SOLUTIONS TO TUTORIAL EXAMPLES CHAPTER 13

Note: The reader may find these solutions easier to follow if he/she marks the forces on a diagram of the frame as he/she proceeds through the calculations.

Question 1

Note the symmetry of both the frame and its loading. This means that only half of the members need to be analysed.

Calculation of reactions

Vertical equilibrium:
$R_{A}+R_{J}=20+50+20=90 k N$.
Due to symmetry, $R_{A}=R_{J}=90 / 2=45 \mathrm{kN}$.

Determination of member forces

All angles are $45^{\circ} . \operatorname{Sin} 45^{\circ}=0.707, \cos 45^{\circ}=0.707$

Resolving vertically at A:

By inspection, force in member $A B$ acts downwards.
$\mathrm{F}_{\mathrm{AB}}=45 \mathrm{kN}$ (downwards).
So force in member $\mathrm{AB}=45 \mathrm{kN}$ (compression).
Resolving horizontally at A:
$\mathrm{F}_{\mathrm{AC}}=0 \mathrm{kN}$
So force in member $\mathrm{AC}=0 \mathrm{kN}$.
Resolving vertically at B:
$\mathrm{F}_{\mathrm{AB}}=\mathrm{F}_{\mathrm{BC}} \times \sin 45^{\circ}$
$45=F_{B C} \times 0.707$
$\mathrm{F}_{\mathrm{BC}}=45 / 0.707=63.6 \mathrm{kN}$ (downwards and to right)
So force in member BC $=63.6 \mathrm{kN}$ (tension).

Resolving horizontally at B :
$F_{B D}=F_{B C} \cos 45^{\circ}=63.6 \times 0.707=45 \mathrm{kN}$ (to left).
So force in member BD $=45 \mathrm{kN}$ (compression).
Resolving vertically at C:
Assume force in member $C D$ is downwards at C.
$20=F_{B C} \sin 45^{\circ}-F_{C D}$.
$20=(63.6 \times 0.707)-F_{C D}$
$\mathrm{F}_{\mathrm{CD}}=45-20=25 \mathrm{kN}$
So force in member CD $=25 \mathrm{kN}$ (compression).
Resolving horizontally at C:
By inspection, force in member CE acts to the right.
$\mathrm{F}_{\mathrm{AC}}+\mathrm{F}_{\mathrm{BC}} \cos 45^{\circ}=\mathrm{F}_{\mathrm{CE}}$.
$0+(63.6 \times 0.707)=F_{C E}$
$\mathrm{F}_{\mathrm{CE}}=45 \mathrm{kN}$ (to the right).
So force in member CE $=45 \mathrm{kN}$ (tension).
Resolving vertically at D:
By inspection, force in member DE acts downwards to the right.
$\mathrm{F}_{\mathrm{CD}}=\mathrm{F}_{\mathrm{DE}} \sin 45^{\circ}$
$25=F_{D E} \times 0.707$
$\mathrm{F}_{\mathrm{DE}}=25 / 0.707=35.4 \mathrm{kN}$.
So force in member DE $=35.4 \mathrm{kN}$ (tension).
Resolving horizontally at D:
By inspection, the force in member DF acts to the left (since the forces in members BD and DE act to the right).
$F_{B D}+F_{D E} \cos 45^{\circ}=F_{D F}$.
$45+(35.4 \times 0.707)=F_{D F}$.
$F_{D F}=45+25=70 \mathrm{kN}$ (to the left).
So force in member DF $=70 \mathrm{kN}$ (compression).
Resolving vertically at F:
$F_{F E}=0 \mathrm{kN}$.
So force in member FE $=0 \mathrm{kN}$.

Check: Resolving vertically at E:
$50=\left(2 \times 35.4 \sin 45^{\circ}\right)+0=50$. This is correct.

