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Homing of stem cells and
tissue injury

Ayelet Dar, PhD, Orit Kollet, PhD, & Tsvee Lapidot, PhD

Introduction

Hematopoietic stem cells continuously replenish
the blood with immature and maturing leukocytes
as part of homeostasis. Organ injury dramatically
amplifies this process by the secretion of stress sig-
nals, which induce recruitment of progenitor and
maturing cells from the bone marrow reservoir of
leukocytes to the damaged tissue, as part of host
defense and repair mechanisms. This chapter will
review the reciprocal cross talk between injured tis-
sues and the bone marrow reservoir and will point
out key players in stem cell homing. The central
roles of the chemokine SDF-1 (CXCL12) and its
receptor CXCR4 in stem cell recruitment to in-
flamed/damaged tissues will be discussed.

The homing process: the roles of
SDF-1 and CXCR4

Organ injury and/or inflammation because of vi-
ral or bacterial infections are accompanied by an
increase in the levels of inflammatory cytokines
and chemokines in the damaged organs and con-
sequently in the peripheral blood [1]. These stress
signals have been shown to recruit immature
hematopoietic stem and progenitor cells as well as
maturing leukocytes from the bone marrow reser-
voir to the circulation, which then home to the dam-
aged liver, brain, heart and other nonhematopoi-
etic organs [2–4], as part of host defense and repair
mechanisms. The bone marrow contains a variety of
cell types, including hematopoietic stem cells with
self-renewal and multilineage differentiation capac-
ity [5, 6] and nonhematopoietic stemcells, mes-

enchymal stem cells [7] and endothelial progenitor
cells [8]. These bone marrow cells have been shown
to contribute to tissue regeneration and to the re-
covery of damaged organs [3, 9] as well as to tissue
neovascularization [8, 10].

Several physiological (e.g., physical activity [11])
and pathological (e.g., myocardial infarction, is-
chemia [12]) stimuli as well as clinical treatments
(e.g., granulocyte-colony-stimulating factor [13],
statins [14], estrogens [15]) increase the numbers
of various bone marrow progenitor cell types in
the circulation, with the potential of their migra-
tion to injured tissues. Major players in the reg-
ulation of this multistep process of cell mobiliza-
tion and homing are the chemokine SDF-1 and
its receptor CXCR4. SDF-1 (also termed CXCL12)
is the only known powerful chemoattractant of
murine [5] and human [16] hematopoietic stem
cells. In early developmental stages, experimental
deficiency of SDF-1 results in lethal cardiac defects,
similar to those of CXCR4-deficient mice. CXCR4
and its ligand SDF-1 are constitutively expressed
by murine and human bone marrow endothelial
and endosteal bone lining stromal cells [6, 17–
19], which both define the hematopoietic stem cell
niches [20, 21]. Homeostatic expression of SDF-1
is also found in nonhematopoietic tissues, including
skin [22], epithelial cells in the bile ducts of brain
endothelium [2], liver [3], and heart [23, 24].

Many studies document the central roles of
CXCR4 in navigating the homing of circulating hu-
man CD34+ hematopoietic stem and progenitor
cells through the blood-marrow barrier into their
specialized niches in the bone marrow. This spe-
cific process is induced in response to presentation
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of murine SDF-1 (which is cross-reactive with
the human chemokine) on endothelial and other
bone lining stromal cells in transplanted immune-
deficient NOD/SCID mice (reviewed in [25]).

Certain stress-induced physiological and patho-
logical conditions are characterized by SDF-1 el-
evation in the peripheral blood and within dam-
aged organs, which contribute to the recruitment of
CXCR4+ homing cells. For example, after myocar-
dial infarction, SDF-1 mRNA levels are markedly
up-regulated in the murine heart and are involved in
the chemoattraction of bone-marrow-derived cells
[24]. In another model of ischemic cardiomyopathy
in the rat heart, it was shown that forced expres-
sion of SDF-1 improves ventricular function post
damage [26]. In addition, during focal cerebral is-
chemia, SDF-1 expression is increased in endothe-
lial cells located within the lesioned brain areas and
is assumed to induce CXCR4-dependent infiltra-
tion of circulating leukocytes [2]. A hint for the
contribution of bone-marrow-derived CD34+ pro-
genitor cells to organ recovery was demonstrated
using a brain stroke model in mice. The adminis-
tration of human cord-blood-derived CD34+ cells
to mice that were previously subjected to stroke
induced neovascularization by vascular endothe-
lial growth factor (VEGF) secretion in the ischemic
zone, provided a favorable environment for neu-
ronal progenitor migration and regeneration [4].
In agreement with these observations, it was shown
that during hypoxic conditions, the elevation of the
transcription factor hypoxia-inducible-factor-1 in
endothelial cells selectively up-regulates SDF-1 ex-
pression within ischemic regions in vivo, which in
turn increases the recruitment of CXCR4+ circu-
lating progenitors into areas of reduced oxygen ten-
sion in murine skin, muscle, and bone marrow [10].
Furthermore, stress-induced signals such as inflam-
mation, irradiation and hepatitis C virus infection
of the murine or human liver result in elevation
of SDF-1 amounts, accompanied by HGF (hepato-
cyte growth factor) expression, which then target
human CD34+ progenitors to the damaged liver
[3]. Altogether, these results suggest a mechanism
for tissue defense. There is also evidence for repair
and regeneration by SDF-1-mediated recruitment
of CXCR4+ hematopoietic and endothelial precur-
sors upon stress-induced conditions. Interestingly,
selective expression of different SDF-1 isoforms has

