
An Introduction to Modern Bayesian Econometrics

Answers to Selected Exercises.

Most of the exercises in the book ask readers to simulate and calculate. So
there are really no answers to give. This is consistent with the spirit in which
the book was written which empasized calculation and not formal, and often
rather tedious, algebraic derivations. But some questions need mathematical
answers and these are offered below.

Page 61, first exercise: The posterior density is found by multiplying the
likelihood and the prior and it and its logarithm are

p(τ |y) ∝ τn/2−1 exp{−τΣy2i /2}; log(p(τ |y)) =
µ
n− 2
2

¶
log τ − τΣy2i

2
.

Its first two derivatives are

∂ log(p(τ |y))
∂τ

=

µ
n− 2
2

¶
1

τ
− Σy

2
i

2
;

∂2 log(p(τ |y))
∂τ2

= −
µ
n− 2
2

¶
1

τ2
.

If we equate the first of these expressions to zero and solve for τ we find the
unique solution bτ = (n − 2)/Σy2i and since from the second expression we see
that the log posterior density is globally concave for n > 2 this solution is the
posterior mode. The negative hessian at bτ is

−H(bτ) = (Σy2i )
2

2(n− 2) .

The information, Iτ (τ) is the expectation of the negative hessian, but since this
is non-stochastic, given τ , the information is identical to the negative hessian
and the observed information is identical to −H(bτ) for this model.
From theorem 1.1 a large sample normal approximation to the posterior

density of τ is
p(τ |y) ' n(bτ ,−H(bτ))

where −H(bτ) is the precision of this approximating normal distribution.
You can easily make a numerical comparsion of exact and approximate pos-

terior distributions by statements — in R — such as

n <- 20; y <- rnorm(n); tauhat <- (n-2)/sum(y^2)................generate a
sample of size 20 from n(0, 1) and calculate bτ .
tv <- seq(0.1,2,length=100)...............................tau values for the density

plots
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sig <- sqrt(2*tauhat*tauhat/(n-2))..................standard deviation from the
precision
plot(tv,dgamma(tv,n/2,sum(y^2)/2),type=“l”)..............plots the exact pos-

terior density, which is gamma
points(tv,dnorm(tv,tauhat,sig))......................superimposes the normal approx-

imation.
Try it.

Page 61, second exercise. The likelihood is the product of n poisson
mass functions and is `(y; θ) ∝ θΣyi exp{−nθ} which leads to the posterior

p(θ|y) ∝ θny−1e−nθ with logarithm log(p(θ|y)) = (ny − 1) log θ − nθ

and first two derivatives

∂ log p

∂θ
=
ny − 1

θ
− n; ∂2 log p

∂θ2
= −ny − 1

θ2
.

The log posterior is concave as long as Σiyi > 1 and in this case the unique
posterior mode is bθ = y − 1/n. At this point the negative hessian is

−H(bθ) = n2

(ny − 1) .

But using E(y|θ) = θ the information is

Iθ(θ) =
nθ − 1
θ2

and the observed information is

Iθ(bθ) = n2(ny − 2)
(ny − 1)2

So two slightly different1 asymptotic normal approximations to the posterior
distribution of θ are

p(θ|y) ' n(bθ,−H(bθ)) and n(bθ, I(bθ))
A simulation and graphical comparison of the (exact) gamma posterior and

the normal approximations could be done in R with, say,
n <- 10; y <- rpois(n,3); ybar <- mean(y); thetahat <- (n*ybar-1)/n
tv_seq(0.1,5,length=100)
plot(tv,dgamma(tv,sum(y)-1,n),type=”l”,ylim=c(0, 0.8)).......the ylim is to

get both curves on the same graph.
points(tv,dnorm(tv,thetahat,sig),pch=1)

1Note that the difference between −H(bθ) and Iθ(bθ) depends on the ratio of ny−2 to ny−1
which is O(1) whereas both precisions are O(n)

2



Note the role of ny = Σyi which is the total number of events. It is this
rather than the number of individuals (n) whose magnitude determines whether
the asymptotic normal approximation is adequate.

