Question 6.1

A roundabout has an inscribed circle diameter of 65 m , an entry width of 8.5 m and an approach half-width of 7.3 m . The effective length over which flare is developed is 30 m , the entry radius is 40 m and the entry angle is 60 metres. The design reference flows to be used for a preliminary design, expressed as entry capacity in passenger car units per hour, are given n Table Q5.1.

From	To			
	N	S	E	W
N	-	850	200	100
S	700	-	450	250
E	150	350	-	700
W	350	450	350	-

Table Q5. 1

Calculate both the ratio of flow to capacity and the reserve capacity of each approach to the intersection

Solution 5.1

$k=0.92035$
$F=2534$
$\mathrm{f}_{\mathrm{C}}=0.667$
$\dagger D=1.1888$
$M=1.6487$
$X_{2}=8.3638$
$S=0.064$
$Q_{E}=0.92035\left(2534-0.667 Q_{c}\right)=2332-0.614 Q_{c}$

NORTH

Entry flow 1150
Qc= 1250
Qe= $\quad 1565$
RFC= $\quad 0.734929$
Reserve cap 0.360676

SOUTH

Entry flow 1400
Qc= 959
Qe= 1743
RFC= $\quad 0.802993$
Reserve cap 0.245341

EAST

Entry flow 1200
Qc= 1400
Qe= $\quad 1473$
RFC= 0.81485
Reserve cap 0.22722

WEST

Entry flow 1150
Qc= 1300
Qe= 1534
RFC= 0.749639
Reserve cap 0.333976

Highway Engineering, second edition: Martin Rogers
© 2008 by Blackwell Publishing Ltd

Question 6.2

An approach road to a signalised junction carries a flow of $660 \mathrm{pcu} / \mathrm{hr}$. The saturation flow on this approach is 2750 pcu/hr. Its effective green time is 33 seconds out of a total cycle time of 120 seconds.

- Calculate the average delay time (d) on this approach
- Calculate the average queue (N) at the start of its green period

Where:
$d=0.9(c A+B / q)$
$A=(1-\lambda)^{2} /[(2(1-\lambda x)]$
$B=x^{2} /[(2(1-x)]$

Solution 6.2

$\lambda=33 / 120=0.275$
$\mathrm{q}=0.183 \mathrm{v} / \mathrm{sec}$
$\mathrm{s}=0.275 \mathrm{v} / \mathrm{sec}$
$\mathrm{x}=0.871$
$A=0.33$
$B=2.91$
$d=50 \mathrm{secs}$
$N=16$ cars ($0.18^{*} 87$) or ($\left.0.18^{*}(50+44)\right)$

Question 6.3

An approach road is composed of two lanes, both 3.0 metres wide.
The nearside lane is for both left-turning and straight-ahead traffic, with a ratio of 1:3 in favour of the straight through movement.

The non-nearside lane is for right-turning traffic. This movement is opposed.
The degree of saturation of the opposing traffic from the north is 0.5 .
The turning radius for all vehicles is 10 metres
Zero gradient and one effective 30 second effective green period per 60 second traffic cycle can be assumed ($\lambda=0.5$).

The traffic is assumed to be composed of 100% private cars
There are 2 storage spaces beyond the stop line for right-turning traffic
Calculate the saturation flow for each of the two movements

Solution 6.3

The values of the relevant parameters are as follows:

```
dn=1
f=0.25
r=10
G=0
w=3.0
Therefore
So = 2080-(42dg\times0) + 100(3.0-3.25))
=2055
and
SI=(2055-140)/(1+(1.5 * 0.25/10))
=1846 pcu/hr
```

For the non-nearside lane, the saturation flow can be calculated using above equations as follows
$f=1$ (all vehicles turning)
$\mathrm{XO}=0.5$
$\mathrm{N}_{\mathrm{s}}=2$ (storage spaces)
$t_{1}=12(0.5)^{2 /(1+0.6(1-1) \times 2)}$
$=3.0$
$t_{2}=1-(1 \times 0.5)^{2}$
$=0.75$
$\mathrm{T}=1+(1.5 / 10)+(3 / 0.75)$
$=1+0.15+4$
$=5.15$
$S_{\mathrm{g}}=(2055-230) /(1+(5.15-1) \times 1)$
=1825/5.15
$=354 \mathrm{pcu} / \mathrm{hr}$
$P=1$
$S_{c}=1 \times(1+2)(1 \times 0.5)^{0.2} \times 3600 /(0.5 \times 60)$
$=313 \mathrm{pcu} / \mathrm{hr}$
Therefore:
$S_{2}=354+313$
$=667 \mathrm{pcu} / \mathrm{hr}$

Question 6.4

Actual flows and saturation flows from a 2-phase signalised intersection are as follows:

	Actual Flow (pcu/hr)	Saturated Flow (pcu.hr)
North	660	2400
South	495	2000
East	990	3000
West	825	3000

The intergreen period equals 9 seconds, amber time equals 3 seconds.
Lost time due to starting delays equals 2 seconds
Calculate the optimum cycle time and the effective and actual green times

Solution 6.4

	Ratio	Critical Ratio
North	0.275	0.275
South	0.248	-
East	0.33	0.33
West	0.275	-

L

$$
\mathrm{C}_{0}
$$

$$
\begin{aligned}
& =2 \times 2+(6 \times 2) \\
& =16 \text { seconds } \\
& =1.5(16+5) /(1-(0.275+0.333)) \\
& =73.4 \text { seconds } \\
& =73.4-16=57.4 \\
& =0.275 / 0.33 \\
& =57.4 \times .275 /(.275+.33)=26.1 \\
& =31.3(11 \mathrm{mks})
\end{aligned}
$$

total effective green

$$
\mathrm{g}_{1} / \mathrm{g}_{2}
$$

g_{1}
g_{2}

Actual green times are 1 second less, i.e. 25 s and 30 s.

