A “Migration of Despair”: Unemployment, the Search for Work, and Migration to Farms During the Great Depression*

Robert L. Boyd, Mississippi State University

Objective. This study examines migration to farms during the Great Depression, when many displaced workers moved to farms in nearby rural areas searching for a means of livelihood. Methods. Regression analyses of data from the USDA, Census Bureau, and other sources are used. Results. (1) The rate of migration was greatest in places where the search for work by the unemployed was most intense. (2) The “push” of economic dislocation was a more significant factor in the migration than was the “pull” of the expected payoff to the movement. (3) Those who moved tended to be the long-term unemployed and labor force dropouts, suggesting that the migration was most sensitive to lengthy spells of joblessness. Conclusions. The results support hypotheses derived from theory and research and are most consistent with the classic “push-pull” model, which holds that the jobless will move to look for work or for other means of sustenance.

Theories of migration suggest that geographical mobility is significantly affected by labor market conditions. Consistent with this proposition, several major long-distance migrations of the early 20th century United States were evidently influenced by the lack of employment opportunities. White and black southerners who were displaced by the wholesale loss of agricultural jobs in the 1920s often moved to northern cities, looking for work in these industrial centers (Berry, 2000; Fligstein, 1981; Grossman, 1989). In the following decade, protracted drought and soil erosion created a gigantic Dust Bowl in the Great Plains, causing many bankrupt farmers in the region to abandon their lands and seek better prospects in California and neighboring states (Gregory, 1989). The heavy influx of the destitute migrants into these western states, moreover, coincided with the widespread joblessness of the Great Depression, thereby intensifying the desire of local whites to expel foreigners who were perceived to be competitors for jobs and relief benefits. As a consequence, laborers and welfare recipients of Latino

*Direct all correspondence to Robert L. Boyd, Department of Sociology, Anthropology, and Social Work, Mississippi State University, 200 Bowen Hall, Hardy Road, Mississippi State, MS 39762-5503 <Boyd@Soc.MsState.Edu>. Data are available for the purpose of replication. An earlier version of this article was presented at the annual meeting of the Southern Demographic Association, New Orleans, LA, October 28, 2000. I thank the anonymous reviewers for their helpful comments.

SOCIAL SCIENCE QUARTERLY, Volume 83, Number 2, June 2002
©2002 by the Southwestern Social Science Association
ancestry—many of whom were U.S. citizens—were deported to Mexico en masse (Sowell, 1981:254).

Short-distance migration, too, was affected by the Great Depression. A notable case in point was the sizable movement of the unemployed from cities to nearby farms during the early years of the crisis. This movement was large enough to temporarily reverse the long-run exodus of population from rural to urban areas, much to the surprise of demographers at the time (Long, 1988:25, citing Goodrich, 1936; Thomas, 1938; Thompson, 1937; Thornthwaite, 1934). In fact, from 1930 to 1933, “the net return movement to the farms totaled nearly one million,” and partly because of this migration, the rural population in 1935 (about 32 million) “exceeded that of 1930 by more than two millions” (Spengler, 1936:5). But by the mid-1930s, urbanward migration slowly resumed, as the capacity of farms to absorb the unemployed was exhausted and as the amenities of the metropolis (e.g., electricity, running water) attracted many ex-urbanities back to the city (National Resources Committee, 1938:85, cited by Sanderson, 1942:83). Thus, between 1935–1939, there was a net migration of 1,581,000 persons from farm to nonfarm areas (National Resources Committee, 1938:85, cited by Sanderson, 1942:85).

Those who participated in the “back-to-the-land movement” of the early 1930s tended to be young city dwellers who had lost their means of support and were returning to their nearby rural communities of origin (Thompson, 1937:19–30). Their migration could be characterized as “milling-around,” a term that describes the short-distance moves of the economically destitute (Lee, 1966:57). The migrants usually sought assistance or jobs from friends or relatives, or attempted to scratch out a meager existence by cultivating their own small plots of land (National Resources Committee, 1938:85, cited by Sanderson, 1942:83). Ironically, most appeared to relocate “to areas having the least promise of economic betterment” (Spengler, 1936:5), contradicting the popular belief that migrants followed opportunity (Goodrich, 1936). One observer accordingly called the movement a “migration of despair” rather than a “migration of hopes” (Sims, 1944:234).

