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Chapter 1

Computation
B. Jack Copeland

The Birth of the Modern
Computer

As everyone who can operate a personal computer
knows, the way to make the machine perform
some desired task is to open the appropriate
program stored in the computer’s memory. Life
was not always so simple. The earliest large-scale
electronic digital computers, the British Colossus
(1943) and the American ENIAC (1945), did not
store programs in memory (see Copeland 2001).
To set up these computers for a fresh task, it
was necessary to modify some of the machine’s
wiring, rerouting cables by hand and setting
switches. The basic principle of the modern com-
puter – the idea of controlling the machine’s
operations by means of a program of coded
instructions stored in the computer’s memory –
was thought of by Alan Turing in 1935. His
abstract “universal computing machine,” soon
known simply as the universal Turing machine
(UTM), consists of a limitless memory, in which
both data and instructions are stored, and a
scanner that moves back and forth through the
memory, symbol by symbol, reading what it finds
and writing further symbols. By inserting differ-
ent programs into the memory, the machine is
made to carry out different computations.

Turing’s idea of a universal stored-program
computing machine was promulgated in the US

by John von Neumann and in the UK by Max
Newman, the two mathematicians who were by
and large responsible for placing Turing’s abstract
universal machine into the hands of electronic
engineers (Copeland 2001). By 1945, several
groups in both countries had embarked on creat-
ing a universal Turing machine in hardware. The
race to get the first electronic stored-program
computer up and running was won by Manchester
University where, in Newman’s Computing
Machine Laboratory, the “Manchester Baby” ran
its first program on June 21, 1948. By 1951,
electronic stored-program computers had begun
to arrive in the marketplace. The first model to
go on sale was the Ferranti Mark I, the pro-
duction version of the Manchester computer
(built by the Manchester firm Ferranti Ltd.). Nine
of the Ferranti machines were sold, in Britain,
Canada, Holland, and Italy, the first being
installed at Manchester University in February
1951. In the US, the Computer Corporation
sold its first UNIVAC later the same year. The
LEO computer also made its debut in 1951;
LEO was a commercial version of the prototype
EDSAC machine, which at Cambridge Uni-
versity in 1949 had become the second stored-
program electronic computer to function. In
1953 came the IBM 701, the company’s first
mass-produced stored-program electronic com-
puter (strongly influenced by von Neumann’s
prototype IAS computer, which was working at
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Figure 1.1: A Turing machine

Princeton University by the summer of 1951).
A new era had begun.

Turing introduced his abstract Turing
machines in a famous article entitled “On Com-
putable Numbers, with an Application to the
Entscheidungsproblem” (published in 1936).
Turing referred to his abstract machines simply
as “computing machines” – the American logician
Alonzo Church dubbed them “Turing machines”
(Church 1937: 43). “On Computable Numbers”
pioneered the theory of computation and is
regarded as the founding publication of the
modern science of computing. In addition,
Turing charted areas of mathematics lying bey-
ond the reach of the UTM. He showed that not
all precisely-stated mathematical problems can
be solved by a Turing machine. One of them is
the Entscheidungsproblem – “decision problem”
– described below. This discovery wreaked havoc
with received mathematical and philosophical
opinion. Turing’s work – together with contem-
poraneous work by Church (1936a, 1936b) –
initiated the important branch of mathematical
logic that investigates and codifies problems “too
hard” to be solvable by Turing machine. In a
single article, Turing ushered in both the mod-
ern computer and the mathematical study of the
uncomputable.

What is a Turing Machine?

A Turing machine consists of a limitless memory
and a scanner that moves back and forth through
the memory, symbol by symbol, reading what
it finds and writing further symbols. The memory

consists of a tape divided into squares. Each square
may be blank or may bear a single symbol, “0”
or “1,” for example, or some other symbol taken
from a finite alphabet. The scanner is able to
examine only one square of tape at a time (the
“scanned square”). (See figure 1.1.) The tape is
the machine’s general-purpose storage medium,
serving as the vehicle for input and output, and
as a working memory for storing the results of
intermediate steps of the computation. The tape
may also contain a program of instructions. The
input that is inscribed on the tape before the
computation starts must consist of a finite
number of symbols. However, the tape itself is
of unbounded length – since Turing’s aim was to
show that there are tasks which these machines
are unable to perform, even given unlimited
working memory and unlimited time. (A Turing
machine with a tape of fixed finite length is called
a finite state automaton. The theory of finite state
automata is not covered in this chapter. An intro-
duction may be found in Sipser 1997.)

The Basic Operations of
a Turing Machine

Each Turing machine has the same small
repertoire of basic (or “atomic”) operations.
These are logically simple. The scanner contains
mechanisms that enable it to erase the symbol
on the scanned square, to write a symbol on the
scanned square (first erasing any existing symbol),
and to shift position one square to the left or
right. Complexity of operation is achieved by
chaining together large numbers of these simple
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basic actions. The scanner will halt if instructed
to do so, i.e. will cease work, coming to rest on
some particular square, for example the square
containing the output (or if the output consists
of a string of several digits, then on the square
containing the left-most digit of the output, say).