been reported. For example, in the brain, neurons
express SDF-1-α, while endothelial cells selectively
express SDF-1-β. During cerebral ischemia, tran-
sient and selective modulations in SDF-1 expression
are believed to regulate distinct pathways for neu-
ronal phenotype or cerebral infiltration [2]. In ad-
dition, although α and γ isoforms (but not SDF-
1-β) of SDF-1 are abundantly expressed in heart
tissue SDF-1, the amounts of SDF-1-α are selectively
up-regulated after myocardial infarction [27]. Such
modulations in SDF-1 isoform expression imply a
specific functional role for different SDF-1 alterna-
tive splicing products, which has to be elucidated
more broadly.

Inflammation and ischemic and hypoxic condi-
tions are known to stimulate elevation in VEGF and
SDF-1 levels [12, 28]. Both SDF-1 and VEGF are re-
ported to be involved in sprouting and remodeling
of preexisting blood vessels in the course of angio-
genesis and mediate neovascularization [29, 30], for
example, by recruiting endothelial cell precursors
from the bone marrow [31], for wound healing or
in pathological processes such as chronic inflam-
mation or tumor growth [32].

Clinical protocols of DNA-damaging agents such
as total body irradiation or chemotherapy have been
shown to cause significant increase in SDF-1 levels
in the bone marrow and spleen within 24–48 hours,
leading to improved CXCR4-dependent homing of
human CD34+ stem and progenitor cells in trans-
planted NOD/SCID mice [17]. In contrast, repeti-
tive administration of G-CSF (granuloycyte colony-
stimulating factor), which is widely used in clinical
protocols aimed at hematopoietic stem cell mobi-
lization, markedly decreases SDF-1 expression in
human and murine bone marrow [13]. Moreover,
administration of the sulfated polysaccharide fu-
coidan, which competes with SDF-1 binding to hep-
aran sulfate, resulted in a rapid and massive release
of SDF-1 into the circulation, reduction in its levels
in the bone marrow, and a significant increase in the
levels of circulating hematopoietic stem and pro-
genitor cells [33]. Supporting this notion, enforced
increased levels of SDF-1 by adenoviral vectors [31],
MetSDF-1 [34], or SDF-1 injections [35] lead to
progenitor and stem cell mobilization. In another
model of parabiotic mice with joint circulation, the
dramatic elevation in the levels of G-CSF-mobilized
stem cells correlated with increased repopulation
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in the partner bone marrow, revealing that mo-
bilized stem cells can efficiently home back to
G-CSF-simulated bone marrow (mimicking stress
injury and inflammation), in contrast to the low
homing levels observed with steady state circu-
lating stem cells to nonstimulated bone marrow
[36]. This report demonstrates that during stress-
induced mobilization, homing rates to the stressed
organs are also augmented, confirming that mo-
bilization and homing are sequential, physiologi-
cal processes. Collectively, these results suggest that
the up-regulation of SDF-1 in the injured organ
and consequently in the circulation is a prerequisite
first step, interfering with the steady state balance
in the bone marrow reservoir, initiating mobiliza-
tion and recruitment, which requires microenvi-
ronmental changes of the stem cell niche and its
residents—the stem cells.

How do the distant injured organs transfer
SDF-1 “stress signals” through the circulation
into the bone marrow? The endothelium har-
bors a highly selective transport system for de-
livery of chemokines and other molecules across
this mechanical barrier—a mechanism termed
transcytosis—in which active transfer of proteins
and molecules is mediated by transport vesicles
(e.g., clathrin-coated pits, caveolae [37]). As such,
endothelial cells in the blood-marrow barrier use
their CXCR4 receptors to actively regulate SDF-1
levels by CXCR4-mediated functional transcytosis
of this chemokine from the circulation into the bone
marrow. This unique and potent capacity also char-
acterizes other stromal cells, including cells of the
endosteum region, which comprise the hematopoi-
etic stem cell niche, but not bone marrow resid-
ing or circulating hematopoietic cells [19]. It is
noteworthy that CXCR4-mediated translocation of
functional circulating SDF-1 into the bone marrow
can actively increase hematopoietic progenitor cell
homing to this tissue, which is followed by stem
cell mobilization and recruitment to injured organs.
Importantly, this process uniquely defines the dual
role of CXCR4-expressing tissue-anchored stromal
cells in the bone marrow, spleen, and other organs.
CXCR4 is capable of activating signaling pathways
upon SDF-1 stimulation (e.g., migration, prolifer-
ation, proteolytic enzyme secretion, angiogenesis,
and neovascularization) and can also regulate in-
ternalization and trafficking of its ligand potentially

aimed at communication between organs and the
bone marrow reservoir [19, 38].

