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Chapter 1

Platelet physiology and the role
of the platelet in ischemic heart 
disease
Robert F. Storey

Blood platelets – equipped for action

The platelet, a tiny anucleate blood cell 2–4 µm in diameter, has major and 
diverse roles in health and disease and underlying this is a complex struc-
ture that supports a wide range of functional responses [1]. Approximately 
1 � 1011 new platelets are released each day into the circulation from bone 
marrow where they are formed by fragmentation from megakaryocytes [2,3]. 
Thrombopoietin is the most important cytokine regulating platelet produc-
tion and some disease states, such as infl ammatory conditions, can increase 
thrombopoietin levels and platelet production [3]. This is of relevance when 
considering the rate of recovery of haemostatic function (and susceptibility to 
thrombosis) following exposure to irreversible platelet inhibitors such as aspi-
rin and thienopyridines.

Platelets in the resting state are smooth, discoid cells possessing an open 
canalicular system and an exterior glycocalyx [1]. Ca2� is sequestered in intra-
cellular stores and released into the cytoplasm upon activation of the plate-
let by agonists, where it plays a major part in mediating platelet responses 
to activation [4]. Contained within the platelet cytoplasm are three types of 
granule, namely α-granules, dense granules and lysosomes [5]. α-Granules 
are the most abundant granules and contain a large number of proteins, many 
of which play a role in regulating the balance of thrombosis and fi brinolysis, 
such as α2-antiplasmin and plasminogen activator inhibitor-1 (PAI-1) [6]. The 
membranes of α-granules also contain proteins that are expressed on the cell 
surface following platelet activation, including glycoprotein (GP) IIb/IIIa 
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(αIIbβ3) and P-selectin (CD62P). Dense granules contain concentrated stores of 
ADP, ATP, pyrophosphate, ionized calcium and 5HT, and release of the con-
tents of dense granules contributes to platelet activation and hemostasis [5,7]. 
Lysosomes contain numerous acid hydrolases and these are secreted by plate-
lets only in response to strong agonist stimulation. Platelet activation leads 
to fusion of granules with the open canalicular system and release of granule 
contents [8].

Platelets possess a cytoskeleton which determines cell shape and consists 
mainly of microtubules and microfi laments [5]. Reorganization of the platelet 
cytoskeleton during platelet activation leads to a change in cell shape, with the 
platelets becoming spherical and extending fi nger-like projections known as 
pseudopodia. Activation of platelets also leads to a reorganization of components 
of the plasma membrane that leads to the assembly of  prothrombinase complex 
on the platelet surface, catalyzing thrombin  generation and  coagulation [9].

Figure 1.1 provides an overview of mechanisms for platelet activation and 
associated responses which will be covered in subsequent sections.

The platelet glycoprotein IIb/IIIa complex

The GPIIb/IIIa complex is an adhesion receptor belonging to the integrin 
gene superfamily and, like other integrins, is a heterodimer composed of an 
α (αIIb) and a β (β3) transmembrane subunit [10]. Approximately 40,000 to 
80,000 GPIIb/IIIa complexes are present on the surface of each resting platelet 
and this number can rapidly increase following activation by strong agonists 
due to exposure of internal receptors normally present within the open canal-
icular system and α-granule membranes [10]. Activation of platelets induces 
conformational changes in GPIIb/IIIa so that it can bind fi brinogen, vWF 
or fi bronectin, whereas in the resting state GPIIb/IIIa binds fi brinogen only 
weakly so as to allow uptake into α-granules [11]. Fibrinogen molecules pos-
sess two binding regions for GPIIb/IIIa and act as bivalent ligands, forming 
cross-bridges between activated platelets and leading to aggregation of acti-
vated platelets. In this way, GPIIb/IIIa mediates the so-called “fi nal common 
pathway” of platelet aggregation, regardless of the stimulatory agent(s) [12]. 
The cytoplasmic domains of both IIb and IIIa play an important role in this 
“inside-out” signaling and also mediate “outside-in” signaling, whereby lig-
and binding to GPIIb/IIIa leads to cytoskeletal reorganization and other post-
ligand binding events that amplify platelet activation [13,14]. This explains 
why therapeutic concentrations of GPIIb/IIIa antagonists inhibit platelet 
dense granule secretion and platelet procoagulant responses as well as plate-
let aggregation [15,16], although, through less well understood mechanisms, 
low concentrations of GPIIb/IIIa antagonists potentiate α-granule release and 
soluble CD40L release [17,18].
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Platelet adhesion and initiation of thrombus formation