Question 2

Calculation of reactions

Vertical equilibrium:

$$
V_{A}+V_{D}=20+30=50 \mathrm{kN}
$$

Taking moments about A :

$$
\begin{aligned}
& 9 \mathrm{~m} \times \mathrm{V}_{\mathrm{D}}=(30 \mathrm{kN} \times 3 \mathrm{~m})+(20 \mathrm{kN} \times 6 \mathrm{~m})-(25 \mathrm{kN} \times 4 \mathrm{~m}) \\
& 9 \mathrm{~V}_{\mathrm{D}}=90+120-100=110 \mathrm{kN} . \\
& \mathrm{V}_{\mathrm{D}}=110 / 9=12.2 \mathrm{kN} .
\end{aligned}
$$

Taking moments about D:

$$
\begin{aligned}
& 9 \mathrm{~m} \times \mathrm{V}_{\mathrm{A}}=(30 \mathrm{kN} \times 6 \mathrm{~m})+(25 \mathrm{kN} \times 4 \mathrm{~m})+(20 \mathrm{kN} \times 3 \mathrm{~m}) \\
& 9 \mathrm{~V}_{\mathrm{A}}=180+100+60=340 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{A}}=340 / 9=37.8 \mathrm{kN} .
\end{aligned}
$$

Horizontal equilibrium:
$\mathrm{H}_{\mathrm{D}}=25 \mathrm{kN}$ (to the right)

Determination of member forces

All angles with horizontal are tan-1(4/3) $=53.1^{\circ}$.
$\sin 53.1^{\circ}=0.8, \cos 53.1^{\circ}=0.6$
Resolving vertically at A:
By inspection, force in member $A B$ acts downwards and to the left.
$\mathrm{F}_{\mathrm{AB}} \sin 53.1^{\circ}=37.8 \mathrm{kN}$.
$F_{A B}=37.8 / 0.8=47.3 \mathrm{kN}$.
So force in member $\mathrm{AB}=47.3 \mathrm{kN}$ (compression).

Resolving horizontally at A:

By inspection, force in member AF acts to the right.
$F_{A F}=F_{A B} \cos 53.1^{\circ}=47.3 \times 0.6=28.4 \mathrm{kN}$.
So force in member AF $=28.4 \mathrm{kN}$ (tension).
Resolving vertically at B:
By inspection, force in member BF acts downwards.
$F_{B F}=F_{A B} \sin 53.1^{\circ}=47.3 \times 0.8=37.8 \mathrm{kN}$.
So force in member $\mathrm{BF}=37.8 \mathrm{kN}$ (tension).
Resolving horizontally at B:
Assume force in member $B C$ acts to the left at B.
$F_{B C}=F_{A B} \cos 53.1^{\circ}-25=(47.3 \times 0.6)-25=3.4 \mathrm{kN}$.
So force in member $\mathrm{BC}=3.4 \mathrm{kN}$ (compression).
Resolving vertically at F:
By inspection, force in member CF acts downwards and to left.
$\mathrm{F}_{\mathrm{CF}} \sin 53.1^{\circ}=\mathrm{F}_{\mathrm{BF}}-30=37.8-30=7.8$.
$F_{C F}=7.8 / 0.8=9.75 \mathrm{kN}$
So force in member CF $=9.75 \mathrm{kN}$ (compression).
Resolving horizontally at F:
By inspection, the force in member FE acts to the right (since the forces in members AF and CF act to the left).
$F_{F E}=F_{A F}+F_{C F} \cos 53.1^{\circ}=28.4+(9.75 \times 0.6)=34.2 \mathrm{kN}$.
So force in member FE $=34.2 \mathrm{kN}$ (tension).
Resolving vertically at D :
By inspection, force in member CD acts downwards and to the right.
$\mathrm{F}_{\mathrm{CD}} \sin 53.1^{\circ}=12.2 \mathrm{kN}$.
$F_{C D}=12.2 / 0.8=15.25 \mathrm{kN}$.
So force in member CD $=15.25 \mathrm{kN}$ (compression).
Resolving horizontally at D:
By inspection, force in member ED acts to the left.
$F_{E D}=\left(F_{C D} \cos 53.1^{\circ}\right)+25=(15.25 \times 0.6)+25=34.2 \mathrm{kN}$.
So force in member AF $=34.2 \mathrm{kN}$ (tension).

Resolving vertically at E :
By inspection: $\mathrm{F}_{\mathrm{CE}}=0$.
Check: Resolving vertically at C:

$$
\begin{aligned}
& 20=F_{C F} \sin 53.1^{\circ}+F_{C E}+F_{C D} \sin 53.1^{\circ} \\
& 20=(9.75 \times 0.8)+0+(15.25 \times 0.8)=20 . \text { This is correct. }
\end{aligned}
$$

Question 3

Calculation of reactions

Vertical equilibrium:

$$
\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{C}}=18 \mathrm{kN}
$$

Taking moments about A :

$$
\begin{aligned}
& 2 \mathrm{~m} \times \mathrm{V}_{\mathrm{C}}=(6 \mathrm{kN} \times 2 \mathrm{~m}) \\
& \mathrm{V}_{\mathrm{C}}=6 \mathrm{kN} .
\end{aligned}
$$