In addition to the operations just mentioned,
erase, write, shift, and halt, the scanner is able to
change state. A device within the scanner is cap-
able of adopting a number of different positions.
This device may be conceptualized as consisting
of a dial with a finite number of positions, labeled
“a,” “b,” “c,” etc. Each of these positions counts
as a different state, and changing state amounts
to shifting the dial’s pointer from one labeled
position to another. The device functions as a
simple memory. As Turing said, by altering its
state the “machine can effectively remember
some of the symbols which it has ‘seen’ (scanned)
previously” (1936: 231). For example, a dial with
two positions can be used to keep a record of
which binary digit, 0 or 1, is present on the
square that the scanner has just vacated. If a
square might also be blank, then a dial with
three positions is required.

Commercially available computers are hard-
wired to perform basic operations considerably
more sophisticated than those of a Turing
machine – add, multiply, decrement, store-at-
address, branch, and so forth. The precise list of
basic operations varies from manufacturer to
manufacturer. It is a remarkable fact that none
of these computers can out-compute the UTM.
Despite the austere simplicity of Turing’s
machines, they are capable of computing any-
thing that any computer on the market can com-
pute. Indeed, because they are abstract machines,
they are capable of computations that no “real”
computer could perform.

Example of a Turing machine

The following simple example is from “On Com-
putable Numbers” (Turing 1936: 233). The
machine – call it M – starts work with a blank
tape. The tape is endless. The problem is to set
up the machine so that if the scanner is posi-
tioned over any square of the tape and the ma-
chine set in motion, it will print alternating binary
digits on the tape, 0 1 0 1 0 1 . . . , working to
the right from its starting place, leaving a blank
square in between each digit. In order to do its
work M makes use of four states labeled “a,”
“b,” “c,” and “d.” M is in state a when it starts
work. The operations that M is to perform can
be set out by means of a table with four columns
(see table 1.1). “R” abbreviates the instruction
“shift right one square,” “P[0]” abbreviates
“print 0 on the scanned square,” and likewise
“P[1].” The top line of table 1.1 reads: if you
are in state a and the square you are scanning is
blank, then print 0 on the scanned square, shift
right one square, and go into state b. A machine
acting in accordance with this table of instructions
– or program – toils endlessly on, printing the
desired sequence of digits while leaving alternate
squares blank.

Turing did not explain how it is to be brought
about that the machine acts in accordance with
the instructions. There was no need. Turing’s
machines are abstractions and it is not neces-
sary to propose any specific mechanism for
causing the machine to follow the instructions.
However, for purposes of visualization, one
might imagine the scanner to be accompanied
by a bank of switches and plugs resembling an
old-fashioned telephone switchboard. Arranging
the plugs and setting the switches in a certain
way causes the machine to act in accordance

Table 1.1

State Scanned square Operations Next state

a blank P[0], R b
b blank R c
c blank P[1], R d
d blank R a
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with the instructions in table 1.1. Other ways
of setting up the “switchboard” cause the
machine to act in accordance with other tables
of instructions.

The universal Turing machine

The UTM has a single, fixed table of instructions,
which we may imagine to have been set into the
machine by way of the switchboard-like arrange-
ment just mentioned. Operating in accordance
with this table of instructions, the UTM is able
to carry out any task for which a Turing-
machine instruction table can be written. The
trick is to place an instruction table for carrying
out the desired task onto the tape of the universal
machine, the first line of the table occupying the
first so many squares of the tape, the second
line the next so many squares, and so on. The
UTM reads the instructions and carries them
out on its tape. This ingenious idea is funda-
mental to computer science. The universal Turing
machine is in concept the stored-program digital
computer.

Turing’s greatest contributions to the develop-
ment of the modern computer were:

• The idea of controlling the function of the
computing machine by storing a program of
(symbolically or numerically encoded) instruc-
tions in the machine’s memory.

• His proof that, by this means, a single
machine of fixed structure is able to carry out
every computation that can be carried out by
any Turing machine whatsoever.

Human Computation

When Turing wrote “On Computable Num-
bers,” a computer was not a machine at all, but
a human being – a mathematical assistant who
calculated by rote, in accordance with some
“effective method” supplied by an overseer prior
to the calculation. A paper-and-pencil method is
said to be effective, in the mathematical sense,
if it (a) demands no insight or ingenuity from

the human carrying it out, and (b) produces
the correct answer in a finite number of steps.
(An example of an effective method well-known
among philosophers is the truth table test for
tautologousness.) Many thousands of human
computers were employed in business, govern-
ment, and research establishments, doing some
of the sorts of calculating work that nowadays
is performed by electronic computers. Like
filing clerks, computers might have little detailed
knowledge of the end to which their work was
directed.

The term “computing machine” was used to
refer to calculating machines that mechanized
elements of the human computer’s work. These
were in effect homunculi, calculating more
quickly than an unassisted human computer, but
doing nothing that could not in principle be
done by a human clerk working effectively. Early
computing machines were somewhat like today’s
nonprogrammable hand-calculators: they were
not automatic, and each step – each addition,
division, and so on – was initiated manually
by the human operator. For a complex calcula-
tion, several dozen human computers might be
required, each equipped with a desk-top com-
puting machine. By the 1940s, however, the scale
of some calculations required by physicists and
engineers had become so great that the work
could not easily be done in a reasonable time by
even a roomful of human computers with desk-
top computing machines. The need to develop
high-speed, large-scale, automatic computing
machinery was pressing.