This migration was obviously a response to pervasive joblessness. Yet, questions do remain, and the answers can advance our understanding of unemployment, the search for work, and migration. Were the rates of migration to farms greatest in those places where the search for work by the unemployed was most intensive, as theories of migration would predict, or were these rates more or less uniform throughout the nation? Were those who moved to find work simply “pushed” by economic displacement, as the above accounts suggest, or were they also “pulled” by job opportunities on farms? Were these migrants persons who had been looking for work for long periods, as the aforementioned reports indicate, or were they persons who had recently lost their jobs and immediately seized the chance to relocate? Were those who had dropped out of the labor force—many of whom had
abandoned the search for work—the most desperate to move, as the phrase “migration of despair” implies, or were such persons relatively sedentary?

These questions arise because, for the most part, the studies cited above merely described the movement to farms. They did not empirically evaluate theories of migration, for such theories were, at the time, little more than crude generalizations (Lee, 1966:48). The testing of theoretically derived hypotheses about migration, moreover, did not begin apace until well after the temporary movement to farms ended and had been all but forgotten. The thesis of this article is that answers to the foregoing questions address two concerns that are frequently raised in discussions of migration theory: (1) the applicability of the push-pull model to the unemployment-migration relationship, and (2) the sensitivity of migration to the labor market conditions of economically distressed areas.

Hypotheses

Explanations of migration often build on the venerable push-pull model (e.g., Bogue, 1959; Lee, 1966). Emphasizing the salience of labor markets, these accounts imply that, *ceteris paribus*, unemployment will stimulate migration, as economically displaced persons travel to other regions, trying to find work. Based on such explanations, I hypothesize that during the Great Depression, net migration to farms was greatest in those places where the rate of unemployment was highest (Hypothesis 1). The null hypothesis of no relationship follows from studies that find little support for the prediction that unemployment leads to migration (Clark, 1986:59–61; Greenwood, 1975:411, 1981:174–75; Long, 1988:211–12; Ritchey, 1976:369). Some analyses have been “affirmative” (e.g., Cebula and Vedder, 1973; DaVanzo, 1978; Fields, 1976; Greenwood, 1981), yet others have yielded negative or contradictory results (e.g., Lowry, 1966; Pack, 1973; Greenwood, 1981:174). In view of such “puzzling” findings, a major survey of migration research concluded that “an area’s unemployment rate does not have much effect on migration” (Long, 1988:211).

The dearth of support for the expected association of unemployment to migration has been attributed to the failure or inability of researchers to distinguish among those groups whose movement is most likely to be affected by joblessness (Clark, 1986:61). For instance, the spatial mobility of the unemployed is, no doubt, more sensitive to labor market conditions than is the spatial mobility of the employed (DaVanzo, 1978; Fields, 1976). Nonetheless, as the above reviews have observed, studies usually analyze data that are aggregated without regard to labor force status. A notable exception, however, is an investigation that found that the migration of the jobless is significantly affected by the unemployment rate of the local area, concluding that those “who are looking for work are more likely to move than those . . . not looking for work” (DaVanzo, 1978:507).
It would seem to follow that those who have been looking for work the longest will be the most likely to move in response to joblessness. That is, migration for the purpose of seeking work will be more sensitive to long periods of unemployment than to short periods. I hypothesize, then, that during the Great Depression, net migration to farms was highest in those places where the jobless had searched for work the longest, i.e., where the long-term jobless (e.g., persons looking for work over six months) comprised the largest share of those seeking work (Hypothesis 2). It also would seem to follow that persons not in the labor force, due to an inability or unwillingness to obtain employment, would be sedentary. Such persons are often “discouraged workers” who have given up searching for a job, in many cases because their material and social resources have been depleted by prolonged absence from work. This thesis is consistent with studies that find little evidence that people move from “depressed areas” that have extremely high rates of joblessness (Lansing and Mueller, 1967:90–98, 291–322; Parr, 1966; Uhlenberg, 1973). Accordingly, I hypothesize that net migration to farms during the Great Depression was lowest in those places where dropout from the labor force was highest (Hypothesis 3).

Yet, it could be that persons not in the labor force are especially desperate to find a means of livelihood and, therefore, are the most inclined to move. Thus, an alternative hypothesis is that net migration to farms during the Great Depression was highest in those places where the rate of labor force dropout was highest (Hypothesis 4). This proposition squares with reports that Depression-era migration to farms was common in Appalachia, the nation’s most economically destitute region, where jobless coal miners often tried to eke out a living in subsistence agriculture (Sims, 1944:335). It furthermore tallies with the notion that those who move short distances in response to economic destitution are negatively selected (Lee, 1966:57), e.g., those who are the most hard-pressed to find some means of support, even if it requires going outside of the mainstream economy.

