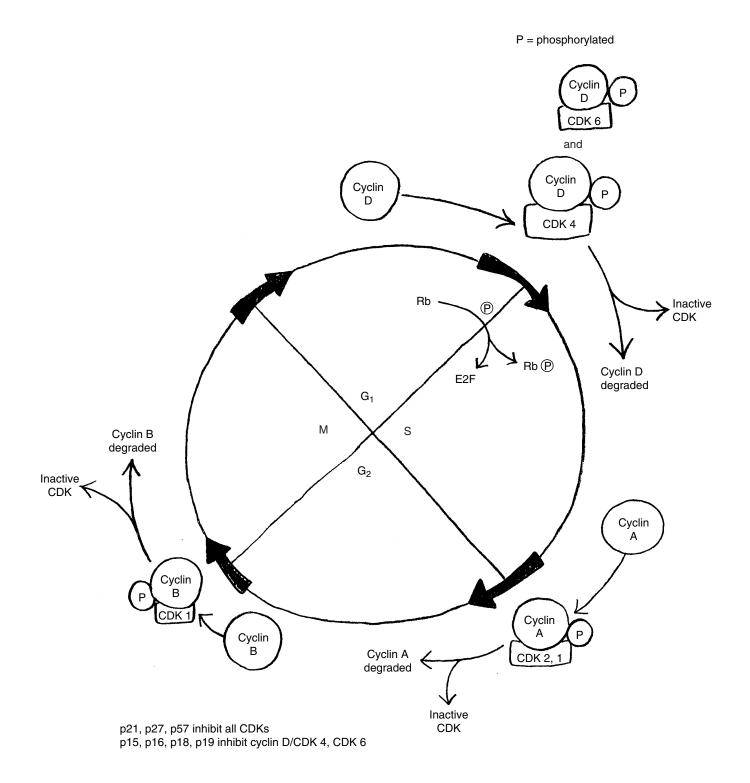
NOTES

CELL CYCLE

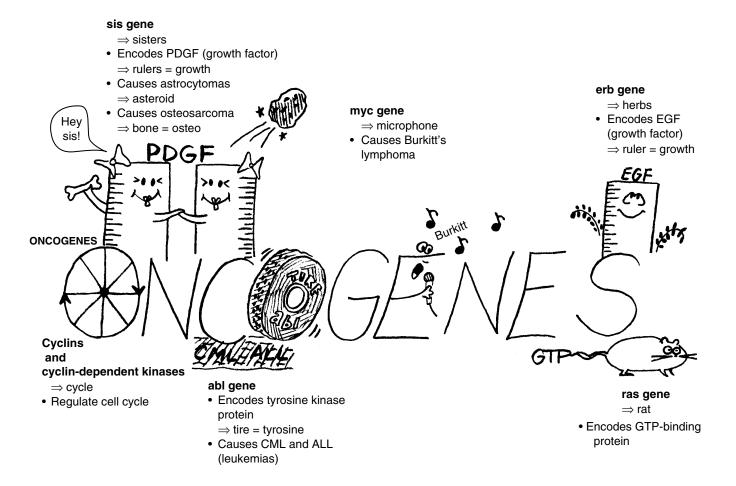
- G₀ state
- Resting cells may re-enter the cell 0 cycle
- Nondividing cells (skeletal and cardiac muscle, neurons)
 - o Have left the cell cycle and cannot undergo mitosis
- The cell cycle is divided into two periods: interphase and mitosis
- During interphase, the cell size and amount of DNA double
- Interphase is the period between cell divisions and is divided into G₁, S, and G₂
- G₁ phase (gap one phase)
 - RNA and protein synthesis occur 0
 - Cells reach a restriction point and 0 proceed to the S phase
- 0 Cells that fail to reach the restriction point enter the Go state
- S phase (synthetic phase)
 - DNA, RNA, and protein synthesis 0 occur
 - 8-12 hours' duration 0
 - DNA replication occurs, resulting in 0 chromosome duplication
 - S-phase activator initiates DNA 0 synthesis
- G₂ phase (gap two phase)
 - o RNA and protein synthesis occur 2–4 hours' duration
 - 0
 - During G_2 , the cell prepares for 0 mitosis; energy is stored and the centrioles mature
- Mitosis •
 - => my toes
 - Division of the nucleus and 0 cytoplasm occurs
 - Results in two identical daughter cells 0
 - Five stages: prophase, 0 prometaphase, metaphase, anaphase, telophase
 - 1-3 hours' duration 0
 - M-phase promoting factor allows the 0 cell to enter mitosis
 - M-phase delaying factor inhibits 0 synthesis of the M-phase promoting factor until all of the DNA is replicated