In the late 1940s and early 1950s, with the
advent of electronic computing machines, the
phrase “computing machine” gave way gradu-
ally to “computer.” During the brief period in
which the old and new meanings of “computer”
co-existed, the prefix “electronic” or “digital”
would usually be used in order to distinguish
machine from human. As Turing stated, the new
electronic machines were “intended to carry out
any definite rule of thumb process which could
have been done by a human operator work-
ing in a disciplined but unintelligent manner”
(Turing 1950: 1). Main-frames, laptops, pocket
calculators, palm-pilots – all carry out work that
a human rote-worker could do, if he or she
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worked long enough, and had a plentiful enough
supply of paper and pencils.

The Turing machine is an idealization of
the human computer (Turing 1936: 231).
Wittgenstein put this point in a striking way:

Turing’s “Machines.” These machines are
humans who calculate. (Wittgenstein 1980:
§1096)

It was not, of course, some deficiency of
imagination that led Turing to model his logical
computing machines on what can be achieved
by a human being working effectively. The pur-
pose for which he introduced them demanded
it. The Turing machine played a key role in his
demonstration that there are mathematical tasks
which cannot be carried out by means of an
effective method.

The Church–Turing Thesis

The concept of an effective method is an informal
one. Attempts such as the above to explain what
counts as an effective method are not rigorous,
since the requirement that the method demand
neither insight nor ingenuity is left unexplicated.
One of Turing’s leading achievements – and
this was a large first step in the development
of the mathematical theory of computation –
was to propose a rigorously defined expression
with which the informal expression “by means
of an effective method” might be replaced. The
rigorously defined expression, of course, is “by
means of a Turing machine.” The importance
of Turing’s proposal is this: if the proposal is
correct, then talk about the existence and non-
existence of effective methods can be replaced
throughout mathematics and logic by talk about
the existence or non-existence of Turing machine
programs. For instance, one can establish that
there is no effective method at all for doing such-
and-such a thing by proving that no Turing
machine can do the thing in question.

Turing’s proposal is encapsulated in the
Church–Turing thesis, also known simply as
Turing’s thesis :

The UTM is able to perform any calculation
that any human computer can carry out.

An equivalent way of stating the thesis is:

Any effective – or mechanical – method can
be carried out by the UTM.

(“Mechanical” is a term of art in mathematics
and logic. It does not carry its everyday meaning,
being in its technical sense simply a synonym
for “effective.”) Notice that the converse of the
thesis – any problem-solving method that can be
carried out by the UTM is effective – is obvi-
ously true, since a human being can, in principle,
work through any Turing-machine program,
obeying the instructions (“in principle” because
we have to assume that the human does not go
crazy with boredom, or die of old age, or use up
every sheet of paper in the universe).

Church independently proposed a different
way of replacing talk about effective methods with
formally precise language (Church 1936a). Tur-
ing remarked that his own way of proceeding
was “possibly more convincing” (1937: 153);
Church acknowledged the point, saying that
Turing’s concept of computation by Turing
machine “has the advantage of making the iden-
tification with effectiveness . . . evident immedi-
ately” (Church 1937: 43).

The name “Church–Turing thesis,” now
standard, seems to have been introduced by
Kleene, with a flourish of bias in favor of his
mentor Church (Kleene 1967: 232):

Turing’s and Church’s theses are equivalent.
We shall usually refer to them both as Church’s
thesis, or in connection with that one of
its . . . versions which deals with “Turing
machines” as the Church–Turing thesis.

Soon ample evidence amassed for the Church–
Turing thesis. (A survey is given in chs. 12 and
13 of Kleene 1952.) Before long it was (as Turing
put it) “agreed amongst logicians” that his pro-
posal gives the “correct accurate rendering” of
talk about effective methods (Turing 1948: 7).
(Nevertheless, there have been occasional dis-
senting voices over the years; for example Kalmár
1959 and Péter 1959.)
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Beyond the Universal Turing
Machine

Computable and uncomputable
numbers

Turing calls any number that can be written out
by a Turing machine a computable number. That
is, a number is computable, in Turing’s sense, if
and only if there is a Turing machine that calcu-
lates each digit of the number’s decimal representa-
tion, in sequence. π, for example, is a computable
number. A suitably programmed Turing machine
will spend all eternity writing out the decimal
representation of π digit by digit, 3.14159 . . .

Straight off, one might expect it to be the
case that every number that has a decimal rep-
resentation (that is to say, every real number) is
computable. For what could prevent there being,
for any particular number, a Turing machine that
“churns out” that number’s decimal representa-
tion digit by digit? However, Turing proved that
not every real number is computable. In fact,
computable numbers are relatively scarce among
the real numbers. There are only countably many
computable numbers, because there are only
countably many different Turing-machine pro-
grams (instruction tables). (A collection of things
is countable if and only if either the collection
is finite or its members can be put into a one-
to-one correspondence with the integers, 1,
2, 3, . . . .) As Georg Cantor proved in 1874,
there are uncountably many real numbers – in
other words, there are more real numbers than
integers. There are literally not enough Turing-
machine programs to go around in order for
every real number to be computable.