Methodology

The dependent variable is net migration from nonfarm areas to farms from 1930 to 1935 as a percentage of the farm population in 1930. It was computed for states by the USDA (Folsom and Baker, 1937:31, cited by Sims, 1944:235) with data from the 1935 Census of Agriculture (U.S. Bureau of the Census, 1937), a comprehensive census of the nation’s farms. These data are based on an item that asked the operators of all 6,812,350 farms in the United States to list “persons on farms January 1, 1935, who lived in a non-farm residence five years earlier.” There were 1,995,253 such persons out of a total farm population of 31,800,907 (U.S. Bureau of the Census, 1937:142–43). Expressing net migration as a percentage of the farm population takes account of differences across states in the size of the
agricultural labor force. The time frame of this variable captures the period when net migration to farms was positive for the nation. States are appropriate units of analysis because the movement to farms was largely short-distance migration.

This variable will be regressed on explanatory variables that represent economic push and pull factors. I measure these variables at the beginning of the study period in order to avoid the “chicken-or-egg” dilemma that often confounds those studies that postulate a causal relationship between migration and labor market conditions (Muth, 1971).1

One of the main explanatory variables is the “Class A” unemployed as a percentage of gainful workers for states in April 1930. The Class A unemployed were “persons out of a job, able to work, and looking for work” (U.S. Bureau of the Census, 1931:Table 1). Essentially the unemployment rate, this variable measures the extent to which the jobless were trying to locate work. The other main explanatory variables, also for states in April 1930, are the respective percentages of the Class A unemployed in five categories of length of “idleness,” i.e., jobless and looking for work: idle less than one month; idle one to three months; idle more than three months but less than six months; idle six months or more but less than one year; idle one year or more (U.S. Bureau of the Census, 1931:Table 5). These variables measure the duration of the search for employment by those who were jobless.

In addition to these measures of unemployment, I include the employment-population ratio of states in April, 1930 as an explanatory variable. It is computed by dividing the total number of gainful workers by the population 10 years of age and over (U.S. Bureau of the Census, 1931:Table 1). This variable, which measures the extent of employment, is useful because it takes account of persons who are not participating in the labor force, many of whom have given up the search for work, believing that no viable job opportunities exist (i.e., discouraged workers). Such persons, of course, operate outside of the economic mainstream and thus are ignored in the calculation of the unemployment rate.

Another explanatory variable will measure labor market conditions on farms: the average daily farm wages of states in 1929 (Goodrich, Allin, and Hayes, 1935:28). The push-pull model discussed earlier suggests that this variable will be positively associated with the dependent variable, as those who are searching for work will be most inclined to move to farms in those places where the payoff to such migration is greatest. Yet, some studies cited in the above reviews of the migration literature (e.g., Lowry, 1966) find no evidence that wages affect migration, so the association may not be significant.

1 For instance, unemployment may increase out-migration, yet out-migration may, in turn, reduce unemployment, as the resulting decline of surplus workers brings the size of the labor force (supply) back into line with available job opportunities (demand).
Finally, regional differences will be examined via separate analyses of the southern and nonsouthern states. I will focus on disparities between the two largest U.S. regions: the South, a mostly rural, agricultural region; and the North, a mostly urban, industrial region. This focus is warranted, for the northern states were especially hard-hit by the Great Depression, suffering huge losses of manufacturing jobs, whereas the southern states, particularly those of the Deep South, were not as adversely affected by the crisis, owing to the agricultural foundations of their economies. The definitions of the regions are based on the standard geographical configurations used by the U.S. Census Bureau.2

2The nonsouthern states (N = 32) are the northern states (N = 21), i.e., the northeastern states (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont) and the midwestern states (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin) plus the 11 western states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming). The southern states (N = 16) are Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-South N = 32</th>
<th>South N = 16</th>
<th>North N = 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net migration to farms</td>
<td>0.25 (7.67)</td>
<td>-1.80 (4.63)</td>
<td>2.33 (8.23)</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>4.99 (1.60)</td>
<td>2.99 (1.10)</td>
<td>4.87 (1.84)</td>
</tr>
<tr>
<td>Duration of unemployment: percent unemployed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One year or longer</td>
<td>2.76 (1.31)</td>
<td>2.16 (1.07)</td>
<td>3.23 (1.34)</td>
</tr>
<tr>
<td>Six months or longer but less than one year</td>
<td>8.91 (3.15)</td>
<td>6.79 (1.90)</td>
<td>10.13 (3.17)</td>
</tr>
<tr>
<td>Longer than three months but less than six months</td>
<td>27.27 (5.91)</td>
<td>15.68 (4.19)</td>
<td>29.13 (5.25)</td>
</tr>
<tr>
<td>One to three months</td>
<td>30.31 (2.52)</td>
<td>31.71 (2.47)</td>
<td>29.83 (1.76)</td>
</tr>
<tr>
<td>Less than one month</td>
<td>30.76 (8.33)</td>
<td>43.66 (8.11)</td>
<td>27.69 (7.13)</td>
</tr>
<tr>
<td>Employment-population ratio</td>
<td>0.490 (0.028)</td>
<td>0.491 (0.032)</td>
<td>0.487 (0.024)</td>
</tr>
<tr>
<td>Average daily farm wage (dollars)</td>
<td>2.52 (0.28)</td>
<td>1.42 (0.38)</td>
<td>2.54 (0.26)</td>
</tr>
</tbody>
</table>

