SOLUTIONS TO TUTORIAL EXAMPLES CHAPTER 14

Note: The 'cut lines' referred to in the solutions below are illustrated on the diagrams at the end of this section.

Question 1

All angles are $\tan -1(3 / 2)=56.3^{\circ}$ to the horizontal.
$\operatorname{Sin} 56.3^{\circ}=0.832, \quad \cos 56.3^{\circ}=0.555$

Member CD

Cut along line 1-1.
Resolving vertically for the whole frame to the left of this cut line, it can be seen that the vertical component of the force in member CD near end C (upwards) will be equal to the 48 kN (downwards) force.
$\mathrm{F}_{\mathrm{CD}} \sin 56.3^{\circ}=48$
$\mathrm{F}_{\mathrm{CD}}=48 / 0.832=57.6 \mathrm{kN}$ (compression).

Member DE

Cut along line 2-2.
Resolving vertically for the whole frame to the left of this cut line, it can be seen that the force in member DE near end D (upwards) will be equal to the 48 kN (downwards) force.
$\mathrm{F}_{\mathrm{DE}}=48 \mathrm{kN}$ (tension).

Member EG

Cut along line 3-3, then take moments about F for the whole frame to the left of this cut line. Assume the force in member EG near to end E acts to the right.

```
(FEG }\times3\textrm{m})=(48\textrm{kN}\times3\textrm{m})+(48\textrm{kN}\times6\textrm{m}
3FEGG}43
FEG = 432/3 = 144 kN (tension).
```


Member GH

Calculate the reaction at K, R_{K}. Assume R_{K} acts downwards.
Taking moments about F for whole frame:
$\left(R_{\mathrm{K}} \times 4 \mathrm{~m}\right)=(48 \mathrm{kN} \times 3 \mathrm{~m})+(48 \mathrm{kN} \times 6 \mathrm{~m})$
$4 R_{K}=432$
$\mathrm{R}_{\mathrm{K}}=432 / 4=108 \mathrm{kN}$ (downwards).
Cut along line 4-4, then resolve vertically for the whole frame to the right of this cut line. By inspection, the force in member GH near to end H acts upwards.

The vertical component of the force in member GH near end H (upwards) will be equal to the 108 kN (downwards) force.
$\mathrm{F}_{\mathrm{GH}} \sin 56.3^{\circ}=108$
$\mathrm{F}_{\mathrm{GH}}=108 / 0.832=129.8 \mathrm{kN}$ (tension).

Question 2

All angles are tan-1(5/6) $=39.8^{\circ}$ to the horizontal.
$\operatorname{Sin} 39.8^{\circ}=0.640, \quad \cos 39.8^{\circ}=0.768$

Member BE

Cut along line 5-5, then resolve vertically for the whole frame to the right of this cut line. By inspection, the force in member BE near to end E acts upwards.

The vertical component of the force in member BE near end E (upwards) will be equal to the sum of the downward external forces to the right of the cut line.
$\mathrm{F}_{\mathrm{BE}} \sin 39.8^{\circ}=(20+20)=40$
$F_{B E}=40 / 0.640=62.5 \mathrm{kN}$ (tension).

Member BF

Cut along line 6-6, then resolve vertically for the whole frame to the right of this cut line. By inspection, the force in member BF near to end B acts upwards.
$F_{B F}=(20+20+20)=60 \mathrm{kN}$ (compression).

Question 3

All angles are tan-1(6/8) $=36.9^{\circ}$ to the horizontal.
$\operatorname{Sin} 36.9^{\circ}=0.6$, $\cos 36.9^{\circ}=0.8$

Cut along line 7-7.

Member CD

Resolve vertically for the whole frame to the left of cut line 7-7. By inspection, the force in member CD near end C acts downwards. The vertical component of the force in member CD near end C (downwards) will be equal to the 120 kN (upwards) external force.
$\mathrm{F}_{\mathrm{CD}} \sin 36.9^{\circ}=120$
$F_{C D}=120 / 0.6=200 \mathrm{kN}$ (compression).

Member BC

Take moments about point D for the part of the frame to the left of cut line 7-7, assuming the force in member BC at C acts to the right:
$(120 \mathrm{kN} \times 16 \mathrm{~m})=(24 \mathrm{kN} \times 6 \mathrm{~m})+\left(\mathrm{F}_{\mathrm{BC}} \times 6 \mathrm{~m}\right)$
$6 \mathrm{~F}_{\mathrm{BC}}=1776$
$F_{B C}=1776 / 6=296 \mathrm{kN}$ (tension).

Member DE

Take moments about point C for the part of the frame to the left of cut line 7-7, assuming the force in member DE at E acts to the left:
$(F D E \times 6 \mathrm{~m})+(24 \mathrm{kN} \times 12 \mathrm{~m})=(120 \mathrm{kN} \times 8 \mathrm{~m})$
6 FDE $=672$
FDE $=672 / 6=112 \mathrm{kN}$ (compression).