The printing problem and the
halting problem

Turing described a number of mathematical
problems that cannot be solved by Turing
machine. One is the printing problem. Some pro-
grams print “0” at some stage in their computa-
tions; all the remaining programs never print
“0.” The printing problem is the problem of
deciding, given any arbitrarily selected program,

into which of these two categories it falls. Turing
showed that this problem cannot be solved by
the UTM.

The halting problem (Davis 1958) is another
example of a problem that cannot be solved by
the UTM (although not one explicitly consid-
ered by Turing). This is the problem of deter-
mining, given any arbitrary Turing machine,
whether or not the machine will eventually halt
when started on a blank tape. The machine
shown in table 1.1 is rather obviously one of
those that never halts – but in other cases it is
definitely not obvious from a machine’s table
whether or not it halts. And, of course, simply
watching the machine run (or a simulation of
the machine) is of no help at all, for what can be
concluded if after a week or a year the machine
has not halted? If the machine does eventually
halt, a watching human – or Turing machine –
will sooner or later find this out; but in the case
of a machine that has not yet halted, there is no
effective method for deciding whether or not it
is going to halt.

The halting function

A function is a mapping from “arguments” (or
inputs) to “values” (or outputs). For example,
addition (+) is a function that maps pairs of num-
bers to single numbers: the value of the function
+ for the pair of arguments 5, 7 is the number
12. The squaring function maps single numbers
to single numbers: e.g. the value of n2 for the
argument 3 is 9.

A function is said to be computable by Turing
machine if some Turing machine will take in
arguments of the function (or pairs of arguments,
etc.) and, after carrying out some finite number
of basic operations, produce the corresponding
value – and, moreover, will do this no matter
which argument of the function is presented. For
example, addition over the integers is comput-
able by Turing machine, since a Turing machine
can be set up so that whenever two integers are
inscribed on its tape (in binary notation, say),
the machine will output their sum.

The halting function is as follows. Assume the
Turing machines to be ordered in some way, so
that we may speak of the first machine in the
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ordering, the second, and so on. (There are vari-
ous standard ways of accomplishing this order-
ing, e.g. in terms of the number of symbols in
each machine’s instruction table.) The arguments
of the halting function are simply 1, 2, 3, . . . .
(Like the squaring function, the halting func-
tion takes single arguments.) The value of the
halting function for any argument n is 1 if the
nth Turing machine in the ordering eventually
halts when started on a blank tape, and is 0 if
the nth machine runs on forever (as would, for
example, a Turing machine programmed to pro-
duce in succession the digits of the decimal rep-
resentation of π).

The theorem that the UTM cannot solve the
halting problem is often expressed in terms of
the halting function.

Halting theorem: The halting function is
not computable by Turing machine.

The Entscheidungsproblem

The Entscheidungsproblem, or decision problem,
was Turing’s principal quarry in “On Computable
Numbers.” The decision problem was brought
to the fore of mathematics by the German math-
ematician David Hilbert (who in a lecture given
in Paris in 1900 set the agenda for much of
twentieth-century mathematics). Hilbert and his
followers held that mathematicians should seek
to express mathematics in the form of a com-
plete, consistent, decidable formal system – a
system expressing “the entire thought-content
of mathematics in a uniform way” (Hilbert 1927:
475). The project of formulating mathematics in
this way became known as the “Hilbert program.”

A consistent system is one that contains no
contradictions; a complete system one in which
every true mathematical statement is provable.
“Decidable” means that there is an effective
method for telling, of each mathematical state-
ment, whether or not the statement is provable
in the system. A complete, consistent, decidable
system would banish ignorance from math-
ematics. Given any mathematical statement, one
would be able to tell whether the statement is
true or false by deciding whether or not it is
provable in the system. Hilbert famously declared

in his Paris lecture: “in mathematics there is no
ignorabimus” (there is no we shall not know)
(Hilbert 1902: 445).

It is important that the system expressing the
“whole thought content of mathematics” be
consistent. An inconsistent system – a system
containing contradictions – is worthless, since
any statement whatsoever, true or false, can be
derived from a contradiction by simple logical
steps. So in an inconsistent system, absurdities
such as 0 = 1 and 6 ≠ 6 are provable. An incon-
sistent system would indeed contain all true
mathematical statements – would be complete,
in other words – but would in addition also
contain all false mathematical statements.

If ignorance is to be banished absolutely, the
system must be decidable. An undecidable sys-
tem might on occasion leave us in ignorance.
Only if the mathematical system were decidable
could we be confident of always being able to
tell whether or not any given statement is prov-
able. Unfortunately for the Hilbert program,
however, it became clear that most interesting
mathematical systems are, if consistent, incom-
plete and undecidable.

