relatively
extreme. For example, it would be much easier to find an effect of age on
time to run 50 metres if we compared 6-year-old and 10-year-old children
than if we compared 6-year-olds with 6.1-year-olds! Similarly, we are more
likely to find an effect of viewing different videos if the experimental one
is really hilarious rather than mildly amusing.

e The « level set. Everything else being equal, it is easier to reach statistical
significance with an o value of .05 than a value of .01.

e  Whether a one- or two-tailed test is used (a distinction that we will explain
in the next section). To anticipate, if you opt for a one-tailed test and your
directional prediction is correct, a lower value of the statistic calculated will
be needed for statistical significance at a given level of probability.

e Whether a parametric or non-parametric statistical test is used. This dis-
tinction will be discussed in subsequent chapters.

e The number of participants included in the experiment. The more particip-
ants per condition, the more powerful the test will be. It is beyond the scope
of this book but, if you continue to study psychology, you will learn about
how to get an estimate of how many participants you will need to achieve
a given power.

(that would be 1 — .05 = .95, or 95%, using our example above). This is the likeli-
hood of the test failing to find a significant effect when one does not in fact exist.
The relationship between the decision that is made when a statistical test has been
carried out (reject or fail to reject the null hypothesis) and the reality of the situ-
ation (the null hypothesis is true or it is false) is illustrated in Figure 5.8.

One- and two-tailed tests

Usually a researcher has a view about the likely direction of a difference between
means that will occur. It is likely, for example, that an experimenter conducting
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Decision made using The reality (H, is either true or false)
inferential statistic H, is true H, is false
Reject H, Type | error Correct decision
probability = o probability = 1 - 3 = Power
Do not reject H, Correct decision Type Il error
probability =1 - o probability = 3

Figure 5.8 Possible decisions about the null hypothesis (H,)

the video-viewing experiment would expect scores to be higher in the ‘funny’ video
condition (E > C; where E stands for ‘Experimental condition’ and C for ‘Control
condition’). However, it is possible that people’s moods might be worse after being
shown the funny video, perhaps because they felt they were being ‘manipulated’. If
that happened and they scored lower on the logical reasoning test than those shown
a neutral video, should the researcher conclude that the experiment showed an effect
of the type of video? It all depends on the precise prediction that the experimenter
made before collecting the data. If the researcher decided that, although a difference
in favour of the funny video was expected, a difference in the opposite direction would
be of interest, a non-directional prediction should be made; that is, the alternative
to the null hypothesis (E = C: i.e., no significant difference) would be that there would
be a significant difference in either direction (E > C or C > E). Then, if o was set at
.05, we would be looking for an extreme positive or negative value of our statistic
(independent groups t, in this case) at either end of the distribution of possible values
when the null hypothesis is true; more specifically, a value among the .025 most
extreme in either direction (see Figure 5.9a). If the value of the statistic falls in either
tail (the rejection regions), we would conclude that the null hypothesis could be rejected
at the 5% level and that there was a significant (p < .05) effect of the type of video
viewed in a two-tailed test of the hypothesis. Sometimes, a two-tailed test is the
only sensible option, as when you have two competing experimental conditions, rather
than one experimental condition and one control condition.

If, on the other hand, the researcher decided that a difference in the non-expected
direction would simply mean that the experiment had failed and was therefore of no
interest, a directional prediction might be appropriate (e.g., E > C). In that case, if
the f-statistic were among the .025 most extreme values in the ‘wrong’ tail (the one
representing extreme differences in favour of the neutral video), the decision would
be to fail to reject the null hypothesis and to conclude that the video effect was non-
significant (p > .05) in a one-tailed test of the hypothesis. The gain from making
the more specific directional prediction is that, if the difference between means is in
the predicted direction, a lower value of the statistic (¢t in this example) will be needed
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Figure 5.9 One- and two-tailed decisions: (a) two-tailed decision; (b) one-tailed decision

to achieve statistical significance. This is because the region for rejection of the null
hypothesis will be the 5% most extreme values in the predicted direction (i.e., all .05
most extreme values are in one tail instead of being split .025 in each tail). This is
illustrated in Figure 5.9b.



EDACO05 7/23/05 1:54 PM Page 84 j\%

_ 84 MAKING INFERENCES FROM DATA

Complications (5.4) - The decision to do a one- or two-tailed
test is ‘set in stone’

It should be stressed that a decision to use a one-tailed test must be
taken before the data have been collected. It is not acceptable to decide
on a one-tailed test after you have seen what the data look like. In
that case, a smaller value of the statistic would be needed to achieve
significance, but it would be ‘cheating’! Similarly, once a decision is
made to do a one-tailed test, it would be unacceptable to change the
decision (i.e., to do a two-tailed test) after it is seen that the difference
went in the non-predicted direction. Once again, that would be ‘cheat-
ing’ - you would be looking at a rejection region of p = .05 in the
originally predicted tail plus a rejection region of p = .025 in the origin-
ally non-predicted tail, so the real probability of the data being obtained
when the null hypothesis is true would be .075, not .05! In view of
the uncertainty about the stage at which a decision is made to opt
for a one- or two-tailed test, some researchers take the view that the
statistical test reported should always be two-tailed.

SUMMARY OF CHAPTER

e Knowing that an experiment has validity and that there are differences between
DV scores in different conditions is not enough to infer that the IV has an
effect on the DV. We still have to consider the possibility that these differ-
ences are determined by random NVs.

e Random NVs (i) do not pose a threat to the internal validity of an experi-
ment; (ii) cannot be eliminated; (iii) increase the variability of scores on the
DV within each condition; (iv) may occasionally pile up in favour of one
condition to produce a large effect.

e In order to infer that differences in DV scores between the two conditions
are so large that they cannot be due to the effects of random NVs (and
therefore the hypothesis is correct), we make use of ‘statistical inference’.

e Statistical inference consists of setting up a ‘null hypothesis’ (an hypothesis
of ‘no effect of the IV’) and seeing whether it can be rejected as a likely
explanation of any difference between scores in the two conditions. If it
can be rejected at some level of confidence (probability), we infer that the
difference between conditions is statistically significant at that level of

- probability.
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To test the null hypothesis we calculate a statistic from the data (different
statistics are calculated depending on the research design) and we see whether
it is among the most extreme values that would occur with a given prob-
ability (say, p < .05) if the null hypothesis were true and the experiment
was repeated thousands of times.

The statistical inference may be mistaken. We may find an effect when the
null hypothesis is in fact true (Type I error), or we may fail to find an effect
when the null hypothesis is in fact false (Type II error - this may mean that
the experiment has insufficient ‘power’ to reveal an effect).

If a directional prediction is made (e.g., ‘scores will be higher in the experi-
mental condition’), we can use a ‘one-tailed’ test, which requires a smaller
value of the statistic to reach significance. If a non-directional prediction
is made (i.e., ‘scores in the two conditions will differ’), a two-tailed test must
be used. The decision to use a one- or two-tailed test must be made before
collecting the data.




