
Chapter 2 Multiple linear regression

Summary

When we wish to model a continuous outcome variable, then an appropriate
analysis is often multiple linear regression. For simple linear regression we have
one continuous input variable.1 In multiple regression we generalise the method
to more than one input variable and we will allow them to be continuous or
categorical. We will discuss the use of dummy or indicator variables to model
categories and investigate the sensitivity of models to individual data points
using concepts such as leverage and influence. Multiple regression is a gener-
alisation of the analysis of variance and analysis of covariance. The modelling
techniques used here will be useful for the subsequent chapters.

2.1 The model

In multiple regression the basic model is the following:

(2.1)

We assume that the error term �i is Normally distributed, with mean 0 and
standard deviation �.

In terms of the model structure described in Chapter 1, the link is a linear
one and the error term is Normal.

Here yi is the output for unit or subject i and there are k input variables Xi1,
Xi2, …, Xip. Often yi is termed the dependent variable and the input variables
Xi1, Xi2, …, Xip are termed the independent variables. The latter can be con-
tinuous or nominal. However the term “independent” is a misnomer since the
X’s need not be independent of each other. Sometimes they are called the
explanatory or predictor variables. Each of the input variables is associated with
a regression coefficient �1, �2, …, �p. There is also an additive constant term �0.
These are the model parameters.

y X X Xi i i k ip i� � � � � �b b b b e0 1 1 2 2 � .
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Multiple linear regression 11

We can write the first section on the right-hand side of equation (2.1) as

where LPi is known as the linear predictor and is the value of yi predicted by
the input variables. The difference yi � LPi � �i is the error term.

The models are fitted by choosing estimates b0, b1, …, bp, which minimise
the sum of squares (SS) of the predicted error. These estimates are termed ordin-
ary least squares estimates. Using these estimates we can calculate the fitted
values yi

fit, and the observed residuals ei � yi � yi
fit as discussed in Chapter 1.

Here it is clear that the residuals estimate the error term. Further details are
given in Draper and Smith2.

2.2 Uses of multiple regression

1 To adjust the effects of an input variable on a continuous output variable
for the effects of confounders. For example, to investigate the effect of diet
on weight allowing for smoking habits. Here the dependent variable is the
outcome from a clinical trial. The independent variables could be the two
treatment groups (as a 0/1 binary variable), smoking (as a continuous vari-
able in numbers of packs per week) and baseline weight. The multiple regres-
sion model allows one to compare the outcome between groups, having
adjusted for differences in baseline weight and smoking habit. This is also
known as analysis of covariance.

2 To analyse the simultaneous effects of a number of categorical variables on
an output variable. An alternative technique is the analysis of variance but
the same results can be achieved using multiple regression.

3 To predict a value of an outcome, for given inputs. For example, an inves-
tigator might wish to predict the forced expiratory volume (FEV1) of a
subject given age and height, so as to be able to calculate the observed FEV1

as a percentage of predicted, and to decide if the observed FEV1 is below,
say, 80% of the predicted one.

2.3 Two independent variables

We will start off by considering two independent variables, which can be either
continuous or binary. There are three possibilities: both variables continu-
ous, both binary (0/1), or one continuous and one binary. We will anchor the
examples in some real data.

LP X X Xi i i k ip� � � � �b b b b0 1 1 2 2 �
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12 Statistics at square two

Example
Consider the data given on the pulmonary anatomical deadspace and height
in 15 children given in Swinscow and Campbell.1 Suppose that of the 15 chil-
dren, 8 had asthma and 4 bronchitis. The data are given in Table 2.1.

2.3.1 One continuous and one binary independent variable
In Swinscow and Campbell,1 the question posed was whether there is a 
relationship between deadspace and height. Here we might ask, is there a dif-
ferent relationship between deadspace and height for asthmatics than for
non-asthmatics?

Suppose the two independent variables are height and asthma status.
There are a number of possible models:
1 The slope and the intercept are the same for the two groups even though the

means are different.
The model is

Deadspace � �0 � �Height � Height. (2.2)

This is illustrated in Figure 2.1. This is the simple linear regression model
described in Swinscow and Campbell.1

2 The slopes are the same, but the intercepts are different.
The model is

Deadspace � �0 � �Height � Height � �Asthma � Asthma. (2.3)

Table 2.1 Lung function data on 15 children

Child Deadspace Height Asthma Age Bronchitis 
Number (ml) (cm) (0 � no, (years) (0 � no, 

1 � yes) 1 � yes)

1 44 110 1 5 0
2 31 116 0 5 1
3 43 124 1 6 0
4 45 129 1 7 0
5 56 131 1 7 0
6 79 138 0 6 0
7 57 142 1 6 0
8 56 150 1 8 0
9 58 153 1 8 0
10 92 155 0 9 1
11 78 156 0 7 1
12 64 159 1 8 0
13 88 164 0 10 1
14 112 168 0 11 0
15 101 174 0 14 0
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Multiple linear regression 13

This is illustrated in Figure 2.2.
It can be seen from model (2.3) that the interpretation of the coefficient

�Asthma is the difference in the intercepts of the two parallel lines which
have slope �Height. It is the difference in deadspace between asthmatics and
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Figure 2.1 Deadspace vs height ignoring asthma status.
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Figure 2.2 Parallel slopes for asthmatics and non-asthmatics.
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14 Statistics at square two

non-asthmatics for any value of height, or in other words, it is the differ-
ence allowing for height. Thus if we thought that the only reason that asth-
matics and non-asthmatics in our sample differed in the deadspace was
because of a difference in height, and this is the sort of model we would fit.
This type of model is termed an analysis of covariance. It is very common
in the medical literature. An important assumption is that the slope is the
same for the two groups.

