SOLUTIONS TO TUTORIAL EXAMPLES

CHAPTER 8

Remember:

Clockwise moments are positive (+). Anti-clockwise moments are negative (-).

Question 1

Moment M = $+(30 \text{ kN} \times 3 \text{ m}) = +90 \text{ kNm}.$

Question 2

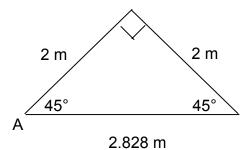
Moment M = $-(10 \text{ kN} \times 4 \text{ m}) = -40 \text{ kNm}.$

Question 3

Moment M = $+(10 \text{ kN} \times 5 \text{ m}) + (45 \text{ kN} \times 0 \text{ m}) + (60 \text{ kN} \times 0 \text{ m}) = +50 \text{ kNm}.$

Note that the 60 kN force and the 45 kN force (if extended) pass straight through point A (which is the point about which moments are being taken), so the moment of each of these forces about point A is zero.

Question 4


Moment M = $+(30 \text{ kN} \times 3 \text{ m}) + (10 \text{ kN} \times 2 \text{ m}) - (5 \text{ kN} \times 4 \text{ m})$ = +90 + 20 - 20= +90 kNm.

Question 5

The vertical component of the 14 kN force is $(14 \sin 45^\circ) = 9.9$ kN.

Moment M = $+(9.9 \text{ kN} \times 2.828 \text{ m}) - (9 \text{ kN} \times 3 \text{ m})$ = 28 - 27= 1 kNm.

Alternatively, the same answer can be reached if you recognise that the perpendicular distance between A and the 14 kN force is $(2.828 \times \sin 45^{\circ})$ = 2 m. See diagram below.

Moment M = $+(14 \text{ kN} \times 2 \text{ m}) - (9 \text{ kN} \times 3 \text{ m})$ = +28 - 27= +1 kNm.

Question 6

Moment M = $+(6 \text{ kN} \times 3 \text{ m}) + (7 \text{ kN} \times 5 \text{ m}) + (5 \text{ kN} \times 2 \text{ m})$ = +18 + 35 + 10= +63 kNm.