Question 7.1

Compute the minimum length of vertical crest curve to provide a passing sight distance of 190 metres at the intersection of a $+2.6 \%$ grade and a -2.4% grade. The driver eye height is set at 1.07 metres and the object height at 0.25 metres.

Compute the distance if the object height reduces to zero

Solution 7.1

$S=190$
$\mathrm{p}=2.6$
$\mathrm{q}=-2.4$
hl=1.07
h2-0.25
$\mathrm{A}=5$
$e=1.18$
therefore $L>S$
L= 383m
If h2=0
L=843m

Question 7.2

A design speed of $85 \mathrm{~km} / \mathrm{hr}$ was selected for a stretch of highway. The results from a speed survey taken along the route in question are given in Table Q7.2:

Speed Range (km/hr)	Observe d cars
Less than 60	10
$60-64$	12
$65-69$	54
$70-74$	140
$75-79$	176
$80-84$	120
$85-89$	60
$90-94$	15
$95-99$	6
Greater than 100	1

Table Q7. 2
Determine the $50^{\text {th }}, 85^{\text {th }}$ and $99^{\text {th }}$ percentile speed range and compare it with the selected design speed

Solution 7.2

Speed Range $(\mathrm{km} / \mathrm{hr})$	Observed cars with speed within or below this range	Percentil e speed	
Less than 60	10	$2^{\text {rd }}$	
$60-64$	22	$4^{\text {th }}$	
$65-69$	76	$13^{\text {th }}$	
$70-74$	216	$36^{\text {th }}$	
$75-79$	392	$66^{\text {th }}$	$50^{\text {th }}$
$80-84$	512	$86^{\text {th }}$	$85^{\text {th }}$
$85-89$	572	$96^{\text {th }}$	
$90-94$	587	$99^{\text {th }}$	$99^{\text {th }}$
$95-99$	593	$100^{\text {th }}$	
Greater than 100	594	$100^{\text {th }}$	

Highway Engineering, second edition: Martin Rogers

Question 7.3

A highway with a design speed of $85 \mathrm{~km} / \mathrm{hr}$ (desired sight stopping distance $=$ 160 metres) is designed with a sag curve connecting a descending gradient of 6% with an ascending gradient of 6%.

If comfort is the primary design criterion, assuming a vertical radial acceleration of $0.3 \mathrm{~m} / \mathrm{s} 2$, calculate the required length of the sag curve.

Solution 7.3

The design speed of $85 \mathrm{~km} / \mathrm{hr}$ gives a desired sight stopping distance of 160 metres
$e=-\left(1-P_{-}^{-L}=-(-0.06-0.06) \times 160 \div 8\right.$
$=2.4$ metres, which is greater than the driver's eye height of 2 metres.
Since $e<H_{1}, S<L$ as the sight distance lies outside the curve length.
Thus,
$\mathrm{L}_{\mathrm{m}}=\frac{\mathrm{AS}^{2}}{8\left[-\left(\mathrm{H}_{1}+\mathrm{H}_{2} l_{2}^{2}\right]\right.}=\frac{0.12 \times 160^{2}}{8 【 .7-0+0.267_{2}}=84$ metres