Taking moments about C:

$$
\begin{aligned}
& 2 \mathrm{~m} \times \mathrm{V}_{\mathrm{A}}=(18 \mathrm{kN} \times 2 \mathrm{~m})-(6 \mathrm{kN} \times 2 \mathrm{~m}) \\
& 2 \mathrm{~V}_{\mathrm{A}}=24 \mathrm{kN} . \\
& \mathrm{V}_{\mathrm{A}}=12 \mathrm{kN} .
\end{aligned}
$$

Horizontal equilibrium:

$$
\mathrm{H}_{\mathrm{A}}=6 \mathrm{kN} \text { (to the right) }
$$

Determination of member forces

All angles are $45^{\circ} . \operatorname{Sin} 45^{\circ}=0.707, \cos 45^{\circ}=0.707$
Resolving vertically at A:
By inspection, force in member $A B$ acts downwards.
$\mathrm{F}_{\mathrm{AB}}=12 \mathrm{kN}$.
So force in member $\mathrm{AB}=12 \mathrm{kN}$ (compression).

Resolving horizontally at A:
By inspection, force in member AC acts to the left.
$\mathrm{F}_{\mathrm{AC}}=6 \mathrm{kN}$.
So force in member $\mathrm{AC}=6 \mathrm{kN}$ (compression).
Resolving horizontally at B:
By inspection, force in member BC acts upwards and to the left.
$\mathrm{F}_{\mathrm{BC}} \cos 45^{\circ}=6 \mathrm{kN}$.
$F_{B C}=6 / 0.707=8.5 \mathrm{kN}$.
So force in member $\mathrm{BC}=8.5 \mathrm{kN}$ (compression).
Check: resolving vertically at C:
$\mathrm{F}_{\mathrm{BC}} \sin 45^{\circ}=6 \mathrm{kN}$.
$F_{B C}=6 / 0.707=8.5 \mathrm{kN}$.
So force in member $\mathrm{BC}=8.5 \mathrm{kN}$ (compression) - as calculated before.

Question 4

Calculation of reactions

Vertical equilibrium:

$$
V_{A}+V_{E}=50+30+20=100 \mathrm{kN}
$$

Taking moments about A :

$$
\begin{aligned}
& 10 \mathrm{~m} \times \mathrm{V}_{\mathrm{E}}=(25 \mathrm{kN} \times 5 \mathrm{~m})+(50 \mathrm{kN} \times 5 \mathrm{~m})+(30 \mathrm{kN} \times 10 \mathrm{~m})+(20 \mathrm{kN} \times 15 \mathrm{~m}) \\
& 10 \mathrm{~V}_{\mathrm{E}}=125+250+300+300=975 \\
& V_{E}=975 / 10=97.5 \mathrm{kN} .
\end{aligned}
$$

Taking moments about E :

$$
\begin{aligned}
& 10 \mathrm{~m} \times \mathrm{V}_{\mathrm{A}}=(50 \mathrm{kN} \times 5 \mathrm{~m})-(25 \mathrm{kN} \times 5 \mathrm{~m})-(20 \mathrm{kN} \times 5 \mathrm{~m}) \\
& 10 \mathrm{~V}_{\mathrm{A}}=250-125-100=25 \\
& \mathrm{~V}_{\mathrm{A}}=25 / 10=2.5 \mathrm{kN} .
\end{aligned}
$$

Horizontal equilibrium:
$\mathrm{H}_{\mathrm{A}}=25 \mathrm{kN}$ (to the left)