The presence on the platelet surface of various receptors that bind to adhesive 
ligands underlies the ability of platelets to adhere to subendothelial compo-
nents that are exposed upon injury and breaching of the vascular endothe-
lium, a process that represents the fi rst step in the hemostatic response of 
platelets [19]. Plasma von Willebrand factor (VWF) can bind to subendothelial 
components such as collagen, and platelets, via GPIbα in the GPIb-IX-V recep-
tor complex, bind rapidly to immobilized VWF, providing a mechanism for 
platelet adhesion at high shear rates [19]. α2β1 and GPVI play pivotal roles in 
the binding of platelets to collagen in the subendothelial matrix, with GPVI 
playing a dominant role in the subsequent activation of platelets by colla-
gen [19,20]. Initially, weak adhesion is stabilized through integrin activation 
and binding of VWF to GPIIb/IIIa as well as collagen to α2β1 [20]. Signaling 
through GPIb–IX–V, GPVI and GPIIb/IIIa leads to powerful activation of 
platelets and the release of soluble agonists via the following mechanisms: (1) 
release of dense granule contents containing the soluble agonists ADP, ATP 
and 5HT; (2) activation of phospholipase A2 and the formation and release of 
thromboxane A2; and (3) platelet procoagulant activity leading to generation 
of thrombin (Figure 1.1). These soluble agonists bind to platelet receptors that 
are linked to G proteins and mediate further platelet activation and recruit-
ment of other platelets into platelet aggregates.

Platelet P2 receptors

There are three P2 receptor subtypes on the platelet surface, P2X1, P2Y1 and 
P2Y12 [21]. P2X1 is a ligand-gated cation channel activated by ATP and plays 
a role in platelet shape change and collagen-induced platelet activation [21]. 
P2Y1 and P2Y12 are G-protein coupled receptors activated by ADP. The P2Y1 
receptor is linked to Gq and initiates ADP-induced platelet activation, this 
activation being then sustained and amplifi ed via P2Y12, which is coupled 
to Gi [21–24]. P2Y12 also plays a major role in sustaining and amplifying the 
responses to numerous agonists since other agonists induce dense granule 
release and ADP released from dense granules then binds to the P2Y recep-
tors. In addition to sustaining and amplifying platelet aggregation, P2Y12 acti-
vation amplifi es granule secretion and platelet procoagulant activity [24–26]. 
This is the basis for the importance of P2Y12 in platelet function and the grow-
ing therapeutic success of antagonists that target this receptor [27].

In a similar fashion to ADP’s action via the P2Y12 receptor, epinephrine 
(adrenaline) and norepinephrine (noradrenaline) can also amplify platelet 
activation via α2A adrenergic receptors but the observation that this requires 
supraphysiological concentrations of epinephrine and norepinephrine renders 
the pathophysiological signifi cance of this pathway uncertain [28].
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Platelet protease-activated receptors (PARs) and thrombin

PAR1 and PAR4 are expressed on human platelets with PAR1 likely playing 
the more important role, since it is activated at low thrombin concentrations 
whereas PAR4 requires higher thrombin concentrations in order to contribute 
to thrombin-induced platelet responses [29]. Thrombin cleaves the N-terminal 
exodomain on the PARs leading to a tethered peptide ligand that activates the 
receptor, a process that can be mimicked by thrombin receptor-activating pep-
tides or TRAPs [29]. Whereas the P2Y1 receptor is linked only to Gq, PAR1 is 
linked to both Gq and G12/13 and mediates strong platelet activation as man-
ifest by the extent of granule secretion and procoagulant activity induced by 
PAR1 activation [29–31]. P2Y12 activation plays a key role in promoting these 
responses [24,26,32]. GPIbα may serve as a cofactor at the platelet surface, sup-
porting PAR cleavage by thrombin [29,33]. The presence of PAR1 on other cell 
types involved in infl ammatory responses provides a rationale for targeting this 
receptor in order to treat thrombotic diseases and associated infl ammation [29].