In 1931 Gödel showed that Hilbert’s ideal is
impossible to satisfy, even in the case of simple
arithmetic. He proved that the system called
Peano arithmetic is, if consistent, incomplete.
This is known as Gödel’s first incompleteness
theorem. (Gödel later generalized this result,
pointing out that “due to A. M. Turing’s work,
a precise and unquestionably adequate defini-
tion of the general concept of formal system can
now be given,” with the consequence that incom-
pleteness can “be proved rigorously for every
consistent formal system containing a certain
amount of finitary number theory” (Gödel 1965:
71).) Gödel had shown that no matter how
hard mathematicians might try to construct the
all-encompassing formal system envisaged by
Hilbert, the product of their labors would, if
consistent, inevitably be incomplete. As Hermann
Weyl – one of Hilbert’s greatest pupils –
observed, this was nothing less than “a catastro-
phe” for the Hilbert program (Weyl 1944: 644).

Gödel’s theorem does not mention decidabil-
ity. This aspect was addressed by Turing and by
Church. Each showed, working independently,
that no consistent formal system of arithmetic is
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decidable. They showed this by proving that not
even the weaker, purely logical system presup-
posed by any formal system of arithmetic and
called the first-order predicate calculus is decid-
able. Turing’s way of proving that the first-
order predicate calculus is undecidable involved
the printing problem. He showed that if a Tur-
ing machine could tell, of any given statement,
whether or not the statement is provable in the
first-order predicate calculus, then a Turing
machine could tell, of any given Turing machine,
whether or not it ever prints “0.” Since, as he
had already established, no Turing machine can
do the latter, it follows that no Turing machine
can do the former. The final step of the argu-
ment is to apply Turing’s thesis: if no Turing
machine can perform the task in question, then
there is no effective method for performing it.
The Hilbertian dream lay in total ruin.

Poor news though Turing’s and Church’s
result was for the Hilbert school, it was wel-
come news in other quarters, for a reason that
Hilbert’s illustrious pupil von Neumann had
given in 1927 (von Neumann 1927: 12):

If undecidability were to fail then mathematics,
in today’s sense, would cease to exist; its place
would be taken by a completely mechanical
rule, with the aid of which any man would be
able to decide, of any given statement, whether
the statement can be proven or not.

In a similar vein, the Cambridge mathematician
G. H. Hardy said in a lecture in 1928 (Hardy
1929: 16):

if there were . . . a mechanical set of rules for
the solution of all mathematical problems . . .
our activities as mathematicians would come
to an end.

The next section is based on Copeland 1996.

Misunderstandings of the
Church–Turing Thesis:
The Limits of Machines

A myth has arisen concerning Turing’s work,
namely that he gave a treatment of the limits of

mechanism, and established a fundamental result
to the effect that the UTM can simulate the
behavior of any machine. The myth has passed
into the philosophy of mind, theoretical psycho-
logy, cognitive science, Artificial Intelligence,
and Artificial Life, generally to pernicious effect.
For example, the Oxford Companion to the Mind
states: “Turing showed that his very simple
machine . . . can specify the steps required for
the solution of any problem that can be solved
by instructions, explicitly stated rules, or proced-
ures” (Gregory 1987: 784). Dennett maintains
that “Turing had proven – and this is probably
his greatest contribution – that his Universal
Turing machine can compute any function that
any computer, with any architecture, can com-
pute” (1991: 215); also that every “task for
which there is a clear recipe composed of simple
steps can be performed by a very simple com-
puter, a universal Turing machine, the universal
recipe-follower” (1978: xviii). Paul and Patricia
Churchland assert that Turing’s “results entail
something remarkable, namely that a standard
digital computer, given only the right program,
a large enough memory and sufficient time, can
compute any rule-governed input–output func-
tion. That is, it can display any systematic pat-
tern of responses to the environment whatsoever”
(1990: 26). Even Turing’s biographer, Hodges,
has endorsed the myth:

Alan had . . . discovered something almost . . .
miraculous, the idea of a universal machine
that could take over the work of any machine.
(Hodges 1992: 109)

Turing did not show that his machines can
solve any problem that can be solved “by instruc-
tions, explicitly stated rules, or procedures,” and
nor did he prove that the UTM “can compute
any function that any computer, with any archi-
tecture, can compute” or perform any “task for
which there is a clear recipe composed of simple
steps.” As previously explained, what he proved
is that the UTM can carry out any task that any
Turing machine can carry out. Each of the claims
just quoted says considerably more than this.

If what the Churchlands assert were true, then
the view that psychology must be capable of
being expressed in standard computational terms

10
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would be secure (as would a number of other
controversial claims). But Turing had no result
entailing that “a standard digital computer . . . can
compute any rule-governed input–output func-
tion.” What he did have was a result entailing
the exact opposite. The theorem that no Turing
machine can decide the predicate calculus entails
that there are rule-governed input–output func-
tions that no Turing machine is able to compute
– for example, the function whose output is 1
whenever the input is a statement that is prov-
able in the predicate calculus, and is 0 for all
other inputs. There are certainly possible pat-
terns of responses to the environment, perfectly
systematic patterns, that no Turing machine
can display. One is the pattern of responses just
described. The halting function is a mathemat-
ical characterization of another such pattern.