Page 106, chapter 2, exercise 2. This question asks you to work out and
plot the predictive distribution of each element of a sequence of iid exponential(λ)
variates given all the preceding ones and an initial flat prior on log λ. The point
of the calculation is to study the convergence of this sequence of distributions
as evidence about λ increases. Eventually, when enough data have been seen
to make λ known with high accuracy, the predictive distribution of the next
observation will be that of an exponential variate with known λ.
The calculation is as follows: We require p(yn|y1, y2, ....yn−1) and this is

p(yn|y1, y2, ....yn−1) =

Z
p(yn,λ|y1, y2, ....yn−1)dλ

=

Z
p(yn|λ)p(λ|y1, y2, ....yn−1)dλ,

where we have used the fact that p(yn|λ, y1, y2, ....yn−1) = p(yn|λ) since if you
know λ the earlier data are irrelevant. The first term in the integrand is just the
exponential(λ) density function while the second term is the posterior density of
λ given the observations through yn−1.This latter follows from Bayes theorem
as

p(λ|y1, y2, ....yn−1) ∝ p(y1, y2, ....yn−1|λ)p(λ)
= λn−1 exp{−λsn−1}/λ = λn−2 exp{−λsn−1},

where sn−1 = y1 + y2 + .....+ yn−1. Thus,

p(yn|y1, y2, ....yn−1) ∝
Z

λ exp{−λyn}λn−2 exp{−λsn−1}dλ

=

Z
λn−1 exp{−λsn}dλ = Γ(n)s−nn

where sn = yn+sn−1. Finally, a straightforward exercise in integration supplies
the normalizing constant and the exact predictive density is

p(yn|y1, y2, ....yn−1) = (n− 1)
sn−1n−1

(yn + sn−1)n
; 0 ≤ yn <∞.

To plot this function you would want to define a sequence of values for yn by, say
yv_seq(0.1,2,len=100) and then choose n and generate, say, unit exponential
variates by, say, n=100, y <- rexp(n). Since you have chosen λ = 1 the first thing
to plot is the distribution towards which the predictive distribution will tend as
n→∞ and this is the unit exponental. You could do this by plot(yv, dexp(yv),
type=”l”, ylim = c(0,1.5), ylab = “predictive densities”, xlab = “y”). Then you
could plot the predictive distribution for, say, y5 by n <- 5; s <- sum(y[1:n-
1]); points(lv, (n-1)*s^(n-1)*(s+lv)^(-n)) followed by text(locator(1),”n=5”) to
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label this curve. Finally you could plot the predictive density of y50 to see if it is
closer to its limiting form than that for y5, by using n <- 50; s <- sum(y[1:n-1]);
points(lv,(n-1)*s^(n-1)*(s+lv)^(-n)).

Chapter 3, exercise 8.
(a) Using the definition y−Xβ = ε write out ε0(P ⊗In)ε in partitioned form

to see its equivalence to tr SP.
(b) This is a straightforward application of definition 9, “completing the

square”.
(c) Using two versions of the likelihood, either (3.56) or (3.57,58) one obtains

two versions of the posterior, namely

p(β, P |y) ∝ |P |(n−m−1)/2 exp{−(1/2)((β − bβ)0X 0(P ⊗ In)X(β − bβ)}
× exp{−(1/2)e0(P ⊗ In)e}

and ∝ |P |(n−m−1)/2 exp{−(1/2)tr SP}.

The first of these shows immediately that, given P,β is n(bβ,X 0(P ⊗ In)X).
And the second shows, by comparison with definition 13 above that, given β, P
is Wishart distributed. A Gibbs algorithm requires sampling alternately from
a multivariate normal, which is an available distribution, and from a Wishart
distribution — see definition 13.
(d) When X1 = X2 = ....Xm = Z then X is block diagonal with Z in

every diagonal block and zeros elsewhere. Thus X = Im ⊗ Z.Substituting this
expression into the definition of the GLS estimator gives

bβ = (X 0(P ⊗ In)X)−1X 0(P ⊗ In)y
But

X 0(P ⊗ In)X = (Im ⊗ Z0k×n)(P ⊗ In)(Im ⊗ Zn×k) = P ⊗ Z 0Z
and so bβ becomes

bβ = (P−1 ⊗ (Z0Z)−1)(P ⊗ Z0)

⎛⎜⎜⎝
y1
y2
.
ym

⎞⎟⎟⎠ =

⎛⎜⎜⎝
(Z0Z)−1Z0y1
(Z0Z)−1Z0y2

.
(Z0Z)−1Z0ym

⎞⎟⎟⎠
and this amounts to m separate least squares calculations.
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