We shall see later that, although they have the same symbol, we will get
different estimates of �Height when we fit equations (2.2) and (2.3).

3 The slopes and the intercepts are different in each group.
To model this we form a third variable x3 � Height � Asthma. Thus x3 is
the same as height when the subject is asthmatic and is 0 otherwise. The vari-
able x3 measures the interaction between asthma status and height. It meas-
ures by how much the slope between deadspace and height is affected by
being an asthmatic.

The model is

Deadspace � �0 � �Height � Height � �Asthma � Asthma

� �3 � Height � Asthma. (2.4)

This is illustrated in Figure 2.3, in which we have separate slopes for non-
asthmatics and asthmatics.
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Figure 2.3 Separate lines for asthmatic and non-asthmatics.
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Multiple linear regression 15

The two lines are:
• Non-asthmatics

Group � 0:

Deadspace � �0 � �Height � Height

• Asthmatics
Group � 1:

Deadspace � (�0 � �Asthma) � (�Height � �3) � Height

In this model the interpretation of �Height has changed from model (2.3). It is
now the slope of the expected line for non-asthmatics. The slope of the line for
asthmatics is �Height � �3. We then get the difference in slopes between asth-
matics and non-asthmatics, which is given by �3.

2.3.2 Two continuous independent variables
As an example of a situation where both independent variables are continuous,
consider the data given in Table 2.1, but suppose we were interested in whether
height and age together were important in the prediction of deadspace.

The equation is

Deadspace � �0 � �Height � Height � �Age � Age. (2.5)

The interpretation of this model is trickier than the earlier one and the graph-
ical visualisation is more difficult. We have to imagine that we have a whole
variety of subjects all of the same age, but of different heights. Then we expect
the deadspace to go up by �Height (ml) for each centimetre in height, irre-
spective of the age of the subjects. We also have to imagine a group of sub-
jects, all of the same height, but different ages. Then we expect the deadspace
to go up by �Age (ml) for each year of age, irrespective of the heights of the sub-
jects. The nice feature of this model is that we can estimate these coefficients
reasonably even if none of the subjects has exactly the same age or height.

If age and height were independent then we can reasonably expect the �Height

in equation (2.2) to be close to the �Height in equation (2.5), but clearly in this
case they are not.

This model is commonly used in prediction as described in Section 2.2.

2.3.3 Categorical independent variables
In Table 2.1 the way that asthmatic status was coded is known as a dummy or
indicator variable. There are two levels, asthmatic and non-asthmatic, and just
one dummy variable, the coefficient of which measures the difference in the
y variable between asthmatics and normals. For inference it does not matter
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16 Statistics at square two

if we code 1 for asthmatics and 0 for normals or vice versa. The only effect is
to change the sign of the coefficient; the P-value will remain the same. However,
Table 2.2 describes three categories: asthmatic, bronchitic and neither (taken
as normal!), and these categories are mutually exclusive (i.e. there are no chil-
dren with both asthma and bronchitis). Table 2.2 gives possible dummy vari-
ables for a group of three subjects.

We now have three possible contrasts: asthmatics vs bronchitics, asthmat-
ics vs normals and bronchitics vs normals, but they are not all independent.
Knowing two of the contrasts we can deduce the third (if you are not asth-
matic or bronchitic, then you must be normal!). Thus we need to choose two
of the three contrasts to include in the regression and thus two dummy vari-
ables to include in the regression. If we included all three variables, most regres-
sion programs would inform us politely that x1, x2 and x3 were aliased (i.e.
mutually dependent) and omit one of the variables from the equation. The
dummy variable that is omitted from the regression is the one that the coeffi-
cients for the other variables are contrasted with, and is known as the baseline
variable. Thus if x3 is omitted in the regression that includes x1 and x2 in
Table 2.2, then the coefficient attached to x1 is the difference between deadspace
for asthmatics and normals. Another way of looking at it is that the coeffi-
cient associated with the baseline is constrained to be 0.

2.4 Interpreting a computer output

We now describe how to interpret a computer output for linear regression.
Most statistical packages produce an output similar to this one. The models
are fitted using the principle of least squares, as explained in Appendix 2, and
is equivalent to maximum likelihood when the error distribution is Normal.
The estimate of the standard error (SE) is more sensitive to the Normality
assumption than the estimate of the coefficients. There are two options avail-
able which do not require this assumption; these are the bootstrap and the
robust standard error. Many computer packages have options for using these
procedures. They are described in Appendix 3.