Distant cousins of the
Church–Turing thesis

As has already been emphasized, the Church–
Turing thesis concerns the extent of effective
methods. Putting this another way (and ignoring
contingencies such as boredom, death, or insuf-
ficiency of paper), the thesis concerns what a
human being can achieve when working by rote
with paper and pencil. The thesis carries no im-
plication concerning the extent of what machines
are capable of achieving (even digital machines
acting in accordance with “explicitly stated
rules”). For among a machine’s repertoire of basic
operations, there may be those that no human
working by rote with paper and pencil can
perform.

Essentially, then, the Church–Turing thesis
says that no human computer, or machine that
mimics a human computer, can out-compute the
UTM. However, a variety of other propositions,
very different from this, are from time to time
called the Church–Turing thesis (or Church’s
thesis), sometimes but not always with accom-
panying hedges such as “strong form” and
“physical version.” Some examples from the re-
cent literature are given below. This loosening
of established terminology is unfortunate, and
can easily lead to misunderstandings. In what
follows I use the expression “Church–Turing

thesis properly so called” for the proposition that
Turing and Church themselves endorsed.

[C]onnectionist models . . . may possibly even
challenge the strong construal of Church’s
Thesis as the claim that the class of well-
defined computations is exhausted by those of
Turing machines. (Smolensky 1988: 3)

Church–Turing thesis: If there is a well defined
procedure for manipulating symbols, then a
Turing machine can be designed to do the
procedure. (Henry 1993: 149)

[I]t is difficult to see how any language that
could actually be run on a physical computer
could do more than Fortran can do. The
idea that there is no such language is called
Church’s thesis. (Geroch & Hartle 1986: 539)

The first aspect that we examine of Church’s
Thesis . . . [w]e can formulate, more precisely:
The behaviour of any discrete physical system
evolving according to local mechanical laws is
recursive. (Odifreddi 1989: 107)

I can now state the physical version of the
Church–Turing principle: “Every finitely real-
izable physical system can be perfectly simu-
lated by a universal model computing machine
operating by finite means.” This formulation
is both better defined and more physical than
Turing’s own way of expressing it. (Deutsch
1985: 99)

That there exists a most general formulation
of machine and that it leads to a unique set of
input–output functions has come to be called
Church’s thesis. (Newell 1980: 150)

The maximality thesis

It is important to distinguish between the
Church–Turing thesis properly so called and what
I call the “maximality thesis” (Copeland 2000).
(Among the few writers to distinguish explicitly
between Turing’s thesis and stronger proposi-
tions along the lines of the maximality thesis are
Gandy 1980 and Sieg 1994.)

A machine m is said to be able to generate a
certain function if m can be set up so that if m is
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presented with any of the function’s arguments,
m will carry out some finite number of atomic
processing steps at the end of which m produces
the corresponding value of the function (mutatis
mutandis in the case of functions that, like addi-
tion, demand more than one argument).

Maximality Thesis: All functions that can
be generated by machines (working on finite
input in accordance with a finite program
of instructions) are computable by Turing
machine.

The maximality thesis (“thesis M”) admits of
two interpretations, according to whether the
phrase “can be generated by machine” is taken
in the this-worldly sense of “can be generated
by a machine that conforms to the physical laws
(if not to the resource constraints) of the actual
world,” or in a sense that abstracts from whether
or not the envisaged machine could exist in the
actual world. Under the latter interpretation,
thesis M is false. It is straightforward to describe
abstract machines that generate functions that
cannot be generated by the UTM (see e.g.
Abramson 1971, Copeland 2000, Copeland &
Proudfoot 2000, Stewart 1991). Such machines
are termed “hypercomputers” in Copeland and
Proudfoot (1999a).

It is an open empirical question whether or
not the this-worldly version of thesis M is true.
Speculation that there may be physical processes
– and so, potentially, machine-operations – whose
behavior conforms to functions not computable
by Turing machine stretches back over at least
five decades. (Copeland & Sylvan 1999 is a sur-
vey; see also Copeland & Proudfoot 1999b.)

A source of potential misunderstanding about
the limits of machines lies in the difference
between the technical and everyday meanings of
the word “mechanical.” As previously remarked,
in technical contexts “mechanical” and “effect-
ive” are often used interchangeably. (Gandy 1988
outlines the history of this usage of the word
“mechanical.”) For example:

Turing proposed that a certain class of abstract
machines could perform any “mechanical”
computing procedure. (Mendelson 1964: 229)

Understood correctly, this remark attributes to
Turing not a thesis concerning the limits of what
can be achieved by machine but the Church–
Turing thesis properly so called.

The technical usage of “mechanical” tends
to obscure the possibility that there may be
machines, or biological organs, that generate (or
compute, in a broad sense) functions that cannot
be computed by Turing machine. For the ques-
tion “Can a machine execute a procedure that
is not mechanical?” may appear self-answering,
yet this is precisely what is asked if thesis M is
questioned.

In the technical literature, the word “comput-
able” is often tied by definition to effectiveness:
a function is said to be computable if and only if
there is an effective method for determining its
values. The Church–Turing thesis then becomes:

Every computable function can be computed
by Turing machine.

