SOLUTIONS TO TUTORIAL EXAMPLES
 CHAPTER 8

Remember:
Clockwise moments are positive (+).
Anti-clockwise moments are negative (-).

Question 1

Moment $\mathrm{M}=+(30 \mathrm{kN} \times 3 \mathrm{~m})=+90 \mathrm{kNm}$.

Question 2

Moment $\mathrm{M}=-(10 \mathrm{kN} \times 4 \mathrm{~m})=-40 \mathrm{kNm}$.

Question 3

Moment $\mathrm{M}=+(10 \mathrm{kN} \times 5 \mathrm{~m})+(45 \mathrm{kN} \times 0 \mathrm{~m})+(60 \mathrm{kN} \times 0 \mathrm{~m})=+50 \mathrm{kNm}$.
Note that the 60 kN force and the 45 kN force (if extended) pass straight through point A (which is the point about which moments are being taken), so the moment of each of these forces about point A is zero.

Question 4

$$
\begin{aligned}
\text { Moment M } & =+(30 \mathrm{kN} \times 3 \mathrm{~m})+(10 \mathrm{kN} \times 2 \mathrm{~m})-(5 \mathrm{kN} \times 4 \mathrm{~m}) \\
& =+90+20-20 \\
& =+90 \mathrm{kNm} .
\end{aligned}
$$

Question 5

The vertical component of the 14 kN force is $\left(14 \sin 45^{\circ}\right)=9.9 \mathrm{kN}$.

$$
\begin{aligned}
\text { Moment } \mathrm{M} & =+(9.9 \mathrm{kN} \times 2.828 \mathrm{~m})-(9 \mathrm{kN} \times 3 \mathrm{~m}) \\
& =28-27 \\
& =1 \mathrm{kNm} .
\end{aligned}
$$

Alternatively, the same answer can be reached if you recognise that the perpendicular distance between A and the 14 kN force is $\left(2.828 \times \sin 45^{\circ}\right)$ $=2 \mathrm{~m}$. See diagram below.

$$
\begin{aligned}
\text { Moment } \mathrm{M}= & +(14 \mathrm{kN} \times 2 \mathrm{~m})-(9 \mathrm{kN} \times 3 \mathrm{~m}) \\
& =+28-27 \\
& =+1 \mathrm{kNm} .
\end{aligned}
$$

Question 6

$$
\begin{aligned}
\text { Moment } \mathrm{M} & =+(6 \mathrm{kN} \times 3 \mathrm{~m})+(7 \mathrm{kN} \times 5 \mathrm{~m})+(5 \mathrm{kN} \times 2 \mathrm{~m}) \\
& =+18+35+10 \\
& =+63 \mathrm{kNm} .
\end{aligned}
$$