Table 2.2 One method of coding a three category variable

Status x1 x2 x3

Asthmatic 1 0 0
Bronchitic 0 1 0
Normal 0 0 1
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Multiple linear regression 17

2.4.1 One continuous variable
The results of fitting model (2.2) to the data are shown in Table 2.3.

The computer program gives two sections of output. The first part refers to
the fit of the overall model. The F(1,13) � 32.81 is what is known as an F-sta-
tistic (after the statistician Fisher), which depends on two numbers known as
the degrees of freedom. The first, k, is the number of parameters in the model
(excluding the constant term �0) which in this case is 1 and the second is
n � p � 1, where n is the number of observations and in this case is 15 �

1 � 1 � 13. The Prob �F is the probability that the variability associated
with the model could have occurred by chance, on the assumption that the
true model has only a constant term and no explanatory variables; in other
words the overall significance of the model. This is given as 0.0001. An import-
ant statistic is the value R2, which is the proportion of variance of the original
data explained by the model and in this model it is 0.7162. It is the ratio of the
sum of squares (SS) due to the model (5607) and the total SS (7828). For mod-
els with only one independent variable, as in this case, it is simply the square
of the correlation coefficient described in Swinscow and Campbell.1 However,
one can always obtain an arbitrarily good fit by fitting as many parameters as
there are observations. To allow for this, we calculate the R2 adjusted for
degrees of freedom, which is R2

a � 1 � (1 � R2)(n � 1)/(n � p � 1) and in
this case is given by 0.6944. The Root MSE means the Residual Mean Square
Error and has the value 13.072. It is an estimate of � in equation (2.1), and can
be deduced as the square root of the residual MS (mean square) on the left-
hand side of the table. Thus ����170���.88��47 � 13.072.

The second part examines the coefficients in the model. The slope
�Height � 1.0333 and suggests that if one person was 1 cm taller than another we
would expect their deadspace to be about 1 ml greater (perhaps easier to think

Table 2.3 Output from computer program fitting height to deadspace for 
data from Table 2.1

Source SS df MS Number of obs = 15

F( 1, 13) = 32.81

Model 5607.43156 1 5607.43156 Prob > F = 0.0001

Residual 2221.50178 13 170.884752 R-squared = 0.7162

Adj R-squared = 0.6944

Total 7828.93333 14 559.209524 Root MSE = 13.072

Deadspace Coef. Std. Err. t P>|t| [95% Conf. Interval]

Height 1.033323 .1803872 5.73 0.000 .6436202 1.423026

_cons -82.4852 26.30147 -3.14 0.008 -139.3061 -25.66433
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18 Statistics at square two

if one person were 10 cm taller their deadspace is expected to be 10 ml greater).
It is the slope of the line in Figure 2.1. The intercept �0 � �82.4582. This is
the value when the line cuts the x-axis when x � 0 (not the axis on the figure
which is at x � 110). This is the predicted value of deadspace for someone with
no height and is clearly a nonsense value. However, the parameter is neces-
sary for correct interpretation of the model. Note these values are derived
directly in Swinscow and Campbell (Chapter 11 in Statistics at Square One,
10th edn).

2.4.2 One continuous variable and one binary independent
variable
We must first create a new variable Asthma � 1 for asthmatics and Asthma � 0
for non-asthmatics. This gives model (2.2), and the results of fitting this
model are shown in Table 2.4.

In the top part of the output, the F-statistic now has 2 and 12 d.f., because
we are fitting two independent variables. The P-value is given as 0.0000,
which we interpret as �0.0001. It means that fitting both variables simultan-
eously gives a highly significant fit. It does not tell us about individual vari-
ables. One can see that the adjusted R2 is greater and the Root MSE is smaller
than that in Table 2.3, indicating a better fitting model than model (2.2).

In the bottom part of the output the coefficient associated with height is
�Height � 0.845, which is less than the same coefficient in Table 2.3. It is the
slope of each of the parallel lines in Figure 2.2. It can be seen that because
non-asthmatics have a higher deadspace forcing a single line through the
data gives a greater slope. The vertical distance between the two lines is the
coefficient associated with asthma, �Asthma � �16.81. As we coded asthma as 1

Table 2.4 Output from computer program fitting height and asthma to deadspace
from Table 2.1

Source SS df MS Number of obs = 15

F( 2, 12) = 28.74

Model 6476.91571 2 3238.45785 Prob > F = 0.0000

Residual 1352.01763 12 112.668136 R-squared = 0.8273

Adj R-squared = 0.7985

Total 7828.93333 14 559.209524 Root MSE = 10.615

Deadspace Coef. Std. Err. t P>|t| [95% Conf. Interval]

Height .8450468 .1613921 5.24 0.000 .4934035 1.19669

Asthma -16.81551 6.053128 -2.78 0.017 -30.00414 -3.626881

_cons -46.29216 25.01679 -1.85 0.089 -100.7991 8.214733
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Multiple linear regression 19

and non-asthma as 0, the negative sign indicates asthmatics have a lower
deadspace for a given height.

2.4.3 One continuous variable and one binary independent
variable with their interaction
We now create a new variable AsthmaHt � Asthma � Height for the interac-
tion of asthma and height. Some packages can do both of these automatically
if one declares asthma as a “factor” or as “categorical”, and fits a term such as
“Asthma*Height” to give model (2.4).

The results of fitting these variables using a computer program are given
in Table 2.5.

We fit three independent variables: Height, Asthma and AsthmaHt on
Deadspace. This is equivalent to model (2.4), and is shown in Figure 2.3. Now
F(3,11) � 37.08 and R2 � 0.91, the R2 adjusted for d.f. is given by 0.89 which
is an improvement on model (2.3). The Root MSE has the value 8.0031, which
again indicates an improvement on the earlier model.