The arachidonic acid pathway and thromboxane A2

A group of phospholipases, collectively termed phospholipase A2 (PLA2), hydro-
lyse membrane phospholipids, such as phosphatidylcholine and phosphatidyl-
serine, to produce arachidonic acid [34,35]. Arachidonic acid is rapidly converted 
by cyclooxygenase (COX) to prostaglandin G2, which is then converted by per-
oxidase to prostaglandin H2 (PGH2) [34,36]. PGH2 is then rapidly converted by 
thromboxane synthase to thromboxane A2 (TXA2). PGH2 and TXA2 are highly 
labile, potent platelet agonists that can diffuse across the plasma membrane and 
bind to specifi c G-protein coupled platelet receptors [30,34,37]. Studies of aspirin 
(acetylsalicylic acid), which acetylates and irreversibly inhibits COX, demonstrate 
the role of the arachidonic acid pathway in platelet responses to stimulation by 
different agonists. Aspirin abolishes platelet macroaggregation induced by ara-
chidonic acid and substantially reduces platelet aggregation induced by low 
concentrations of collagen [38,39]. It also inhibits the “secondary wave” of macro-
aggregation induced by ADP, adrenaline and platelet-activating factor in citrated 
platelet-rich plasma but has little or no effect on platelet aggregation induced by 
these agonists in media containing physiological levels of divalent cations, indi-
cating a restricted role for the arachidonic acid pathway in platelet activation 
under physiological conditions [24,40–43]. This explains why effective inhibition 
of COX by aspirin leaves many aspects of platelet function relatively intact.

Receptor pathways that inhibit platelet activation

The vascular endothelium presents an antithrombotic surface, in part related 
to the release by intact endothelium of nitric oxide (NO) and prostacyclin 
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(PGI2), both of which act on platelet pathways that suppress platelet activa-
tion as well as having vasodilatory effects [44]. NO activates platelet guany-
lyl cyclase, raising platelet cyclic GMP levels and inhibiting agonist-induced 
rises in cytoplasmic calcium levels [45,46]. Platelet-derived NO also appears 
to limit thrombus formation and synthetic NO donors may have substantial 
antithrombotic effects [46,47]. Glutathione peroxidase potentiates inhibition of 
platelets by NO donors and inherited defi ciency of the plasma isoform of this 
enzyme can lead to childhood ischemic stroke [46].

Endothelial COX-1 and prostaglandin G/H synthase-2 (PGHS-2; known as 
COX-2) mediate the production of PGI2, which activates IP receptors on plate-
lets and, via coupling to Gs, mediates an increase in platelet cyclic AMP, which 
in turn inhibits platelet activation [48,49]. The inhibition of these endothelial 
COX enzymes by traditional non-steroidal anti-infl ammatory drugs (NSAIDs) 
and newer selective COX-2 inhibitors, and subsequent impairment of endothe-
lial PGI2 release, underlies the adverse cardiovascular effects of these drugs [49].

Another COX metabolite, PGE2, has contradictory actions on platelets but, 
acting at low concentration via EP3 receptors, may enhance platelet responses 
by opposing increases in cyclic AMP [50]. It is suggested that release of PGE2 
from infl amed vessel wall, such as atherosclerotic plaque, may counteract the 
inhibitory effects of PGI2 and contribute to arterial thrombosis [50,51].

Adenosine has an inhibitory effect on platelet function, acting via A2A recep-
tors and increasing cyclic AMP levels [52]. It is proposed that plasma levels of 
adenosine increase suffi ciently during ischemia or hypoxia to activate these 
receptors [52]. Adenosine and other A2A receptor agonists have antithrombotic 
effects in animal models of thrombosis [53]. The antiplatelet drug dipyrida-
mole acts by inhibiting adenosine uptake by blood cells, thereby increasing 
exposure of platelets to adenosine, as well as by inhibiting platelet cyclic 
GMP-dependent phosphodiesterase [54].

Platelet procoagulant activity

In their resting state, platelets have asymmetric distribution of aminophos-
pholipids in the surface membrane bilayer with enzymes acting to keep these 
aminophospholipids (predominantly phosphatidylserine and phosphati-
dylethanolamine) in the inner layer [55]. Platelet activation is associated with 
an increase in the cytoplasmic ionized calcium concentration that inhibits 
the activity of these enzymes and also activates the enzyme scramblase that 
causes redistribution of the aminophospholipids to the outer layer where they 
are able to support the assembly of tenase and prothrombinase complexes and 
subsequent generation of thrombin in plasma. Microparticles are also shed 
under the action of calpain and these also have procoagulant properties. These 
processes are triggered by platelet GPVI receptor binding to collagen and play 
an important role in thrombin generation and arterial thrombogenesis [56]. 
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Thrombin-induced activation of platelets further promotes platelet procoagu-
lant activity, and P2Y12 receptor activation and GPIIb/IIIa receptor outside-in 
signaling play important roles in amplifying this process, such that antagonists 
of these receptors inhibit platelet procoagulant responses [16,24,32,57–59].