Corollaries such as the following are sometimes
stated:

[C]ertain functions are uncomputable in an
absolute sense: uncomputable even by [Turing
machine], and, therefore, uncomputable by any
past, present, or future real machine. (Boolos
& Jeffrey 1980: 55)

When understood in the sense in which it is
intended, this remark is perfectly true. However,
to a casual reader of the technical literature, such
statements may appear to say more than they in
fact do.

Of course, the decision to tie the term “com-
putable” and its cognates to the concept of effect-
iveness does not settle the truth-value of thesis M.
Those who abide by this terminological decision
will not describe a machine that falsifies thesis M
as computing the function that it generates.

Putnam is one of the few writers on the
philosophy of mind to question the proposition
that Turing machines provide a maximally gen-
eral formulation of the notion of machine:

[M]aterialists are committed to the view that
a human being is – at least metaphorically – a
machine. It is understandable that the notion
of a Turing machine might be seen as just a
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way of making this materialist idea precise.
Understandable, but hardly well thought out.
The problem is the following: a “machine” in
the sense of a physical system obeying the laws
of Newtonian physics need not be a Turing
machine. (Putnam 1992: 4)

The Church–Turing fallacy

To commit what I call the Church–Turing fallacy
(Copeland 2000, 1998) is to believe that the
Church–Turing thesis, or some formal or semi-
formal result established by Turing or Church,
secures the following proposition:

If the mind–brain is a machine, then the
Turing-machine computable functions pro-
vide sufficient mathematical resources for a
full account of human cognition.

Perhaps some who commit this fallacy are misled
purely by the terminological practice already men-
tioned, whereby a thesis concerning which there
is little real doubt, the Church–Turing thesis pro-
perly so called, and a nexus of different theses,
some of unknown truth-value, are all referred to
as Church’s thesis or the Church–Turing thesis.

The Church–Turing fallacy has led to some
remarkable claims in the foundations of psycho-
logy. For example, one frequently encounters the
view that psychology must be capable of being
expressed ultimately in terms of the Turing ma-
chine (e.g. Fodor 1981: 130; Boden 1988: 259).
To anyone in the grip of the Church–Turing
fallacy, conceptual space will seem to contain no
room for mechanical models of the mind–brain
that are not equivalent to a Turing machine. Yet
it is certainly possible that psychology will find
the need to employ models of human cognition
that transcend Turing machines (see Chapter 10,
COMPUTATIONALISM, CONNECTIONISM, AND THE

PHILOSOPHY OF MIND).

The simulation fallacy

A closely related error, unfortunately also com-
mon in modern writing on computation and the
brain, is to hold that Turing’s results somehow

entail that the brain, and indeed any biological
or physical system whatever, can be simulated by
a Turing machine. For example, the entry on
Turing in A Companion to the Philosophy of Mind
contains the following claims: “we can depend
on there being a Turing machine that captures
the functional relations of the brain,” for so long
as “these relations between input and output
are functionally well-behaved enough to be de-
scribable by . . . mathematical relationships . . . we
know that some specific version of a Turing
machine will be able to mimic them” (Guttenplan
1994: 595). Even Dreyfus, in the course of criti-
cizing the view that “man is a Turing machine,”
succumbs to the belief that it is a “fundamental
truth that every form of ‘information process-
ing’ (even those which in practice can only be
carried out on an ‘analogue computer’) must in
principle be simulable on a [Turing machine]”
(1992: 195).

Searle writes in a similar fashion:

If the question [“Is consciousness comput-
able?”] asks “Is there some level of description
at which conscious processes and their cor-
related brain processes can be simulated [by a
Turing machine]?” the answer is trivially yes.
Anything that can be described as a precise
series of steps can be simulated [by a Turing
machine]. (Searle 1997: 87)

Can the operations of the brain be simulated
on a digital computer? . . . The answer seems
to me . . . demonstrably “Yes” . . . That is,
naturally interpreted, the question means: Is
there some description of the brain such that
under that description you could do a com-
putational simulation of the operations of the
brain. But given Church’s thesis that anything
that can be given a precise enough character-
ization as a set of steps can be simulated on a
digital computer, it follows trivially that the
question has an affirmative answer. (Searle
1992: 200)

Church’s thesis properly so called does not say
that anything that can be described as a precise
series of of steps can be simulated by Turing
machine.

Similarly, Johnson-Laird and the Churchlands
argue:
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If you assume that [consciousness] is scient-
ifically explicable . . . [and] [g]ranted that the
[Church–Turing] thesis is correct, then the
final dichotomy rests on Craik’s functionalism.
If you believe [functionalism] to be false . . .
then presumably you hold that consciousness
could be modelled in a computer program in
the same way that, say, the weather can be
modelled . . . If you accept functionalism, how-
ever, then you should believe that conscious-
ness is a computational process. (Johnson-Laird
1987: 252)

Church’s Thesis says that whatever is com-
putable is Turing computable. Assuming,
with some safety, that what the mind-brain
does is computable, then it can in principle be
simulated by a computer. (Churchland &
Churchland 1983: 6)

As previously mentioned, the Churchlands
believe, incorrectly, that Turing’s “results entail
. . . that a standard digital computer, given only
the right program, a large enough memory and
sufficient time, can . . . display any systematic
pattern of responses to the environment whatso-
ever” (1990: 26). This no doubt explains why
they think they can assume “with some safety”
that what the mind–brain does is computable,
for on their understanding of matters, this is to
assume only that the mind–brain is character-
ized by a “rule-governed” (1990: 26) input–
output function.