In the second part of the output we see that the interaction term between
height and asthma status is significant (P � 0.009). The difference in the slopes
is �0.778 units (95% CI �1.317 to �0.240). There are no terms to drop from
the model. Note, even if one of the main terms, asthma or height was not sig-
nificant, we would not drop it from the model if the interaction was signifi-
cant, since the interaction cannot be interpreted in the absence of the main
effects, which in this case are asthma and height.

The two lines of best fit are:
Non-asthmatics:

Deadspace � �99.46 � 1.193 � Height

Table 2.5 Output from computer program fitting height and asthma status and their
interaction to deadspace from Table 2.1

Source SS df MS Number of obs = 15

F( 3, 11) = 37.08

Model 7124.3865 3 2374.7955 Prob > F = 0.0000

Residual 704.546834 11 64.0497122 R-squared = 0.9100

Adj R-squared = 0.8855

Total 7828.93333 14 559.209524 Root MSE = 8.0031

Deadspace Coef. Std. Err. t P>|t| [95% Conf. Interval]

Height 1.192565 .1635673 7.291 0.000 .8325555 1.552574

Asthma 95.47263 35.61056 2.681 0.021 17.09433 173.8509

AsthmaHt -.7782494 .2447751 -3.179 0.009 -1.316996 -.239503

_cons -99.46241 25.20795 -3.946 0.002 -154.9447 -43.98009
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20 Statistics at square two

Asthmatics:

Deadspace � (�99.46 � 95.47) � (1.193 � 0.778) � Height
� �3.99 � 0.415 � Height

Thus the deadspace in asthmatics appears to grow more slowly with height
than that of non-asthmatics.

This is the best fit model for the data. Using model (2.2) or (2.3) for pre-
diction, say, would result in a greater error. It is important, when considering
which is the best model to look at the R2 adjusted as well as the P-values.
Sometimes a term can be added that gives a significant P-value, but only a
marginal improvement in R2 adjusted, and for the sake of simplicity may not
be included as the best model.

2.4.4 Two independent variables: both continuous
Here we were interested in whether height or age or both were important in
the prediction of deadspace. The analysis is given in Table 2.6.

The equation is

Deadspace � �59.05 � 0.707 � Height � 3.045 � Age.

The interpretation of this model is described in Section 2.3.2. Note a peculiar
feature of this output. Although the overall model is significant (P � 0.0003)
neither of the coefficients associated with height and age are significant
(P � 0.063 and 0.291, respectively)! This occurs because age and height are
strongly correlated, and highlights the importance of looking at the overall
fit of a model. Dropping either will leave the other as a significant predictor
in the model. Note that if we drop age, the adjusted R2 is not greatly affected
(R2 � 0.6944 for height alone compared to 0.6995 for age and height) sug-
gesting that height is a better predictor.

Table 2.6 Output from computer program fitting age and height to deadspace from
Table 2.1

Source SS df MS Number of obs = 15

F( 2, 12) = 17.29

Model 5812.17397 2 2906.08698 Prob > F = 0.0003

Residual 2016.75936 12 168.06328 R-squared = 0.7424

Adj R-squared = 0.6995

Total 7828.93333 14 559.209524 Root MSE = 12.964

Deadspace Coef. Std. Err. t P>|t| [95% Conf. Interval]

Height .7070318 .3455362 2.046 0.063 -.0458268 1.45989

Age 3.044691 2.758517 1.104 0.291 -2.965602 9.054984

_cons -59.05205 33.63162 -1.756 0.105 -132.329 14.22495
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Multiple linear regression 21

2.4.5 Categorical independent variables
It will help the interpretation in this section to know that the mean values
(ml) for deadspace for the three groups are normals 97.33, asthmatics 52.88
and bronchitics 72.25.

The analysis is given in the first half of Table 2.7. Here the two independent
variables are x1 and x2 (refer to Table 2.2). As we noted before an important
point to check is that, in general, one should see that the overall model is 
significant, before looking at the individual contrasts. Here we have Prob �

F � 0.0063, which means that the overall model is highly significant. If we
look at the individual contrasts we see that the coefficient associated with
asthma �44.46 is the difference in means between normals and asthmatics.
This has a SE of 11.33 and so is highly significant. The coefficient associated
with bronchitics is �25.08, is the contrast between bronchitics and normals
and is not significant, implying that the mean deadspace is not significantly
different in bronchitics and normals.

