
Chapter 1

Numerical Adjectives and 
the Type of Sets

In this chapter I discuss the analysis of numerical expressions inside noun phrases.
More particularly, I will be interested in the semantics of noun phrases like the
three boys, the more than seven girls, the exactly ninety kids. Let us go back in time
to the period around 1980 when Generalized Qantifier Theory was established
in the work of Barwise and Cooper and others (Barwise and Cooper 1981; Keenan
and Faltz 1985; Keenan and Stavi 1986).

Barwise and Cooper provided a semantics for noun phrases of the form the
n NOUN, with n a number expression. I will slightly generalize their analysis
to noun phrases of the form the r n NOUN, with r an expression denoting a
numerical relation, like more than, less than, at least, at most, exactly, or Ø (where
the n is the Ø n). On Barwise and Cooper’s analysis, the r n forms a partial 
determiner (of generalized quantifier type <d,<d,t>>, where d is the type of
expressions denoting individuals), which gets its interpretation according to
the following schema:

!λP.∀x[Q(x) → P(x)] if |Q | r n
the r n → λQ.@undefined otherwise

The function which takes a noun interpretation Q and gives the set of all
properties that every Q has, if the cardinality of Q stands in relation r to n,
and is undefined otherwise.

Thus, the at most three boys has the same interpretation as every boy if there 
are at most three boys ( |BOY | ≤ 3), and is undefined otherwise. In general, 
when defined, the r n NOUN has the same interpretation as every NOUN. The
conditions under which it is defined are constrained by r and n.

With the above schema, we can define:

the boy = the exactly one boys
the boys = the at least one boys
both boys= the exactly two boys
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2 INDEF INITES AND THE TYPE OF SETS

This account is very successful in dealing with the partiality of definite noun
phrases, the conditions under which definite noun phrases are defined: the boy
is defined if and only if there is exactly one boy, the boys iff there are boys, the
at most three boys iff there are at most three boys (which includes the possibility
of no boys), etc. The pragmatic assumption that noun phrases should only be
used when they are defined leads to the correct presuppositions for the use of
these noun phrases: i.e. the felicitous use of the at most three boys presupposes
that there are at most three boys.

The analysis is less successful in other respects. It does not incorporate a 
semantic singular–plural distinction, and does not deal with distinctions between
distributive and collective readings: the above account only deals with dis-
tributive readings (the, when defined, is every). Also, and this is the aspect that
concerns us most here, the analysis assumes that in the r n NOUN, the r n is a
determiner which combines with the noun: we have a determiner schema which
generates an infinite set of determiners. A similar assumption is dominant in
the work of Keenan and his co-authors (Keenan and Faltz 1985, Keenan and
Stavi 1986). This aspect of the analysis has been challenged, for instance by
Rothstein (1988): there are several reasons to think that the constituent struc-
ture of these noun phrases is [[DET the ] [NP r n NOUN ]], and not [[DET the r n]
[NP NOUN]] (see Rothstein 1988).

The first of these structures is supported by very strong evidence. While 
numerical phrases in predicate or argument indefinites must be initial in 
the noun phrase (i.e. they cannot mingle with adjectives), this is not so inside
the nominal domain, i.e. not in the noun phrases that we are looking at here
(a similar argument has been made by de Jong 1983):

(1)a. Fifty ferocious lions were shipped to Artis.
b. #Ferocious fifty lions were shipped to Artis.

(2)a. The animals in the shipment were fifty ferocious lions.
b. #The animals in the shipment were ferocious fifty lions.

(3)a. We shipped the fifty ferocious lions to Blijdorp, and the thirty meek lions
to Artis.

b. We shipped the ferocious fifty lions to Blijdorp, and the meek thirty lions
to Artis.

