SOLUTIONS TO TUTORIAL EXAMPLES CHAPTER 18

Question 1

Axial force $\mathrm{P}=3000 \mathrm{kN}$
Cross-sectional area $A=(400 \mathrm{~mm} \times 350 \mathrm{~mm})$
Direct stress $\sigma=P / A=\left(3000 \times 10^{3} \mathrm{~N}\right) /(400 \mathrm{~mm} \times 350 \mathrm{~mm})=21.4 \mathrm{~N} / \mathrm{mm}^{2}$.

Question 2

Cross sectional area $A=P / \sigma=\left(750 \times 10^{3} \mathrm{~N}\right) / 460 \mathrm{~N} / \mathrm{mm}^{2}=1630 \mathrm{~mm}^{2}$.
Area of a circle $A=\pi r^{2}$, so $r=\sqrt{ }(A / \pi)=\sqrt{ }(1630 / \pi)=22.8 \mathrm{~mm}$
Diameter of a circle is twice the radius.
So minimum diameter $=(2 \times 22.8)=45.6 \mathrm{~mm}$.
If the rod had been in compression, the possibility of buckling would need to be considered. A slender section such as a rod is likely to buckle or bend before its full potential compressive strength is realised.

Question 3

Cross sectional area $A=P / \sigma=\left(60 \times 10^{3} \mathrm{~N}\right) / 6 \mathrm{~N} / \mathrm{mm}^{2}=10000 \mathrm{~mm}^{2}$.
A suitable size of timber section is one that has at least the above value of cross sectional area.

Examples are:

$$
100 \mathrm{~mm} \times 100 \mathrm{~mm} \text { section }\left(A=10000 \mathrm{~mm}^{2}\right)
$$

$75 \mathrm{~mm} \times 150 \mathrm{~mm}$ section $\left(A=11250 \mathrm{~mm}^{2}\right)$

Question 4

Strain $\varepsilon=\delta L / L=1.5 \mathrm{~mm} / 3000 \mathrm{~mm}=0.0005$ (or 0.5%)

Question 5

$\delta \mathrm{L}=\frac{\mathrm{PL}}{\mathrm{AE}}=\frac{150 \times 10^{3} \mathrm{~N} \times 3500 \mathrm{~mm}}{\pi \times 10^{2} \mathrm{~mm}^{2} \times 200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}}$
$\delta L=8.35 \mathrm{~mm}$.

Question 6

Stress $\sigma=P / A=\left(50 \times 10^{3} \mathrm{~N}\right) / 220 \mathrm{~mm}^{2}=227.27 \mathrm{~N} / \mathrm{mm}^{2}$.
Strain $\varepsilon=\sigma / E=227.27 \mathrm{~N} / \mathrm{mm}^{2} /\left(70 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}\right)=3.25 \times 10^{-3}=0.00325$.
Change in length $\delta L=\varepsilon \times L=3.25 \times 10^{-3} \times 1500 \mathrm{~mm}=4.87 \mathrm{~mm}$.

Question 7

Force $P=13000$ tonnes $=130000 \mathrm{kN}=130 \times 10^{6} \mathrm{~N}$ (since $10 \mathrm{kN}=1$ tonne)
Area $A=\pi x r^{2}=\pi \times 500^{2}=785,398 \mathrm{~mm}^{2}=0.785 \times 10^{6} \mathrm{~mm}^{2}$.
Stress $\sigma=P / A=\left(130 \times 10^{6} \mathrm{~N}\right) /\left(0.785 \times 10^{6} \mathrm{~mm}^{2}\right)=166 \mathrm{~N} / \mathrm{mm}^{2}$.