If we wished to contrast asthmatics and bronchitics, we need to make one
of them the baseline. Thus we make x1 and x3 the independent variables to make
bronchitics the baseline and the output is shown in the second half of Table 2.7.
As would be expected the Prob � F and the R2 value are the same as the earlier

Table 2.7 Output from computer program fitting two categorical variables to 
deadspace from Table 2.2

Asthma and bronchitis as independent variables

Number of obs = 15, F(2,12) = 7.97,Prob > F = 0.0063

R-squared = 0.5705 Adj R-squared = 0.4990

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Asthma -44.45833 11.33229 -3.923 0.002 -69.14928 -19.76739

Bronch -25.08333 12.78455 -1.962 0.073 -52.93848 2.771809

_cons 97.33333 9.664212 10.072 0.000 76.27683 118.3898

Asthma and Normal as independent variables

Number of obs = 15, F(2, 12) = 7.97, Prob > F = 0.0063

R-squared = 0.5705, Adj R-squared = 0.4990

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Asthma -19.375 10.25044 -1.890 0.083 -41.7088 2.9588

Normal 25.08333 12.78455 1.962 0.073 -2.771809 52.93848

_cons 72.25 8.369453 8.633 0.000 54.01453 90.48547
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22 Statistics at square two

model because these refer to the overall model which differs from the earlier one
only in the formulation of the parameters. However, now the coefficients refer
to the contrast with bronchitis, and we can see that the difference between
asthmatics and bronchitics has a difference �19.38 with SE 10.25, which is
not significant.

Thus the only significant difference is between asthmatics and normals.
This method of analysis is also known as one-way analysis of variance. It is

a generalisation of the t-test referred to in Swinscow and Campbell.1 One
could ask what is the difference between this and simply carrying out two
t-tests: asthmatics vs normals and bronchitics vs normals. In fact, the analysis
of variance accomplishes two extra refinements. Firstly, the overall P-value
controls for the problem of multiple testing referred to in Swinscow and
Campbell.1 By doing a number of tests against the baseline we are increasing
the chances of a Type I error. The overall P-value in the F-test allows for this
and since it is significant, we know that some of the contrasts must be signifi-
cant. The second improvement is that in order to calculate a t-test we must
find the pooled SE. In the t-test this is done from two groups, whereas in the
analysis of variance it is calculated from all three, which is based on more
subjects and so is more precise.

2.5 Multiple regression in action

2.5.1 Analysis of covariance
We mentioned that model (2.3) is very commonly seen in the literature. To see
its application in a clinical trial consider the results of Llewellyn-Jones et al.,3

part of which are given in Table 2.8. This study was a randomised-controlled
trial of the effectiveness of a shared care intervention for depression in 220 sub-
jects over the age of 65 years. Depression was measured using the Geriatric
Depression Scale, taken at baseline and after 9.5 months of blinded follow-up.
The figure that helps the interpretation is Figure 2.2. Here y is the depression
scale after 9.5 months of treatment (continuous), x1 is the value of the same
scale at baseline and x2 is the group variable, taking the value 1 for interven-
tion and 0 for control.

Table 2.8 Factors affecting Geriatric Depression Scale score at follow-up

Variable Regression coefficient Standardised Regression P-value
(95% CI) Coefficient

Baseline score 0.73 (0.56 to 0.91) 0.56 �0.0001
Treatment Group �1.87 (�2.97 to �0.76) �0.22 0.0011
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The standardised regression coefficient is not universally defined, but in this
case is obtained when the x variable is replaced by x divided by its standard
deviation. Thus the interpretation of the standardised regression coefficient
is the amount the y changes for 1 standard deviation increase in x. One can
see that the baseline values are highly correlated with the follow-up values of
the score. The intervention resulted, on average, in patients with a score 1.87
units (95% CI 0.76 to 2.97) lower than those in the control group, through-
out the range of the baseline values.

This analysis assumes that the treatment effect is the same for all subjects
and is not related to values of their baseline scores. This possibility could be
checked by the methods discussed earlier. When two groups are balanced
with respect to the baseline value, one might assume that including the base-
line value in the analysis will not affect the comparison of treatment groups.
However, it is often worthwhile including because it can improve the preci-
sion of the estimate of the treatment effect; that is, the SEs of the treatment
effects may be smaller when the baseline covariate is included.

2.5.2 Two continuous independent variables
Sorensen et al.4 describe a cohort study of 4300 men, aged between 18 and 26,
who had their body mass index (BMI) measured. The investigators wished to
relate adult BMI to the men’s birth weight and body length at birth. Potential
confounding factors included gestational age, birth order, mother’s marital sta-
tus, age and occupation. In a multiple linear regression they found an associ-
ation between birth weight (coded in units of 250 g) and BMI (allowing for
confounders), regression coefficient 0.82, and SE 0.17, but not between birth
length (cm) and BMI, regression coefficient 1.51, SE 3.87. Thus, for every
increase in birth weight of 250 g, the BMI increases on average by 0.82 kg/m2.
The authors suggest that in utero factors that affect birth weight continue to
have an affect even into adulthood, even allowing for factors, such as gesta-
tional age.

2.6 Assumptions underlying the models

There are a number of assumptions implicit in the choice of the model. The
most fundamental assumption is that the model is linear. This means that each
increase by one unit of an x variable is associated by a fixed increase in the y
variable, irrespective of the starting value of the x variable.

There are a number of ways of checking this when x is continuous:
• For single continuous independent variables the simplest check is a visual

one from a scatter plot of y vs x.
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• Try transformations of the x variables (log x, x2 and 1/x are the common-
est). There is not a simple significance test for one transformation against
another, but a good guide would be if the R2 value gets larger.

• Include a quadratic term (x2) as well as the linear term (x) in the model. This
model is the one where we fit two continuous variables, x and x2. A significant
coefficient for x2 indicates a lack of linearity.