Of course, there are subtle and hard to pinpoint interpretation differences 
between the cases in (3a) and (3b). However, it seems that most of these can
be attributed to contextual interpretation factors that we know are operative
in the adjectival domain anyway, like focus, contrast, comparison set, etc. That
is, we find such interpretation differences also when we consider strings of 
normal adjectives. The point about (3b) is the contrast with (1b) and (2b): (1b)
and (2b) are crashingly bad, while (3b) is not.

A complex determiner analysis can only account for these facts if it not only
allows numericals to be part of the complex determiners, but adjectives as well.
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NUMERICAL ADJECT IVES AND THE TYPE OF SETS 3

While Keenan (1987) seems prepared to make the latter assumption, it is not
clear that this should be the default choice, if we can make the alternative 
analysis work. The alternative analysis assumes that numerical phrases (like
at most three) are part of the noun phrase structure like adjectives. I will call
the assumption that numerical phrases (and more generally, indefinites) are
adjectives, at least semantically, the Adjectival Theory of Indefinites:

The Adjectival Theory of Indefinites:
Indefinites have the semantics of intersective adjectives.

To give form to the adjectival theory, we turn to the analysis of plurality origin-
ating in the work of Sharvy (1980) and Link (1983).

We assume that our interpretation domain for expressions of type d is a 
complete atomic Boolean algebra. I will be short here; for more details, see
Landman (1991, 2000) (note that, for my purposes here, I use complete join and
meet as the basic operations, instead of the standard two place operations).

Complete atomic Boolean algebras:
A complete atomic Boolean algebra is a structure B = <B,3,1>, where B is
a set, partially ordered by part-of relation 1 , and for every X ⊆ B: 3X ∈B,
where 3X is the sum of X, the smallest element of B such that for every 
x ∈X: x 1 3X.

Furthermore, the structure satisfies postulates (1)–(3) below, which use
some of the following definitions:

Definitions:
Let X ⊆ B, a,b ∈B:
4X = 3{c ∈B: for every x ∈X: c 1 x}
a 3 b = 3{a,b}, a 4 b = 4{a,b}
0 = 3Ø; 1 = 3B
¬b = 3{c ∈B: b 4 c = 0}
ATOM = {c ∈B: c ≠ 0 and for no d ∈B−{0,c}: d 1 c}
(the set of atoms, elements that have only themselves and 0 as part)
(b] = {c ∈B: c 1 b}, the ideal generated by b (the set of all b’s parts)
[b) = {c ∈ B: b 1 c}, the filter generated by b (the set of all elements that b 
is part of )
ATOM(b) = (b] ∩ ATOM
(the set of all b’s atomic parts)
|b | = |ATOM(b) |
(the cardinality of element b is the cardinality of the set of its atomic parts)

Conditions:
1. Distributivity: if a 1 b 3 c then a 1 b or a 1 c or for some b1 1 b and

some c1 1 c: a = b1 3 c1.
(if a is part of a sum b 3 c, then it is either fully part of b or fully part
of c, or the sum of some part of b and some part of c)
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4 INDEF INITES AND THE TYPE OF SETS

2. Witness: if a 1 b and a ≠ 0 and a ≠ b then for some c 1 b: c ≠ 0 and 
a 4 c = 0.
(if a is a proper non-zero part of b, then there is another proper non-
zero part c of b such that a and c have no non-zero part in common)

3. Atomicity: For every b ∈B−{0}: ATOM(b) ≠ Ø
(every non-zero element has atomic parts)

An atomic mereology is a complete atomic Boolean algebra with the bottom
element 0 removed. It is good to point out that, while in the past I have been
using atomic mereologies in the semantics of plurality, in this book it will be
essential that the structures be full Boolean algebras.

Every complete atomic Boolean algebra has 2α elements for some cardinality α,
and per cardinality α there is, up to isomorphism, exactly one Boolean algebra
with 2α elements. One of the most instructive properties of these structures is
their decomposition:

Decomposition Theorem:
Let B be a Boolean algebra and a an atom in B.

[a) and (¬¬a] form non-overlapping isomorphic Boolean algebras (with the
operations of B restricted to [a) and (¬¬a] respectively).

