Question 7.1

Compute the minimum length of vertical crest curve to provide a passing sight distance of 190 metres at the intersection of a +2.6% grade and a -2.4% grade. The driver eye height is set at 1.07 metres and the object height at 0.25 metres.

Compute the distance if the object height reduces to zero

Solution 7.1

S=190 p=2.6 q=-2.4 h1=1.07 h2-0.25 A=5 e=1.18 therefore L>S L= 383m If h2=0 L=843m

Question 7.2

A design speed of 85 km/hr was selected for a stretch of highway. The results from a speed survey taken along the route in question are given in Table Q7.2:

Speed Range (km/hr)	Observe d cars	
Less than 60	10	
60 – 64	12	
65 – 69	54	
70 – 74	140	
75 – 79	176	
80 - 84	120	
85 – 89	60	
90 - 94	15	
95 – 99	6	
Greater than 100	1	

Table Q7.2

Determine the 50th, 85th and 99th percentile speed range and compare it with the selected design speed

Solution 7.2

Speed Range (km/hr)	Observed cars with speed within or below	Percentil e speed	
Less than 60		2rd	
60 - 64	22	2	
65 – 69	76	13 th	
70 – 74	216	36 th	
75 – 79	392	66 th	50 th
80 - 84	512	86 th	85 th
85 – 89	572	96 th	
90 - 94	587	99 th	99 th
95 - 99	593	100 th	
Greater than 100	594	100 th	

Question 7.3

A highway with a design speed of 85 km/hr (desired sight stopping distance = 160 metres) is designed with a sag curve connecting a descending gradient of 6% with an ascending gradient of 6%.

If comfort is the primary design criterion, assuming a vertical radial acceleration of 0.3 m/s2, calculate the required length of the sag curve.

Solution 7.3

The design speed of 85 km/hr gives a desired sight stopping distance of 160 metres

$$e = - \mathbf{q} - p \frac{L}{8} = -(-0.06 - 0.06) \times 160 \div 8$$

=2.4 metres, which is greater than the driver's eye height of 2 metres.

Since $e < H_1$, S < L as the sight distance lies outside the curve length. Thus,

$$L_{m} = \frac{AS^{2}}{8 \left[l - \left(\frac{1}{1} + H_{2} \right)^{2} \right]} = \frac{0.12 \times 160^{2}}{8 \left[.7 - \left(2.0 + 0.26 \right)^{2} \right]} = 84 \text{ metres}$$