• Divide x into a number groups such as by quintiles. Fit separate dummy
variables for the four largest quintile groups and examine the coefficients.
For a linear relationship, the coefficients themselves will increase linearly.

Another fundamental assumption is that the error terms are independent of
each other. An example of where this is unlikely is when the data form a time
series. A simple check for sequential data for independent errors is whether
the residuals are correlated, and a test known as the Durbin–Watson test is avail-
able in many packages. Further details are given in Chapter 6, on time series
analysis. A further example of lack of independence is where the main unit of
measurement is the individual, but several observations are made on each
individual, and these are treated as if they came from different individuals.
This is the problem of repeated measures. A similar type of problem occurs
when groups of patients are randomised, rather than individual patients.
These are discussed in Chapter 5, on repeated measures.

The model also assumes that the error terms are independent of the x vari-
ables and variance of the error term is constant (the latter goes under the more
complicated term of heteroscedascity). A common alternative is when the error
increases as one of the x variables increases, so one way of checking this assump-
tion would be to plot the residuals, ei, against each of the independent vari-
ables and also against the fitted values. If the model were correct one would
expect to see the scatter of residuals evenly spread about the horizontal 
axis and not showing any pattern. A common departure from this is when the
residuals fan out; that is, the scatter gets larger as the x variable gets larger.
This is often also associated with nonlinearity as well, and so attempts at
transforming the x variable may resolve this issue.

The final assumption is that the error term is Normally distributed. One
could check this by plotting a histogram of the residuals, although the method
of fitting will mean that the observed residuals ei are likely to be closer to a
Normal distribution than the true ones �i. The assumption of Normality is
important mainly so that we can use normal theory to estimate confidence
intervals (CIs) around the coefficients, but luckily with reasonably large sam-
ple sizes, the estimation method is robust to departures from Normality. Thus
moderate departures from Normality are allowable. If one was concerned,
then one could also use bootstrap methods and the robust standard error
described in Appendix 3.

24 Statistics at square two

1405134909_4_002.qxd  17-02-2006  16:05  Page 24



It is important to remember that the main purpose of this analysis is to
assess a relationship, not test assumptions, so often we can come to a useful
conclusion even when the assumptions are not perfectly satisfied.

2.7 Model sensitivity

Model sensitivity refers to how estimates are affected by subgroups of the
data. Suppose we had fitted a simple regression (model (2.2)), and we were
told that the estimates b0 and b1 altered dramatically if you delete a subset of
the data, or even a single individual. This is important, because we like to think
that the model applies generally, and we do not wish to find that we should
have different models for different subgroups of patients.

2.7.1 Residuals, leverage and influence
There are three main issues in identifying model sensitivity to individual
observations: residuals, leverage and influence. The residuals are the difference
between the observed and fitted data: ei � yi

obs � yi
fit. A point with a large

residual is called an outlier. In general, we are interested in outliers because they
may influence the estimates, but it is possible to have a large outlier which is
not influential.

Another way that a point can be an outlier is if the values of the xi are a long
way from the mass of x. For a single variable, this means if xi is a long way
from x–. Imagine a scatter plot of y against x, with a mass of points in the 
bottom-left-hand corner and a single point in the top right. It is possible that
this individual has unique characteristics that relate to both the x and y vari-
ables. A regression line fitted to the data will go close, or even through the
isolated point. This isolated point will not have a large residual, yet if this
point was deleted the regression coefficient might change dramatically. Such
a point is said to have high leverage and this can be measured by a number,
often denoted hi; large values of hi indicate a high leverage.

An influential point is one that has a large effect on an estimate. Effectively
one fits the model with and without that point and finds the effect of the
regression coefficient. One might look for points that have a large effect on b0,
or on b1 or on other estimates such as SE(b1). The usual output is the difference
in the regression coefficient for a particular variable when the point is included
or excluded, scaled by the estimated SE of the coefficient. The problem is that
different parameters may have different influential points. Most computer
packages now produce residuals, leverages and influential points as a matter of
routine. It is the task for an analyst to examine these and to identify important
cases. However, just because a point is influential or has a large residual it does
not follow that it should be deleted, although the data should be examined
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26 Statistics at square two

carefully for possible measurement or transcription errors. A proper analysis of
such data would report such sensitivities to individual points.

2.7.2 Computer analysis: model checking and sensitivity
We will illustrate model checking and sensitivity using the deadspace, age
and height data in Table 2.1.

Figure 2.1 gives us reassurance that the relationship between deadspace and
height is plausibly linear. We could plot a similar graph for deadspace and
age. The standard diagnostic plot is a plot of the residuals against the fitted
values, and for the model fitted in Table 2.6 it is shown in Figure 2.4. There is
no apparent pattern, which gives us reassurance about the error term being
relatively constant and further reassurance about the linearity of the model.

The diagnostic statistics are shown in Table 2.9 where the influence statis-
tics are inf_age associated with age and inf_ht associated with height. As one
might expect the children with the highest leverages are the youngest (who is
also the shortest) and the oldest (who is also the tallest). Note that the largest
residuals are associated with small leverages. This is because points with large
leverage will tend to force the line close to them.