Let h be an isomorphism from [a) into (¬¬a].
B = [a) ∪ (¬¬a], ordered by the transitive closure of relation:
1[a) ∪ 1(¬a] ∪ {<c,h(c)>:c ∈ [a)}.

Thus, every complete atomic Boolean algebra can be decomposed into two 
isomorphic Boolean algebras: for any atom a: the filter generated by a, and the
ideal generated by dual atom ¬a. Since in a finite Boolean algebra of cardinality
2n+1 for atom a, the cardinality of [a) (and hence of (¬a]) is 2n, this theorem gives
us an instructive method for generating each finite Boolean algebra:

• Two one-element Boolean algebras and an isomorphism give you the two-
element Boolean algebra:

• Two two-element Boolean algebras and an isomorphism give you the four-
element Boolean algebra:

h
0

1

h 1
0
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NUMERICAL ADJECT IVES AND THE TYPE OF SETS 5

• Two four-element Boolean algebras and an isomorphism give you the
eight-element Boolean algebra:

• Two eight-element Boolean algebras and an isomorphism give you the 
sixteen-element Boolean algebra:

As you can see in the diagram, the eight-element Boolean algebra on the left
provides the 0 and three of the atoms of the sixteen-element Boolean algebra,
while its 1 becomes a dual atom ¬a. The eight-element Boolean algebra on the
right provides the 1 and the remaining three dual atoms of the sixteen-element
Boolean algebra, while its 0 becomes the fourth atom a of the sixteen-element
structure. And this happens at every level: from two Boolean algebras with 2α

elements and α atoms, we form a Boolean algebra with 2α+1 elements and α+1
atoms: α atoms come from the Boolean algebra on the left, one more atom is
the reinterpretation of the 0 element of the Boolean algebra on the right.

Thus the structure of type d of individuals is a complete atomic Boolean 
algebra of singular, atomic individuals and their plural sums. We now come
to the interpretation of (count) nouns. Nouns are interpreted as expressions of
type <d,t>, sets of individuals. We assume that in languages such as English
singular nouns lexically select singular individuals, i.e. atoms – singular nouns
denote sets of atoms:

Singular nouns:
boy → BOY of type <d,t> BOY ⊆ ATOM

(¬a] and ¬a

a and [a)

0

h
1

0
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6 INDEF INITES AND THE TYPE OF SETS

We assume an operation of semantic pluralization (*) which we take to be 
closure under sum:

Pluralization:
*P = {x ∈D: ∃Z ⊆ P: x = 3Z}

And we assume that in languages like English plural morphology on nouns is
(by and large) interpreted as semantic pluralization.

Plural nouns:
boys → *BOY

These assumptions, of course, go back to Link (1983).
Thus, if we assume that ATOM = {a,b,c,d} and BOY = {a,b,c}, this gives us:

*BOY = {0,a,b,c,a3b,a3c,b3c,a3b3c}:

*P is the closure under sum of P. It is important to note that I use here the
standard notion of closure for Boolean algebras (and not a notion modified for
mereologies). On this notion, for each subset X of P, 3X ∈*P. Since one of these
subsets is Ø, 3Ø ∈ *P. Since 3Ø = 0, 0 ∈ *P. Thus, on the standard notion of
closure under sum, 0 ∈ *P.

Now, the standard assumption for intersective adjectives is that they intersect
with the noun:

Intersective adjectives:
[NP ADJ NP ] → ADJ ∩ NP (λx.ADJ(x) ∧NP(x))

If we assume that an adjective like young also denotes a set of atoms, then we
can make either one of two assumptions for a plural noun phrase like young

a3b3c

a3b a3b

a b

0

c

b3c

d
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NUMERICAL ADJECT IVES AND THE TYPE OF SETS 7

boys: the adjective combines with the noun, and pluralization applies to the 
whole:

*(YOUNG ∩ BOY)

or the noun is pluralized and agreement triggers semantic pluralization of the
adjective:

*YOUNG ∩ *BOY.