Infl ammatory responses of platelets

α-Granule secretion consequent to platelet activation leads to a number of 
processes that are considered pro-infl ammatory. CD40L and P-selectin are 
translocated to the platelet surface as a result of fusing of the α-granule mem-
brane with the surface membrane and are then gradually shed into the sur-
rounding medium in their soluble forms. Soluble CD40L (sCD40L) induces 
cytokine production in vascular cells and may play a role in atherogenesis and 
restenosis, as well as promoting thrombosis by stabilizing platelet aggregates 
[60,61]. P-selectin binds to its counter-receptor on leukocytes, PSGL-1, help-
ing to recruit leukocytes and monocyte-derived microparticles into thrombus, 
and the ensuing cross-talk between platelets, leukocytes and the microparti-
cles promotes thrombogenesis and infl ammatory responses [62,63]. Release of 
the chemokine RANTES by platelets, in conjunction with P-selectin, supports 
the binding of monocytes to infl amed endothelium and contributes to intimal 
hyperplasia in murine models [64,65]. β-thromboglobulin, platelet-derived 
growth factor and platelet factor 4 are other platelet α-granule contents that 
also contribute to infl ammatory responses [6].

Nucleotides released from platelet dense granules may also have pro-
infl ammatory effects: both ADP and ATP can activate leukocytes whilst ATP 
acts on P2X receptors on vascular smooth muscle cell (VSMC) and may con-
tribute to VSMC proliferation and migration [66,67]. These nucleotides also act 
on endothelial cells to promote nitric oxide and prostacyclin release [66].

The role of the platelet in coronary atherothrombosis

Atherothrombosis refers to the process whereby progression of atherosclerosis 
leads to plaque rupture or erosion, which induces arterial thrombus formation 
and, in some instances, clinical sequelae such as coronary artery thrombosis 
causing acute coronary syndromes or sudden cardiac death [68,69]. Coronary 
arterial plaques that have a thin fi brous cap overlying a lipid-rich core and 
abundance of infl ammatory cells are particularly prone to rupture and are 
termed “vulnerable” or “high-risk” plaques [68,70]. Exposure of collagen, 
vWF and fi bronectin following endothelial disruption leads to platelet adhe-
sion and activation, as described in the previous section but, furthermore, the 
exposed lipid-rich core of high-risk plaque is highly thrombogenic, contain-
ing abundant tissue factor that initiates the coagulation cascade culminat-
ing in thrombin formation, which then leads to platelet activation and fi brin 
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deposition [68,69]. The central role of thrombin in the thrombosis that ensues 
following plaque disruption explains why anticoagulants such as heparins, 
direct thrombin inhibitors and factor Xa inhibitors have benefi cial effects in 
the management of acute coronary syndromes [71–73] in addition to antiplate-
let agents that target pathways that are involved in the platelet responses 
to thrombin and collagen, as described above. As well as exposure of tissue 
factor in the vessel wall, there is a circulating pool of tissue factor in blood 
that becomes concentrated at the site of vessel wall injury and contributes 
to thrombus formation [74]. Platelets, leukocytes and endothelial cells can 
express tissue factor, which may then be borne on circulating microparticles 
derived from these cells [75].

The formation of non-occlusive, platelet-rich thrombi over the sites of athero-
sclerotic plaque erosion or rupture with subsequent release of infl ammatory 
mediators from platelet α-granules and platelet-leukocyte interactions may con-
tribute to the progression of atherosclerotic lesions [76]. Such mural thrombi in 
coronary arteries may not be immediately associated with any clinical manifes-
tations but instead contribute to the progressive narrowing of the arterial lumen 
that eventually leads to myocardial ischemia under conditions of increased 
myocardial oxygen demand and the associated symptom of angina pectoris. 
Platelets may also contribute to the vascular smooth muscle cell proliferation 
that leads to restenosis following percutaneous coronary intervention [77].

Conclusion

The rich variety of characteristics of platelets equips them for their role in 
hemostasis and physiological responses to vascular injury. Except in excep-
tional circumstances, it is only when the vessel wall becomes diseased that 
these physiological responses tend to be exaggerated and lead to thrombotic 
occlusion of the vessel lumen and excessive infl ammation of the vessel wall. 
This explains why the platelet plays such an important role in the various 
manifestations of ischemic heart disease. Advances in the knowledge of plate-
let physiology have led to the development of antithrombotic therapies for 
managing ischemic heart disease and continue to inform the development of 
novel strategies.
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