SOLUTIONS TO TUTORIAL EXAMPLES

CHAPTER 18

Question 1

Axial force P = 3000 kN

Cross-sectional area A = (400 mm × 350 mm)

Direct stress $\sigma = P/A = (3000 \times 10^3 \text{ N}) / (400 \text{ mm} \times 350 \text{ mm}) = 21.4 \text{ N/mm}^2$.

Question 2

Cross sectional area A = P/ σ = (750 ×10³ N) / 460 N/mm² = 1630 mm².

Area of a circle A = πr^2 , so r = $\sqrt{(A/\pi)} = \sqrt{(1630/\pi)} = 22.8$ mm

Diameter of a circle is twice the radius.

So minimum diameter = $(2 \times 22.8) = 45.6$ mm.

If the rod had been in compression, the possibility of *buckling* would need to be considered. A slender section such as a rod is likely to buckle or bend before its full potential compressive strength is realised.

Question 3

Cross sectional area A = P/ σ = (60 × 10³ N) / 6 N/mm² = 10 000 mm².

A suitable size of timber section is one that has at least the above value of cross sectional area.

Examples are:

100 mm × 100 mm section (A = 10 000 mm²) 75 mm × 150 mm section (A = 11 250 mm²)

Question 4

Strain $\epsilon = \delta L / L = 1.5 \text{ mm} / 3000 \text{ mm} = 0.0005 \text{ (or } 0.5\%)$

Question 5

$$\delta L = \frac{PL}{AE} = \frac{150 \text{ x } 10^3 \text{ N x } 3500 \text{ mm}}{\pi \text{ x } 10^2 \text{ mm}^2 \text{ x } 200 \text{ x } 10^3 \text{ N/mm}^2}$$

δL = 8.35 mm.

Question 6

Stress σ = P/A = (50 × 10³ N) / 220 mm² = 227.27 N/mm².

Strain $\varepsilon = \sigma / E = 227.27 \text{ N/mm}^2 / (70 \times 10^3 \text{ N/mm}^2) = 3.25 \times 10^{-3} = 0.00325.$

Change in length $\delta L = \epsilon \times L = 3.25 \times 10^{-3} \times 1500$ mm = 4.87 mm.

Question 7

Force P = 13 000 tonnes = 130 000 kN = 130×10^6 N (since 10 kN = 1 tonne)

Area A = $\pi \times r^2$ = $\pi \times 500^2$ = 785,398 mm² = 0.785 × 10⁶ mm².

Stress $\sigma = P/A = (130 \times 10^6 \text{ N})/(0.785 \times 10^6 \text{ mm}^2) = 166 \text{ N/mm}^2$.