These are in essence alternative theories about where number takes its effect,
but we do not at this point need to choose between them, since, by the Boolean
structure,

*(YOUNG ∩ BOY) = *YOUNG ∩ *BOY

Thus, if YOUNG = {b,c,d}, *YOUNG = {0,b,c,d,b3c,b3d,c3d,b3c3d}, and
*YOUNG ∩ *BOY = {0,b,c,b3c}. So young boys denotes the set of sums each 
of whose singular constituents is a young boy. All that this shows is that the 
standard account of intersective adjectival modification can straightforwardly
be extended to the plural case.

Now we come to the adjectival theory of numericals. This theory is the 
assumption that numericals have the semantics of intersective adjectives. This
means that they denote sets, like intersective adjectives, and that they combine
with the noun through intersection. This gives us the following interpretation
schema for numerical phrases:

r n → λx.|x | r n of type <d,t>
the set of sums whose cardinality stands in relation r to number n.

With at most → ≤, at least → ≥, exactly → =, we get:

at most two → λx.|x | ≤ 2
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8 INDEF INITES AND THE TYPE OF SETS

at least two → λx.|x | ≥ 2

and exactly two → λx.|x | = 2

The diagrams illustrate that we can fruitfully define notions of upward and
downward closure for sets of pluralities:

Let Y be a Boolean algebra on a subset of B and let X ⊆ Y.
X is upward closed, UC on Y iff
if x ∈X and y ∈Y and x 1 y then y ∈X
X is downward closed, DC on Y iff
if x ∈X and y ∈Y and y 1 x then y ∈X

Clearly, at least two is UC on D, at most two is DC on D, exactly two is neither.
Intersecting these three numerical phrases with *BOY gives:
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NUMERICAL ADJECT IVES AND THE TYPE OF SETS 9

at most two boys → λx.*BOY(x) ∧ |x | ≤ 2

At most two boys is DC on D, and hence also on *BOY.

at least two boys → λx.*BOY(x) ∧ |x | ≥ 2

We see that at least two boys is not UC on D, but it is UC on *BOY. (Compare
it with the diagram of the denotation of *BOY, given earlier.)

Finally, exactly two boys → λx.*BOY(x) ∧ |x | = 2
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10 INDEF INITES AND THE TYPE OF SETS

Exactly two boys is of course neither UC nor DC on D, or on *BOY.
So, what we can call the polarity signature is already determined by the

numeral phrase. In fact, since the number n only determines the height of the
interpretation in the Boolean algebra, the polarity signature is in fact determined
by the numerical relation r. So we can define notions like downward and upward
closure for numerical relations: ≤ is downward closed, ≥ is upward closed, and
= is neither.

We now come to the definite article. We need to capture the presuppositional
behavior of the different definite noun phrases that was captured in the schema
derived from Barwise and Cooper (1981).

Link (1983) proposes the sum operator 3 as the interpretation of the definite
article. This is not quite right for the definite article the in English, because it
doesn’t have the right presuppositional behavior (though it may be an option in
certain cases where there is assumed to be an implicit definiteness operation).
In later work, Link takes over the operation already proposed in Sharvy (1980),
which is now usually notated as operation σ:

!3(Q) if 3(Q) ∈Qσ = λQ.@undefined otherwise

The function which takes a noun interpretation Q and maps it onto the sum
of the Qs if the sum of the Qs is in Q, and is undefined otherwise.

With this definition we get the following results:

the boy → σ(BOY)
BOY = {a,b,c}, 3BOY = a3b3c, a3b3c ∉BOY,
Hence σ(BOY) is undefined.