Cell Cycle

NOTES

CYCLINS, CYCLIN-DEPENDENT KINASES (CDKs), AND THE REGULATION OF THE CELL CYCLE

- Cyclins control the progression of cells through the phases of the cell cycle by forming complexes with cyclindependent kinases (CDKs)
- Specific combinations of cyclins and CDKs are associated with the transitions in the cell cycle
- The complexes of cyclins and CDKs are activated by phosphorylation. The active kinase phosphorylates critical proteins in DNA replication, mitosis, and spindle formation for progression through the cell cycle
 - $\circ \quad \text{Cyclin D/CDK 4, 6} \quad \text{control G}_1 \rightarrow \text{S}$
 - $\circ \quad \ \ \text{Cyclin E/CDK 2} \quad \ \ \text{control G}_1 \rightarrow \text{S}$
 - $\circ \quad \text{Cyclin A/CDK 2, 1} \quad \text{control S} \rightarrow \text{G}_2$
 - Cyclin B/CDK 1 control $G_2 \rightarrow M$
- After a cell enters the next phase, the cyclin is degraded and the CDK returns to the inactive state
- The active CDK complexes are regulated by CDK inhibitors (p21, p27, p57; and p16, p15, p18, p19)
- CDK inhibitors p21, p27, and p57 inhibit all CDKs, while p16, p15, p18, and p19 selectively inhibit cyclin D/CDK 4, CDK 6
- The transition from G₁ to S is extremely important because the cells are committed to the S phase. Another critical step is the phosphorylation of the retinoblastoma protein (pRb) by cyclin D/CDK 4, CDK6
- Phosphorylation of pRb unbinds E2F transcription factors so they can transcribe genes whose products are required for S phase
- Amplification of cyclin D genes occurs in many cancers, including breast and liver
- Amplification of CDK 4 gene occurs in melanomas, sarcomas, and glioblastomas

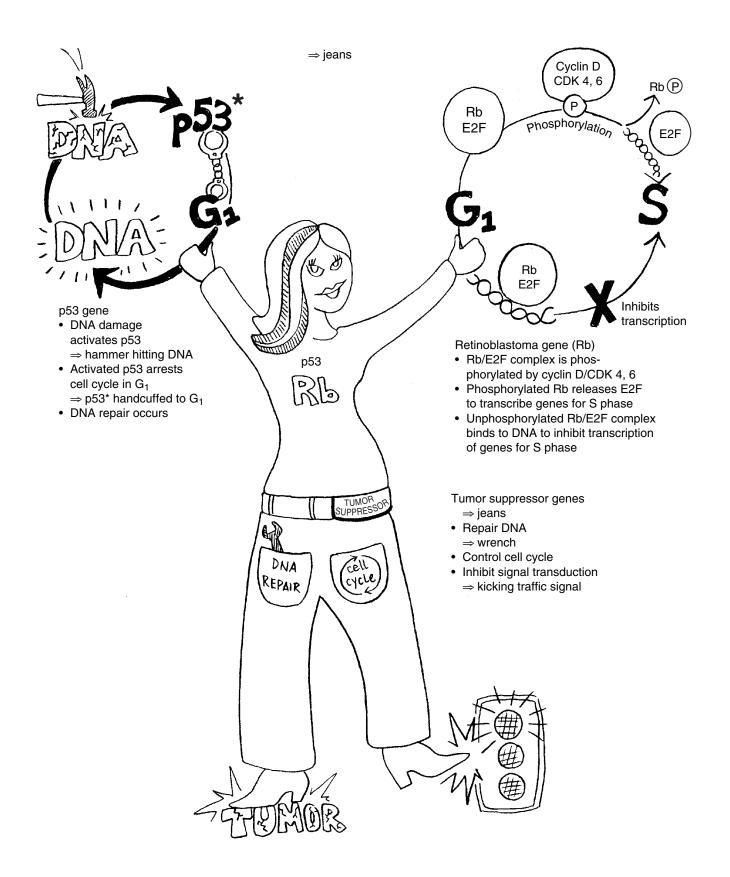

145

NOTE:

ONCOGENES

- Oncogenes are derived from mutations of proto-oncogenes and may induce a cell to become malignant
- Proto-oncogenes are involved with normal cellular growth and differentiation
- Retroviral transduction of protooncogenes by viral oncogenes (v-onc) induces tumorigenesis
- Genes with mutations that encode growth factor, growth factor receptors, signal-transducing proteins, transcription proteins, cyclins, and cyclin-dependent kinases may become oncogenic
- Proto-oncogenes are transformed into oncogenes by point mutations, chromosomal rearrangements (translocation), or overexpression

PROTEIN PRODUCTS	ONCOGENE	ACTIVATION	TUMORS
Cell cycle regulators Cyclins Cyclin-dependent kinases (CDKs)	Cyclin D CDK 4	Overexpression Overexpression	Breast, liver Melanoma, glioblastoma
Transcription protein	myc	Translocation	Burkitt's lymphoma
Signal-transducing proteins GTP-binding Tyrosine kinase	ras abl	Point mutation Translocation	Many cancers Acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML)
Growth factors Platelet-derived growth factor (PDGF)	sis	Overexpression	Astrocytoma, osteosarcoma
Growth factor receptor Epidermal growth factor (EGF)	erb	Overexpression	Squamous cell carcinoma of lung, breast, GI, ovarian


NOTES

TUMOR SUPPRESSOR GENES

=> jeans

- Tumor suppressor genes regulate cell growth
- Tumor suppressor genes encode proteins that control the cell cycle and transcription, repair DNA, inhibit signal transduction, and inhibit growth Repair DNA = wrench Inhibit signal transduction = kicking traffic signal
- Retinoblastoma gene (Rb)
 - $\circ \quad \text{Regulates } G_1 \to S \text{ of cell cycle}$
 - Underphosphorylated Rb protein complexes with E2F transcription factors and binds to DNA to inhibit transcription of genes essential for S phase
 - Rb protein is phosphorylated by cyclin D/CDK 4, 6 and Rb releases E2F. The E2F transcription factor then transcribes genes for S phase. Cells are then committed to divide
- p53 gene
 - p53 is activated by DNA damage and arrests the cell cycle in G₁ to induce DNA repair
 - p53 activated by DNA damage = hammer hitting DNA Activated p53 arrests cell cycle = p53 handcuffed to G₁
 - If DNA repair is unsuccessful, then p53 activates the bax gene to induce apoptosis
 - Mutations or loss of p53 allows DNA-damaged cells to proliferate, leading to malignant tumors

Tumor Suppressor Genes

149