Determination of member forces

All angles are $45^{\circ} . \operatorname{Sin} 45^{\circ}=0.707, \cos 45^{\circ}=0.707$
Resolving vertically at A :
By inspection, force in member $A B$ acts downwards.
$\mathrm{F}_{\mathrm{AB}}=2.5 \mathrm{kN}$.
So force in member $\mathrm{AB}=2.5 \mathrm{kN}$ (compression).
Resolving horizontally at A:
By inspection, force in member AC acts to the right.
$\mathrm{F}_{\mathrm{AC}}=25 \mathrm{kN}$.
So force in member AC $=25 \mathrm{kN}$ (tension).
Resolving vertically at B :
By inspection, force in member BC acts downwards and to the right.
$\mathrm{F}_{\mathrm{AB}}=\mathrm{F}_{\mathrm{BC}} \sin 45^{\circ}$.
$2.5=\mathrm{F}_{\mathrm{BC}} \times 0.707$
$\mathrm{F}_{\mathrm{BC}}=2.5 / 0.707=3.54 \mathrm{kN}$.
So force in member BC $=3.54 \mathrm{kN}$ (tension).
Resolving horizontally at B :
By inspection, the force in member BD acts to the left (since the external force at $\mathrm{B}(25 \mathrm{kN})$ and the force in member BC both act to the right).
$\mathrm{F}_{\mathrm{BD}}=25+\mathrm{F}_{\mathrm{BC}} \cos 45^{\circ}=25+(3.54 \times 0.707)=27.5 \mathrm{kN}$
So force in member BD $=27.5 \mathrm{kN}$ (compression).
Resolving vertically at C :
By inspection, the force in member CD acts downwards.
$\mathrm{F}_{\mathrm{CD}}=\mathrm{F}_{\mathrm{BC}} \sin 45^{\circ}=(3.54 \times 0.707)=2.5 \mathrm{kN}$
So force in member CD $=2.5 \mathrm{kN}$ (compression).
Resolving horizontally at C:
By inspection, the force in member CE acts to the right (since the forces in members $B C$ and $A C$ both act to the left).
$F_{C E}=F_{A C}+F_{B C} \cos 45^{\circ}=25+(3.54 \times 0.707)=27.5 \mathrm{kN}$
So force in member CE $=27.5 \mathrm{kN}$ (tension).
Resolving vertically at D:
By inspection, the force in member DE acts upwards and to the left.
$50-\mathrm{F}_{\mathrm{CD}}=\mathrm{F}_{\mathrm{DE}} \sin 45^{\circ}$
$50-2.5=F_{D E} \times 0.707$
$\mathrm{F}_{\mathrm{DE}}=47.5 / 0.707=67.2 \mathrm{kN}$
So force in member DE $=67.2 \mathrm{kN}$ (compression).
Resolving horizontally at D:
Assume the force in member DF acts to the right (this will be confirmed if the value for $F_{D F}$ turns out to be positive).
$F_{D F}=F_{D E} \cos 45^{\circ}-F_{B D}=(67.2 \times 0.707)-27.5=20 \mathrm{kN}$.
So force in member DF $=20 \mathrm{kN}$ (tension).
Resolving vertically at H :
By inspection, force in member HG acts upwards.
$\mathrm{F}_{\mathrm{HG}}=20 \mathrm{kN}$.
So force in member HG $=20 \mathrm{kN}$ (compression).
Resolving horizontally at H :
$\mathrm{F}_{\mathrm{FH}}=0 \mathrm{kN}$
So force in member $\mathrm{FH}=0 \mathrm{kN}$.
Resolving vertically at G:
By inspection, force in member FG acts upwards and to the left.
$F_{G H}=F_{F G} \times \sin 45^{\circ}$
$20=F_{F G} \times 0.707$
$\mathrm{F}_{\mathrm{FG}}=20 / 0.707=28.3 \mathrm{kN}$ (upwards and to left)
So force in member FG $=28.3 \mathrm{kN}$ (tension).
Resolving horizontally at G:
By inspection, force in member EG acts to the right.
$\mathrm{F}_{\mathrm{EG}}=\mathrm{F}_{\mathrm{FG}} \cos 45^{\circ}=28.3 \times 0.707=20 \mathrm{kN}$ (to the right).
So force in member EG $=20 \mathrm{kN}$ (compression).

Resolving vertically at F:

By inspection, the force in member EF at F must act upwards. This is because both the external force at $\mathrm{F}(30 \mathrm{kN})$ and the force in member FG act downwards.
$F_{E F}=30+F_{F G} \sin 45^{\circ}=30+(28.3 \times 0.707)=50 \mathrm{kN}$.
So force in member EF $=50 \mathrm{kN}$ (compression).
Check: resolving vertically at E:
$97.5=F_{F E}+F_{D E} \sin 45^{\circ}=50+(67.2 \times 0.707)=97.5 \mathrm{kN}$. Correct.
Check: resolving horizontally at E:
$\mathrm{F}_{\mathrm{EG}}+\mathrm{F}_{\mathrm{CE}}=\mathrm{F}_{\mathrm{DE}} \cos 45^{\circ}$
$20+27.5=(67.2 \times 0.707)=47.5 \mathrm{kN}$. This is correct.