If we let GIRL = {d}, then 3GIRL = 3{d} = d. d ∈ {d}, hence σ(GIRL) = d. For
singular predicate P, σ(P) is defined iff P is a singleton set. Thus, for singular
predicates, σ coincides with the iota operator.

the boys → σ(*BOY)
3(*BOY) = a3b3c, a3b3c ∈ *BOY, hence σ(*BOY) = a3b3c.
In a full Boolean algebra, if P = Ø, *P = {0} and σ(*P) = 0.

We will discuss the meaning of this later, but it will have the consequence that
felicitous use of the boys implicates that there are boys.

Let Y again be a sub-Boolean algebra of B, X ⊆ B.
X shows variety on Y iff 3(X ∩ Y) = 3Y.

Equivalently, we can say that X shows variety on Y if each atom in Y is part
of some element of X ∩ Y. (Because in a complete atomic Boolean algebra 
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NUMERICAL ADJECT IVES AND THE TYPE OF SETS 11

3(X ∩ Y) = 3(Y) iff ∪ {ATOM(b): b ∈X ∩ Y} = ∪ {ATOM(b): x ∈Y}.) Variety
is a consequence of a more general notion of quantitativity that I will not 
define here. But the intuition is as follows. Numerical phrases are quantitative
restrictors. They restrict a set Y to a set X ∩ Y in which all the elements satisfy a
certain quantitative profile, and this means that each element in X ∩ Y stands in
a certain quantitative relation to its atoms. Quantitative means that the identity
of the object and its atoms is irrelevant: any other object in Y that stands in the
same quantitative relation to its atoms has the same quantitative profile and
hence is in X ∩ Y as well.

Suppose that b1 ∈X ∩ Y. b1 = 3ATOM(b1). Let a1 ∈ ATOM(b1) and a2 ∉ATOM(b1).
Now look at b2 = 3((ATOM(b1)−{a1})∪{a2}) (intuitively, the result of replacing
in b1 atomic part a1 by atomic part a2). Intuitively, b2 has the same quantative
profile as b1, and hence b2 is in X ∩ Y as well (if X is a quantitative restrictor).
Since this argument can be made for any atom in Y, it follows that quantitative
restrictors show variety on Y: while they kick out elements from the denotation
of Y, the elements they leave in are built from the full variety of atoms in Y,
since the restriction is quantitative and not qualitative.

It is easy to check that at most one, at most two, at most three, at least one, 
at least two, at least three, exactly one, exactly two, exactly three show variety 
on *BOY. This means that any of these noun phrases the r n boys will denote
3*BOY (= a3b3c) if a3b3c is in their denotation, and will be undefined 
otherwise. This means that in the model given, all of the following are
undefined:

the at most one boy, the at most two boys, the exactly one boy, the exactly two boys.

And it means that in the model given, all of the following denote a3b3c, the
sum of the boys:

the at most three boys, the at least one boy, the at least two boys, the at least three
boys, the exactly three boys.

Thus we see that Link’s theory of singular and plural predicates – with
Sharvy’s theory of the definite article as an operation with picks the maximal
element out of a set, while presupposing that the set has a maximal element 
– and the Adjectival Theory of numericals provides the correct semantics for
numerical definites.

This is an appealingly simple and conceptually elegant theory:

The Adjectival Theory as part of the theory of plurality:
Singularity on predicates is atomicity.
Plurality on predicates is closure under sum.
The definite article is a maximalization operator.
Numerical phrases are adjectives.
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12 INDEF INITES AND THE TYPE OF SETS

Let’s look at the compositional structure of numerical definite noun phrases in
a bit more detail. Up to now, I assume the following compositional analysis:

the → λQ.σ(Q) Q a variable of type <d,t>
NOUN → N N of type <d,t>
r n → λx.|x | r n of type <d,t>

TYPE SHIFTING OPERATION ADJUNCT:
ADJUNCT: <d,t> → <<d,t>,<d,t>>
ADJUNCT[α] = λPλx.P(x) ∧ α(x)

(With ADJUNCT, the type mismatch in APPLY[ADJ,NP] is resolved as:

APPLY[ ADJUNCT[ADJ], NP ] ) =
APPLY[ λPλx.P(x) ∧ α(x), NP ] =
((λPλx.P(x) ∧ α(x))(NP)) =
λx.NP(x) ∧ α(x) of type <d,t>.

