SOLUTIONS TO TUTORIAL EXAMPLES CHAPTER 4

Question 1

Remember that, on earth, a force of 10 Newtons is equivalent to a mass of 1 kg .
a) A mass of 70 kg is equivalent to a weight of 700 N , or 0.7 kN .
b) A mass of 95 kg is equivalent to a weight of 950 N , or 0.95 kN .

On the moon, the weight of each of these people would be one-sixth of their weight on earth.
a) The weight of a 70 kg mass on the moon $=70 \mathrm{~kg} \times 10 / 6=117 \mathrm{~N}=$ 0.117 kN .
b) The weight of a 95 kg mass on the moon $=95 \mathrm{~kg} \times 10 / 6=158 \mathrm{~N}=$ 0.158 kN .

Question 2

Volume of brick:
In millimetre (mm) units $=(215 \mathrm{~mm} \times 102.5 \mathrm{~mm} \times 65 \mathrm{~mm})=1432438 \mathrm{~mm}^{3}$.
In metre (m) units $=(0.215 \mathrm{~m} \times 0.1025 \mathrm{~m} \times 0.065 \mathrm{~m})=0.0014 \mathrm{~m}^{3}$.
Density $=$ mass/volume, so mass $=$ density \times volume .
Mass $=1800 \mathrm{~kg} / \mathrm{m}^{3} \times 0.0014 \mathrm{~m}^{3}=2.52 \mathrm{~kg}$
Weight of brick $=2.52 \mathrm{~kg} \times 10=25.2 \mathrm{~N}=0.025 \mathrm{kN}$.

Question 3

Weight of concrete beam $=$ volume \times unit weight

$$
=(9 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.35 \mathrm{~m}) \times 24 \mathrm{kN} / \mathrm{m}^{3}
$$

$$
=15.1 \mathrm{kN}
$$

Question 4

Assume:
Average weight of each student $=0.8 \mathrm{kN}$
Average weight of each desk $=0.2 \mathrm{kN}$
Average weight of each chair $=0.1 \mathrm{kN}$
TOTAL = 1.1 kN
Total weight of 60 students + furniture $=60 \times 1.1=66 \mathrm{kN}$
Area of classroom $=10 \mathrm{~m} \times 12 \mathrm{~m}=120 \mathrm{~m}^{2}$
Actual load $/ \mathrm{m}^{2}=66 \mathrm{kN} / 120 \mathrm{~m}^{2}=0.55 \mathrm{kN} / \mathrm{m}^{2}$
This is much less than $3.0 \mathrm{kN} / \mathrm{m}^{2}$. OK.

Question 5

Average depth of swimming pool $=1.5$ metres
Volume of water in pool $=25 \mathrm{~m} \times 10 \mathrm{~m} \times 1.5 \mathrm{~m}=375 \mathrm{~m}^{3}$
Unit weight of water $=10 \mathrm{kN} / \mathrm{m}^{3}=1$ tonne $/ \mathrm{m}^{3}$
Weight of water in pool $=375$ tonnes.
This is equivalent to the weight of 375 small cars.
Advice to architect/client: the proposed swimming pool will increase the load on the supporting walls and columns by a huge amount. They will need to be appraised and possibly supplemented or rebuilt to accommodate this increased load.

Question 6

1 hectare $=10000 \mathrm{~m}^{2}$, and 1 hectare $=2.47$ acres Area of site $=(300 \mathrm{~m} \times 250 \mathrm{~m})=75000 \mathrm{~m}^{2}=7.5$ hectares $=(7.5 \times 2.47)$ acres $=$ 18.5 acres.

Question 7

Calculations: £1 coin

The mass of a $£ 1$ coin is 9.7 grams.
Therefore the mass of a million $£ 1$ coins is 9.7×10^{6} grams $=9700 \mathrm{~kg}$.
Therefore the weight of a million $£ 1$ coins is $(9700 \times 10)=97000 \mathrm{~N}=97 \mathrm{kN}$. (This is because 10 N (weight) is equivalent to 1 kg (mass).)