The child with the most influence on the age coefficient is also the oldest, and
removal of that child would change the standardised regression coefficient by
0.79 units. The child with the most influence on height is the shortest child.
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Figure 2.4 Graph of residuals against fitted values for regression model in Table 2.4
with age and height as the independent variables.
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However, neither child should be removed without strong reason. (A strong rea-
son may be if it was discovered the child had some relevant disease, such as
cystic fibrosis.)

2.8 Stepwise regression

When one has a large number of independent variables, a natural question to
ask is what is the best combination of these variables to predict the y variable?
To answer this, one may use stepwise regression that is available in a number
of packages. Step-down or backwards regression starts by fitting all available
variables and then discarding sequentially those that are not significant. Step-
up or forwards regression starts by fitting an overall mean, and then selecting
variables to add to the model according to their significance. Stepwise regres-
sion is a mixture of the two, where one can specify a P-value for a variable to
be entered into the model, and then a P-value for a variable to be discarded.
Usually one chooses a larger P-value for entry (say, 0.1) than for exclusion
(say, 0.05), since variables can jointly be predictive, and separately they are
not. This also favours step-down regression. As an example consider an out-
come variable being the amount a person limps. The length of the left or
right legs is not predictive, but the difference in lengths is highly predictive.
Stepwise regression is best used in the exploratory phase of an analysis (see
Chapter 1), to identify a few predictors in a mass of data, the association of
which can be verified by further data collection.

Table 2.9 Diagnostics from model fitted in Table 2.4 (output from computer program)

Height Age resids leverage inf_age inf_ht

1 110 5 10.06 0.33 0.22 �0.48
2 116 5 �7.19 0.23 �0.04 0.18
3 124 6 �3.89 0.15 �0.03 0.08
4 129 7 �8.47 0.15 �0.14 0.20
5 131 7 1.12 0.12 0.01 �0.02
6 138 6 22.21 0.13 �0.52 0.34
7 142 6 �2.61 0.17 0.08 �0.06
8 150 8 �15.36 0.08 0.11 �0.14
9 153 8 �15.48 0.10 0.20 �0.26
10 155 9 14.06 0.09 0.02 0.07
11 156 7 5.44 0.28 �0.24 0.25
12 159 8 �13.72 0.19 0.38 �0.46
13 164 10 0.65 0.14 0.00 0.01
14 168 11 18.78 0.19 0.29 0.08
15 174 14 �5.60 0.65 �0.79 0.42
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28 Statistics at square two

There are a few problems with stepwise regression:
• The P-values are invalid since they do not take account of the vast number

of tests that have been carried out; different methods, such as step-up and
step-down, are likely to produce different models and experience shows that
the same model rarely emerges when a second data set is analysed. One way
of trying to counter this is to split a large data set into two, and run the step-
wise procedure on both separately. Choose the variables that are common to
both data sets, and fit these to the combined data set as the final model.

• Many large data sets contain missing values.With stepwise regression, usually
only the subjects who have no missing values on any of the variables under
consideration are chosen. The final model may contain only a few variables,
but if one refits the model, the parameters change because now the model is
being fitted to those subjects who have no missing values on only the few cho-
sen variables, which may be a considerably larger data set than the original.

• If a categorical variable is coded as a number of dummies, some of these may
be lost in the fitting process, and this changes the interpretation of the others.
Thus, if we fitted x1 and x2 from Table 2.2, and then we lost x2, the interpret-
ation of x1 is of a contrast between asthmatics with bronchitics and normals
combined.

Thus stepwise regression is useful in the exploratory phase of an analysis, but
not the confirmatory one.

2.9 Reporting the results of a multiple regression

• As a minimum, report the regression coefficients and SEs or CIs for the main
independent variables, together with the adjusted R2 for the whole model.

• If there is one main dependent variable, show a scatter plot of each inde-
pendent variable vs dependent variable with the best-fit line.

• Report how the assumptions underlying the model were tested and veri-
fied. In particular is linearity plausible?

• Report any sensitivity analysis carried out.
• Report all the variables included in the model. For a stepwise regression,

report all the variables that could have entered the model.
• Note that if an interaction term is included in a model, the main effects

must be included.

2.10 Reading the results of a multiple regression

In addition to the points in Section 1.11:
• Note the value of R2. With a large study, the coefficients in the model can

be highly significant, but only explain a low proportion of the variability of
the outcome variable. Thus they may be of no use for prediction.
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FREQUENTLY ASKED QUESTIONS

1 Does it matter how a dummy variable is coded?

If you have only one binary variable, then coding the dummy variable 0 and

1 is the most convenient. Coding it 1 and 2 is commonly the method in

questionnaires. It will make no difference to the coefficient estimate or 

P-value. However it will change the value of the intercept, because now the

value in the group assigned 1 will be a � b and the value in the group

assigned 2 will be a � 2b. Thus in Figure 2.2 when “asthma” is coded 0 or 

1 the regression coefficient is �16.8 and the intercept is �46.3. If we had

coded the variable 1 or 2 we would find the regression coefficient is

still �16.8 but the intercept would be (�46.3 � 16.8) � �63.1. Coding 

the dummy variable to �1 and �1, (e.g. as is done in the package SAS) 

does not change the P-value but the coefficient is halved.

If you have a categorical variable with, say, three groups, then this will be

coded with two dummy variables. As shown earlier, the overall F-statistic will

be unchanged no matter which two groups are chosen to be represented by

dummies, but the coefficient of group 2, say, will be dependent on whether

group 1 or 3 is the omitted variable.