We haven’t yet looked at the internal semantic structure of the numerical 
adjective. That is, we have treated r n as an unanalyzed whole.

In analyzing the numerical phrase as an adjective, we have tried to give 
the expressions involved – the determiner, the noun, and the adjective – the
simplest and lowest possible interpretation. We now want to apply this same
strategy of analysis to the internal analysis of the numerical phrase.

For that, I want to make the analysis a little bit more general. I have 
already suggested one way of doing that. Even though in a noun phrase like
the three boys there is no numerical relation morphologically realized, I have
given a general schema for noun phrases of the form the r n boys, subsuming
the three boys under that case. This means that really I am assuming a morpho-
logically null numerical relation Ø and a structure [ the [[Ø three ] [boys ]]], 
with Ø interpreted as =.

DP

D NP

the

d
APPLY

λQ.σ(Q)
<<d,t>,d>

NP
<d,t>

NP

ADJ NP

<d,t>
APPLY

ADJ
<d,t>

NP
<d,t>
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NUMERICAL ADJECT IVES AND THE TYPE OF SETS 13

I will now go one step further. Intersective plural numerical phrases like at
least three in the at least three boys are part of a larger class of measure phrases like
at least three pounds (of) in the at least three pounds (of) sugar/boys. Measure phrases
pattern with the numerical phrases discussed here in that their semantics is inter-
sective: at least three pounds of sugar denotes (sums of) sugar to the amount of
at least three pounds. Intersective, here, means that it does in fact denote sugar.
And this is, of course, true for three boys as well: three boys denotes (sums of)
boys with three atoms. (While measures are intersective, classifiers in general
are not. For a little more discussion, see chapter 11.)

This means that the more general form of the numerical phrase is:

r n m = numerical relation – number – measure
where the count measure Ø is again morphologically not realized.

Whether you want to represent these empty elements in the syntax is not 
so much the point. While for clarity that is what I will be assuming, you can
just as well give a syntax in which these empty elements are just not there.
The point is a semantic one:

The semantics of the numerical phrase is built from three semantic 
ingredients, even if only one is visible in Ø three Ø:
a numerical relation r, a number n, and a measure m.

Thus, I assume the following compositional structure:

What I want to do now is provide as simple and natural as possible an inter-
pretation for these structures.

We start with the category NUMBER. Let’s assume we have a type n for 
numbers. Then the semantic interpretation is:

NUMBER n

zero 0
one 1
two 2
. . . . . .

MEASURE PHRASE

NUMERICAL PHRASE MEASURE

NUMERICAL RELATION NUMBER
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14 INDEF INITES AND THE TYPE OF SETS

Next, the category NUMERICAL RELATION. Obviously, as the name expresses,
the simplest assumption is that expressions of this category denote relations
between numbers, i.e. of type <n,<n,t>>.

NUMERICAL RELATION <n,<n,t>>

at most ≤
less than <
at least ≥
more than >
exactly =
Ø =
. . . . . .

So these are relations between numbers, nothing more: ≤ is the relation that 
5 stands in to 7, but not to 4.

To combine the numerical relation and the number, we can follow the 
simplest assumption: since the types match for application, the semantics is
just application:

Thus, at most five → APPLY(≤,5) = (≤(5)) = λn.n ≤ 5 = {0,1,2,3,4,5} (on the domain
of natural numbers, of course). Hence at most five is a number predicate, it denotes
a set of numbers of type <n,t>.

Now we come to the measures. The simplest account of measures is, 
obviously, to assume that they are functions from objects to numbers: the objects
may be mass objects for mass measures, the numbers may be numbers on a
particular scale, but that’s not so important for our present purposes. What 
is important is the type of measures: functions in type <d,n>:

MEASURES <d,n>

liter LITER
pound POUND
Ø C where C = λx.|x |
. . .

