SOLUTIONS TO TUTORIAL EXAMPLES CHAPTER 7

Question 1

Magnitude of resultant force $R=\sqrt{ }\left(6^{2}+3^{2}\right)=6.71 \mathrm{kN}$
Direction of resultant force $(R)=\tan ^{-1}(6 / 3)=63.4^{\circ}$ from horizontal (downwards and to left)

Question 2

Magnitude of resultant force $R=\sqrt{ }\left(9^{2}+12^{2}\right)=15 \mathrm{kN}$
Direction of resultant force $(R)=\tan ^{-1}(9 / 12)=36.9^{\circ}$ from horizontal (upwards and to left)

12 kN

Question 3

It can be seen that the two forces shown are at right angles to each other therefore the normal trigonometrical rules associated with right angled triangles apply.

Magnitude of resultant force $R=\sqrt{ }\left(120^{2}+160^{2}\right)=200 \mathrm{kN}$
Direction of resultant force (R) relative to the line of the 120 kN force $=$ $\tan ^{-1}(160 / 120)=53.1^{\circ}$.

The 120 kN force is itself at an angle of 30° from the horizontal.
Therefore the angle of the resultant force from the horizontal is $(53.1-30)=$ 23.1° from horizontal (upwards and to left).

In summary, the resultant force is 200 kN in at an angle of 23.1° to the horizontal (upwards and to the left).

Question 4

Horizontal component $(H)=90 \times \cos 60^{\circ}=45 \mathrm{kN}$ (to left).
Vertical component $(\mathrm{V})=90 \times \sin 60^{\circ}=77.9 \mathrm{kN}$ (upwards).

H

Question 5

Horizontal component $(\mathrm{H})=100 \times \cos 40^{\circ}=76.6 \mathrm{kN}$ (to left).
Vertical component $(\mathrm{V})=100 \times \sin 40^{\circ}=64.3 \mathrm{kN}$ (downwards).

Question 6

Since the 60 kN and the 36 kN forces both act along the same line of action (albeit in opposite directions), they combine to give a 24 kN force (i.e. $60-36$) along a line at 40° to the horizontal (upwards and to right). The problem now comprises two forces at right angles, as shown in the diagram below.

Magnitude of resultant force $R=\sqrt{ }\left(24^{2}+18^{2}\right)=30 \mathrm{kN}$
Direction of resultant force (R) relative to the line of the 24 kN force $=$ $\tan ^{-1}(18 / 24)=36.9^{\circ}$.

(Note: $36.9+3.1=40)$
In summary, the resultant force is 24 kN in at an angle of 3.1° to the horizontal (upwards and to the right).

Question 7

First, resolve the 14 kN force into its two components:
Horizontal component $(\mathrm{H})=14 \times \cos 45^{\circ}=9.9 \mathrm{kN}$ (to right).
Vertical component $(V)=14 \times \sin 45^{\circ}=9.9 \mathrm{kN}$ (upwards).
Next, add this vertical component to the 4 kN upwards force:

$$
(9.9+4)=13.9 \mathrm{kN}
$$

Next, subtract the 3 kN horizontal force (which acts to the left) from the horizontal component:

$$
(9.9-3)=6.9 \mathrm{kN} .
$$

So the problem reduces to a vertical (upwards) force of 13.9 kN acting with a horizontal force of 6.9 kN (to the right). See diagram below.

6.9 kN

Magnitude of resultant force $R=\sqrt{ }\left(13.9^{2}+6.9^{2}\right)=15.5 \mathrm{kN}$
Direction of resultant force $(R)=\tan ^{-1}(13.9 / 6.9)=63.6^{\circ}$ from horizontal (upwards and to right).

Question 8

A similar approach to Question 7 can be followed. First, resolve the 200 kN force into its two components:

Horizontal component $(\mathrm{H})=200 \times \cos 25^{\circ}=181.3 \mathrm{kN}$ (to right).
Vertical component $(\mathrm{V})=200 \times \sin 25^{\circ}=84.5 \mathrm{kN}$ (downwards).
Next, subtract the (upward) 7 kN vertical force from this vertical component:

$$
(84.5-7)=77.5 \mathrm{kN}
$$

Next, add the 1 kN horizontal force (which acts to the right) to the horizontal component (which also acts to the right):

$$
(1+181.3)=182.3 \mathrm{kN} .
$$

So the problem reduces to a vertical (downwards) force of 77.5 kN acting with a horizontal force of 182.3 kN (to the right). See diagram below.

Magnitude of resultant force $R=\sqrt{ }\left(77.5^{2}+182.3^{2}\right)=198 \mathrm{kN}$ Direction of resultant force $(R)=\tan ^{-1}(77.5 / 182.3)=23.0^{\circ}$ from horizontal (downwards and to right).