2 How do I treat an ordinal independent variable?

Most packages assume that the predictor variable, X, in a regression model is

either continuous or binary. Thus one has a number of options:

(i) Treat the predictor as if it were continuous. This incorporates into the

model the fact that the categories are ordered, but also assumes that

equal changes in X mean equal changes in y.

(ii) Treat the predictor as if it were categorical, by fitting dummy variables 

to all but one of the categories. This loses the fact that the predictor is

ordinal, but makes no assumption about linearity.

(iii) Dichotomise the X variable, by recoding it as binary, say 1 if X is in a par-

ticular category or above, and 0 otherwise. The cut-point should be chosen

on external grounds and not because it gives the best fit to the data.

Which of these options you choose depends on a number of factors. With a

large amount of data, the loss of information by ignoring the ordinality in option

• Are the models plausibly linear? Are there any boundaries, which may cause
the slope to flatten?

• Were outliers and influential points identified, and how were they treated?
• An analysis of covariance assumes that the slopes are the same in each group.

Is this plausible and has it been tested?

(continued)
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30 Statistics at square two

(ii) is not critical and especially if the X variable is a confounder and not of prime

interest. For example, if X is age grouped in 10-year intervals, it might be better

to fit dummy variables, than assume a linear relation with the y-variable.

3 Do the assumptions underlying multiple regression matter?

Often the assumptions underlying multiple regression are not checked, partly

because the investigator is confident that they hold true and partly because

mild departures are unlikely to invalidate an analysis. However, lack of

independence may be obvious on empirical grounds (the data form repeated

measures or a time series) and so the analysis should accommodate this from

the outset. Linearity is important for inference and so may be checked by

fitting transformations of the independent variables. Lack of homogeneity of

variance and lack of Normality may affect the SEs and often indicate the need

for a transformation of the dependent variable. The most common departure

from Normality is when outliers are identified, and these should be carefully

checked, particularly those with high leverage.

4 I have a variable that I believe should be a confounder but it is not significant.

Should I include it in the analysis?

There are certain variables (such as age or sex) for which one might have strong

grounds for believing that they could be confounders, but in any particular

analysis might emerge as not significant. These should be retained in the

analysis because, even if not significantly related to the outcome themselves,

they may modify the effect of the prime independent variable.

5 What happens if I have a dependent variable, which is 0 or 1?

When the dependent variable is 0 or 1 then the coefficients from a linear

regression are proportional to what is known as the linear discriminant

function. This can be useful for discriminating between groups, even if the

assumption about Normality of the residuals is violated. However discrimination

is normally carried out now using logistic regression (Chapter 3).

6 Why not analyse the difference between outcome and baseline (change score)

rather than use analysis of covariance?

Analysing change does not properly control for baseline imbalance 

because of what is known as regression to the mean; baseline values are

negatively correlated with change and subjects with low scores at baseline

will tend to increase more than those with high values. However, if the

correlation between baseline and follow-up measurements is large (say,

r � 0.8) and randomisation has ensured that baseline values are comparable

between groups, then an analysis of change scores may produce lower 

SEs. Note that if the change score is the dependent variable and baseline 

is included as an independent variable, then the results will be the same 

as an analysis of covariance.

1405134909_4_002.qxd  17-02-2006  16:05  Page 30



Multiple linear regression 31

References

1. Swinscow TDV, Campbell MJ. Statistics at Square One, 10th edn. London: BMJ Books,
2002.

2. Draper NR, Smith H. Applied Regression Analysis, 3rd edn. New York: John Wiley,
1998.

3. Llewellyn-Jones RH, Baikie KA, Smithers H, Cohen J, Snowdon J, Tennant CC.
Multifaceted shared care intervention for late life depression in residential care:
randomised controlled trial. Br Med J 1999; 319: 676–82.

4. Sorensen HT, Sabroe S, Rothman KJ, Gillman M, Fischer P, Sorensen TIA. Relation
between weight and length at birth and body mass index in young adulthood:
cohort study. Br Med J 1997; 315: 1137.

5. Melchart D, Streng A, Hoppe A, Brinkhaus B, Witt C, et al. Acupuncture in patients
with tension-type headache: randomised controlled trial. Br Med J 2005; 331:
376–82.

EXERCISE

Melchart et al.5 describe a randomised trial of acupuncture in patients 

with tension-type headache with 2:1 randomisation to either acupuncture 

for 8 weeks or a waiting list control. Partial results are given in the following

table.
Results from Melchart et al.5

Acupuncture Waiting list

Baseline 17.5 (6.9) (n � 132) 17.3 (6.9) (n � 75)
After treatment 9.9 (8.7) (n � 118) 16.3 (7.4) (n � 63)

Values are represented as days with headache during a 28-day period 
(Mean (SD)).

Difference between groups after treatment: 5.7 days (95% CI 4.2 to 7.2)

P � 0.001.

Analysis of covariance adjusting for baseline value – Difference between

groups after treatment: 5.8 days (95% CI 4.0 to 7.6) P � 0.001.

1 Give three assumptions made for the analysis of covariance.

2 What evidence do we have that these may not be satisfied?

3 Contrast the two CIs.

4 What other data might one like to see?
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