NUMERICAL PHRASE

NUMERICAL RELATION NUMBER

<n,t>
APPLY

r
<n,<n,t>>

n
n
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NUMERICAL ADJECT IVES AND THE TYPE OF SETS 15

This gives the following situation:

In this case, the simplest operation that would give an interpretation at type
<d,t> from inputs <n,t> and <d,n> is not functional application, but function
composition, so we assume that the numerical phrase composes with the 
measure:

COMPOSE[ (r(n)), M ] = (r(n)) o M = λx.([r(n)]([M(x)]))

In this expression r is a relation between M(x) and n. Thus, in relational nota-
tion, we could write this as λx.r(M(x),n). We will use, in fact, infix notation for
this relation, and write: λx. M(x) r n.

Thus, the measure phrase Ø three Ø gets the semantics: (=(3)) o C = λn.n=3
o λx.|x |. 

This is: λx.([λn.n=3] ([[λy.|y | ](x)])) =
λx. [λn.n=3 ( |x |) ] =
λx.|x |=3 of type <d,t>.

In other words, the simplest assumptions give the correct results by the 
simplest means: the measure phrase is built by applying a numerical relation
to a number, forming a numerical predicate, and composing the numerical pre-
dicate with a measure.

The power of the adjectival theory is that it provides a simple and elegant
analysis of numerical phrases in the nominal domain. And, as we will see at
various points in this book, it provides a solid basis for simple compositional
analyses of a variety of other nominal constructions.

I have defended the analysis [DET [NP NUM NOUN]] for numericals. I 
will end this chapter by discussing one case where I think the evidence goes
the other way, and where we need to assume an analysis [[DET DET NUM] 
[NP NOUN]]. It concerns expressions like every three as in (4):

(4) Every three lions are sold to Artis.

MEASURE PHRASE
<d,t>

COMPOSE

NUMERICAL PHRASE MEASURE (r(n))
<n,t>

M
<d,n>

MEASURE PHRASE <d,t>

NUMERICAL PHRASE MEASURE (r(n))
<n,t>

M
<d,n>
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16 INDEF INITES AND THE TYPE OF SETS

Note first that, unlike in the case of determiner the, the numerical cannot 
mingle with adjectives:

(5)a. Every three ferocious lions are sold to Artis.
b. #Every ferocious three lions are sold to Artis.

A second peculiarity concerns the number. As is well known, every requires
singular number on its head noun (6b), and triggers singular verb agreement (6c):

(6)a. Every lion is sold to Artis.
b. #Every lions is sold to Artis
c. #Every lion are sold to Artis.

(4), on the other hand, has a plural head noun lions, and triggers plural agree-
ment. Semantically, every quantifies over atomic individuals, every lion quantifies
over singular lions; but every three lions quantifies over groups of lions. That is,
(4) can be roughly paraphrased as (7):

(7) The lions were sold to Artis in threes.

This means that, if we assume a structure [every [three lions]] we are going to
violate just about everything we can think of about the syntax and semantics of
every. On the other hand, if we assume a structure [every three [lions]] we can
easily make all these facts fall into place.

First, obviously, the facts in (5) fall out: three cannot mingle with the adjectives.
Secondly, we assume a standard semantics for every:

every → λQλP.Q ⊆ ATOM ∧ ∀x[Q(x) → P(x)]

Every requires its head noun to be a set of atoms, hence singular, and triggers
singular agreement. This means, that combining it with a noun lions is going
to be infelicitous, and similarly, combining it with three lions is infelicitous. Three
on the other hand is a plural predicate, a property of non-atomic sums:

three → λx.|x |=3

Let’s now assume that we have a complex determiner every three. The natural
assumption will be that it is formed by composition of every and three:

COMPOSE[λQλP.Q ⊆ ATOM ∧ ∀x[Q(x) → P(x)], λx.|x |=3]