Homing and the injured
myocardium

SDF-1 appears to be a key factor that regulates traf-
ficking of additional types of bone-marrow-derived
stem and progenitor cells, such as endothelial pro-
genitor cells [10, 39] and mesenchymal stem cells
[7, 40], to ischemic/inflamed tissue. In accordance,
local delivery of SDF-1 can enhance endothelial
progenitor cell recruitment and neovascularization
[41]. Several examples illustrate the contribution of
bone-marrow-derived endothelial progenitor cells
to improve cardiac function [10, 26, 41] and to en-
hance angiogenesis and neovascularization in sev-
eral ischemic tissue models [42]. Of importance,
inflammatory pathways in the injured organs also
activate the recruitment of mature bone-marrow-
derived cell types, which participate in mechanisms
of tissue defense and repair as well. In addition,
more differentiated bone-marrow-derived mature
cells have been shown to establish perivascular
niches prior to endothelial cell positioning and re-
tention. Bone marrow recruitment of myeloid cells
into injured heart and their retention in close prox-
imity to angiogenic vessels is mediated by VEGF-
induced expression of SDF-1 in activated perivascu-
lar myofibroblasts [43]. Moreover, it was shown that
the homing of bone-marrow-derived hematopoi-
etic c-kit+ progenitor cells was accompanied by the
recruitment of bone-marrow-derived mature natu-
ral killer cells in response to inflammation-secreted
stress signals, which contributed to cardiac survival
and repair after myocardial infarction [44]. How-
ever, in patients suffering from chronic ischemic
coronary heart disease (ICMP), the ability of cir-
culating endothelial progenitor cells to contribute
to the neovascularization of the continuously in-
flamed heart is impaired with respect to number and
functional activity. Note also that bone-marrow-
derived mononuclear cells, isolated from patients
with ICMP, have a significantly reduced migratory
potential to a gradient of SDF-1 or VEGF, with re-
duced progenitor colony-forming activity in vitro
and reduced neovascularization capacity in vivo, de-
spite a similar content of hematopoietic progenitor
cells, which would limit their therapeutic potential
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for clinical cell therapy [45]. These results sug-
gest that factors such as SDF-1, continuously se-
creted by the ischemic hearts of ICMP patients,
can effectively reach the bone marrow, leading to
desensitization and inhibition of endothelial and
hematopoietic progenitors’ migration and prolifer-
ation/differentiation.

Increased levels of SDF-1 in injured tissues are
accompanied by modulations in the levels of addi-
tional factors, which actively participate in regula-
tion of SDF-1 availability and function as well as in
homing cell navigation and retention. Deficiency in
nitric oxide synthase results in elevated SDF-1 lev-
els in ischemic artery in a murine model, which is
accompanied by increased numbers of circulating
Sca1+c-Kit+Lin− stem cells [46]. Since this ligand

also induces secretion of matrix metalloproteinases
(MMPs), such as MMP2/9, SDF-1 elevation in dam-
aged organs is also accompanied by an increase in
and activation of various MMPs, which are involved
in matrix degradation in the context of motility and
in vivo migration of normal and malignant progen-
itor cells [3, 47].

Conclusion

In summary (schematically illustrated in Fig-
ure 1.1), dynamic SDF-1 and CXCR4 interac-
tions regulate immature and mature bone-marrow-
derived cell egress/mobilization in response to stress
signals as well as their homing into injured organs
aimed at tissue defense and repair mechanisms.
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Figure 1.1 Immature and maturing cell recruitment
mediated by SDF-1 transport: a model for communication
between the injured organ and the bone marrow. Organ
injury induces increased local production of SDF-1.
Endothelial cells of the blood vessels translocate SDF-1
from the damaged tissue via the circulation into the bone

marrow in a CXCR4-dependent manner. Presentation of
the translocated SDF-1 by bone marrow endothelial and
other stromal cells recruits CXCR4-expressing immature
progenitors and stem cells as well as maturing leukocytes
to the injured organ as part of host defense and organ
repair.
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Recent findings illustrate the participation of
CXCR4 expressed by endothelial and other stromal
cells in the bone marrow, spleen, and other organs,
in regulating homing and retention of hematopoi-
etic progenitors upon uptake and presentation of
circulating functional SDF-1, leading to mobiliza-
tion and recruitment of immature hematopoi-
etic and endothelial progenitors to injured organs.
These results suggest that CXCR4 expressed by stro-
mal and endothelial cells actively participates in
regulation of this mutual organ crosstalk during
homeostasis and organ injury/damage. In coopera-
tion with the bone marrow reservoir of hematopoi-
etic and endothelial cells, CXCR4+ progenitors and
maturing cells with migration, proliferation, neo-
vascularization, and defense potential participate
in organ–bone marrow communication as part of
host defense and repair mechanism. Taken together,
these findings deepen our understanding of the
significance of SDF-1 modulations in the circula-
tion, bone marrow, and damaged organs, which ac-
company many pathological conditions and may
contribute to the creation of improved clinical
protocols.
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