A $£ 1$ coin has a diameter of 22 mm and a thickness of 3 mm .

Assuming a stacking configuration as illustrated above, each pound coin occupies a volume of $(22 \mathrm{~mm} \times 22 \mathrm{~mm} \times 3 \mathrm{~mm})=1452 \mathrm{~mm}^{3}$.

Therefore the volume of a million pound coins is $1452 \times 10^{6} \mathrm{~mm}^{3}=1.452 \mathrm{~m}^{3}$. (because $1 \mathrm{~m}^{3}=10^{9} \mathrm{~mm}^{3}$).

Density $=$ mass/volume $=97 \mathrm{kN} / 1.452 \mathrm{~m}^{3}=66.8 \mathrm{kN} / \mathrm{m}^{3}$ (this compares well with the published unit weight of steel $=78.5 \mathrm{kN} / \mathrm{m}^{3}$).

Calculations: £2 coin

A $£ 2$ coin is both heavier and larger than a $£ 1$ coin, but only 500000 will be required (since $£ 2 \times 500000=£ 1$ million).

The mass of a $£ 2$ coin is 11.9 grams.
Therefore the mass of $500000 £ 2$ coins is $11.9 \times 5000000=5.95 \times 10^{6}$ grams $=5950 \mathrm{~kg}$.

Therefore the weight of $500000 £ 2$ coins is $59500 \mathrm{~N}=59.5 \mathrm{kN}$ (again, because 10 N (weight) is equivalent to 1 kg (mass)).

A $£ 2$ coin has a diameter of 29 mm and a thickness of 2.5 mm .
Assuming the same stacking configuration as above, each $£ 2$ coin occupies a volume of $(29 \mathrm{~mm} \times 29 \mathrm{~mm} \times 2.5 \mathrm{~mm})=2102.5 \mathrm{~mm}^{3}$.

Therefore the volume of $500000 £ 2$ coins is $2102.5 \times 500000=1.051 \times 10^{9}$ $\mathrm{mm}^{3}=1.051 \mathrm{~m}^{3}$.

Density $=$ mass/volume $=59.5 \mathrm{kN} / 1.051 \mathrm{~m}^{3}=56.6 \mathrm{kN} / \mathrm{m}^{3}$.

Discussion

The volumes of $£ 1$ worth of $£ 1$ coins and $£ 2$ coins are $1.452 \mathrm{~m}^{3}$ and $1.051 \mathrm{~m}^{3}$, respectively. Either of these would fit in the back of a light van. However, the main problem is the weight. The weight of a million $£ 1$ coins is nearly 10 tonnes (since $10 \mathrm{kN}=1$ tonne) so a heavy duty vehicle would be required to transport this load. The $£ 2$ coin option weighs just under 6 tonnes - considerably lighter but still requiring a heavy duty vehicle to transport it.

On the storage question, the live load assumed in domestic construction is 1.5 $\mathrm{kN} / \mathrm{m}^{2}$ (British Standard BS 6399). Therefore, the floor area required for the $£ 1$ coin option $=97 \mathrm{kN} / 1.5 \mathrm{kN} / \mathrm{m}^{2}=64.6 \mathrm{~m}^{2}$, and the floor area required for the $£ 2$ coin option $=59.5 \mathrm{kN} / 1.5 \mathrm{kN} / \mathrm{m}^{2}=39.7 \mathrm{~m}^{2}$. So, even the lighter $£ 2$ coin option would require the load to be spread over a floor area of about $40 \mathrm{~m}^{2}$ or 430 square feet, which is the total floor area of a typical one-bedroom apartment.

It can be seen that the weight of the 'haul' poses problems for both transport and storage. The most realistic option would be to engage the services of a security company to transport the money to the nearest bank.