There is a mismatch here that needs to be resolved. One part is straight-
forward, we can shift λx.|x |=3 with ADJUNCT to its modifier interpretation:
ADJUNCT[λx.|x |=3]

COMPOSE[λQλP.Q ⊆ ATOM ∧ ∀x[Q(x) → P(x)], λZλx.Z(x) ∧ |x |=3]]

IATC01  06/10/2003  3:58 PM  Page 16



NUMERICAL ADJECT IVES AND THE TYPE OF SETS 17

Now, if we apply Z to a variable U – as we do in composition – we get some-
thing that has the right type to apply the interpretation of every to, but not the
right interpretation, because every requires a singular predicate, a predicate of
atoms, and the predicate we get, λx.U(x) ∧ |x |=3, is a plural predicate, a pre-
dicate of sums. So we need to shift this predicate to a predicate of atoms. The
technique for doing this will be worked out in detail in chapter 11. Here I will
only sketch the basic idea. Link 1984 introduces a group-formation operator ↑,
which maps pluralities onto group-atoms: whereas a 3 b denotes the sum of
a and b, ↑(a 3 b) denotes “a and b as a group”, which is an atom in its own
right. Landman (1989) also introduces an inverse operation of membership
specification ↓, which maps a group atom like ↑(a 3 b) onto the sum that makes
up that group (i.e. onto a 3 b). With this, we can introduce an operation that
maps a set of sums onto a set of corresponding atoms:

↑P = {↑(x): x ∈P}

With this, we resolve the interpretation mismatch as follows:

COMPOSE[λQλP.Q ⊆ ATOM ∧ ∀x[Q(x) → P(x)], λZλx.Z(x) ∧ |x |=3] =

λU.APPLY[λQλP.Q ⊆ ATOM ∧ ∀x[Q(x) → P(x)], ↑(λZλx.Z(x) ∧ |x |=3(U))] =

λU. APPLY[λQλP.Q ⊆ ATOM ∧ ∀x[Q(x) → P(x)], ↑(λx.U(x) ∧ |x |=3)] =

λUλP. ↑(λx.U(x) ∧ |x |=3) ⊆ ATOM ∧ ∀x[↑(λy.U(y) ∧ |y |=3)(x) → P(x)] =
(because indeed ↑(λx.U(x) ∧ |x |=3) ⊆ ATOM)

λUλP. ∀x[↑(λy.U(y) ∧ |y |=3)(x) → P(x)].

Equivalently:

every three → λUλP.∀a[ATOM(a) ∧ U(↓(a)) ∧ |↓(a) |=3 → P(a)]
The relation that holds between properties P and U if every group consist-
ing of a sum of three Us has property P.

We see that this new determiner no longer has the requirement that the noun
be singular, on the contrary, it maps a plural noun like lions onto the set of
properties that every group correlate of sums of three lions has. Note that the
universal quantification is over groups, not over sums, hence it can be con-
textually restricted to relevant groups (e.g. Landman 1989). Thus, the complex
determiner every three takes as input semantically plural predicates, so it is 
not a surprise that it wants morphologically plural nouns:

every three lions → λP.∀a[*LION(↓a) ∧ |↓a |=3 → P(a)]
The set of properties that every group consisting of a sum of three lions has.
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The generalized quantifier every three lions denotes a set of properties of
groups. This gives the correct semantics. Since the plural noun lions is the head 
noun, the whole noun phrase is morphologically plural, and it triggers plural 
agreement.

Thus, in this case, the assumption that we have a complex determiner every
three makes perfect semantic and morphological sense. But, of course, that only
strengthens the case against imposing the very same analysis onto the other noun
phrases: when we have a complex determiner, as we do here, almost everything
in the grammar jumps up and down to signal that we do, indicating that we can
rest reasonably assured that in the other cases we don’t. Thus the exceptional
nature of this complex provides support for the adjectival analysis of the 
other cases.
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