The Church–Turing thesis properly so called
does not entail that the brain (or the mind, or
consciousness) can be simulated by a Turing
machine, not even in conjunction with the belief
that the brain (or mind, etc.) is scientifically
explicable, or exhibits a systematic pattern of
responses to the environment, or is “rule-
governed” (etc.). Each of the authors quoted
seems to be assuming the truth of a close relat-
ive of thesis M, which I call “thesis S” (Copeland
2000).

Thesis S: Any process that can be given
a mathematical description (or a “precise
enough characterization as a set of steps,”
or that is scientifically describable or scient-
ifically explicable) can be simulated by a
Turing machine.

As with thesis M, thesis S is trivially false if it
is taken to concern all conceivable processes, and
its truth-value is unknown if it is taken to con-
cern only processes that conform to the physics
of the real world. For all we presently know, a
completed neuroscience may present the mind–
brain as a machine that – when abstracted out
from sources of inessential boundedness, such as
mortality – generates functions that no Turing
machine can generate.

The equivalence fallacy

Paramount among the evidence for the Church–
Turing thesis properly so called is the fact that
all attempts to give an exact analysis of the intuit-
ive notion of an effective method have turned
out to be equivalent, in the sense that each ana-
lysis has been proved to pick out the same class
of functions, namely those that are computable
by Turing machine. (For example, there have
been analyses in terms of lambda-definability,
recursivenes, register machines, Post’s canonical
and normal systems, combinatory definability,
Markov algorithms, and Gödel’s notion of
reckonability.) Because of the diversity of these
various analyses, their equivalence is generally
considered very strong evidence for the Church–
Turing thesis (although for a skeptical point of
view see Kreisel 1965: 144).

However, the equivalence of these diverse
analyses is sometimes taken to be evidence also
for stronger theses like M and S. This is nothing
more than a confusion – the equivalence fallacy
(Copeland 2000). The analyses under discussion
are of the notion of an effective method, not of
the notion of a machine-generable function; the
equivalence of the analyses bears only on the
issue of the extent of the former notion and
indicates nothing concerning the extent of the
latter.

Artificial intelligence and the
equivalence fallacy

Newell, discussing the possibility of artificial
intelligence, argues that (what he calls) a “phys-
ical symbol system” can be organized to exhibit
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general intelligence. A “physical symbol system”
is a universal Turing machine, or any equivalent
system, situated in the physical – as opposed
to the conceptual – world. (The tape of the
machine is accordingly finite; Newell specifies that
the storage capacity of the tape [or equivalent]
be unlimited in the practical sense of finite yet
not small enough to “force concern.”)

A [physical symbol] system always contains
the potential for being any other system if so
instructed. Thus, a [physical symbol] system
can become a generally intelligent system.
(Newell 1980: 170)

Is the premise of this pro-AI argument true?
A physical symbol system, being a universal
Turing machine situated in the real world, can,
if suitably instructed, simulate (or, metaphoric-
ally, become) any other physical symbol system
(modulo some fine print concerning storage
capacity). If this is what the premise means, then
it is true. However, if taken literally, the premise
is false, since as previously remarked, systems
can be specified which no Turing machine – and
so no physical symbol system – can simulate.
However, if the premise is interpreted in the
former manner, so that it is true, the conclusion
fails to follow from the premise. Only to one who
believes, as Newell does, that “the notion of
machine or determinate physical mechanism” is
“formalized” by the notion of a Turing machine
(ibid.) will the argument appear deductively valid.

Newell’s defense of his view that the uni-
versal Turing machine exhausts the possibilities
of mechanism involves an example of the equi-
valence fallacy:

[An] important chapter in the theory of com-
puting . . . has shown that all attempts to . . .
formulate . . . general notions of mechanism
. . . lead to classes of machines that are equival-
ent in that they encompass in toto exactly the
same set of input–output functions. In effect,
there is a single large frog pond of functions
no matter what species of frogs (types of
machines) is used. . . . A large zoo of different
formulations of maximal classes of machines is
known by now – Turing machines, recursive
functions, Post canonical systems, Markov
algorithms . . . (Newell 1980: 150)

Newell’s a priori argument for the claim that a
physical symbol system can become generally
intelligent founders in confusion.

Conclusion

Since there are problems that cannot be solved
by Turing machine, there are – given the
Church–Turing thesis – limits to what can be
accomplished by any form of machine that works
in accordance with effective methods. However,
not all possible machines share those limits. It is
an open empirical question whether there are
actual deterministic physical processes that, in the
long run, elude simulation by Turing machine;
and, if so, whether any such processes could use-
fully be harnessed in some form of calculating
machine. It is, furthermore, an open empirical
question whether any such processes are involved
in the working of the human brain.
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