TABLE 1

Means of the Variables (Standard Deviations in Parentheses)
Findings

Table 1 presents the descriptive statistics. The mean of the dependent variable, net migration to farms, was positive in the non-South (0.25), indicating that, on average, people outside the South moved from nonfarm areas to farms. Yet, it was negative in the South (−1.80), indicating that, on average, people in this region moved in the opposite direction. The mean of net migration to farms was highest in the North (2.33), indicating that, on average, the movement to farms was most pronounced in this region.

The mean rate of unemployment was higher in the non-South (4.99) and the North (4.87) than in the South (2.99), reflecting, of course, the greater adverse effects of the Great Depression outside the southern states. The mean duration of unemployment was also higher outside the South and highest in the North. In point of fact, over 42 percent of those who were unemployed in the North had been searching for work for more than three months, on average (i.e., 3.23 + 10.13 + 29.13). The comparable figure for the South was under 25 percent (i.e., 2.16 + 6.79 + 15.68). Long-term unemployment, then, was much more prevalent in the North than in the South. Interestingly, though, the mean employment-population ratios were remarkably similar: 0.490, 0.491, and 0.487 in the non-South, South, and North, respectively. This finding implies that the different mean rates of unemployment of the North and South were due mainly to the greater propensity of the jobless in the former region to remain in the labor force and continue to search for work.

Not surprisingly, the mean daily farm wage (in dollars) was markedly higher in the non-South (2.52) and the North (2.54) than in the South (1.42). Accordingly, it seems fair to surmise that the attraction of the alternative of agricultural work to those who were jobless was much greater in the North than in the South. Perhaps that is one reason why, as I noted above, the unemployed of the former region were more likely to stay in the labor force and look for work.3

The first of three regression analyses is displayed in Table 2, which shows zero-order and partial standardized slope coefficients of the regression of net migration to farms on the rate of unemployment and the average daily farm wage. Outside the South, the results are consistent with the hypothesis that the movement to farms was greatest in those places where unemployment was highest (Hypothesis 1). Net migration to farms was positively associated with the rate of unemployment, controlling for average daily farm wage, in the non-South ($\beta_1 = 0.37$, two-tailed $p < 0.05$) and North ($\beta_1 = 0.44$, two-tailed $p < 0.05$). There was little support for this hypothesis in the South.

3 In line with this assertion, the correlation of the employment-population ratio with the average daily farm wage was strongly positive in the North ($r = 0.50$, two-tailed $p < 0.05$), suggesting that the number of discouraged workers was lowest in those states where farm wages were highest. The correlation was not significant in the South ($r = −0.33$).
The zero-order association of net migration to farms with the rate of unemployment was positive, in accordance with expectations ($\beta_1 = 0.43$, one-tailed $p < 0.05$); yet the partial association, while also positive, fell short of significance ($\beta_1 = 0.32$, one-tailed $p < 0.13$).

There is evidence, too, that the payoff to farming was a pull factor. In the non-South and South, the zero-order associations of net migration to farms with the average daily farm wage were positive ($\beta_2 = 0.29$ and 0.42, respectively) but marginally significant (one-tailed $p < 0.06$), and the partial associations were not significant. Yet, in the North, where farm wages were highest (Table 1), net migration to farms was positively associated with the average daily farm wage, controlling for unemployment ($\beta_2 = 0.36$, one-tailed $p < 0.05$). So, in the northern states, the movement to farms apparently resulted from both the pull of agricultural prospects and the push of economic displacement.

In the next analysis, presented in Table 3, net migration to farms is regressed on the five categories of duration of unemployment (one at a time), along with average daily farm wage. The goal is to examine the migration-joblessness relationship within levels of the duration of the search for work—in effect, holding this factor constant.

The partial standardized slope coefficients are in agreement with the hypothesis that migration to farms was highest in those places where the long-term jobless, e.g., persons looking for work over six months, comprised the largest share of those seeking work (Hypothesis 2). In all regions, net migration to farms was positively associated with the respective percentages of the unemployed in the two longest duration-of-job-search categories, those seeking work “one year or more” and “six months or more but less than one year,” controlling for average daily farm wage (in the non-South, $\beta_1 = 0.67$ and 0.57; in the South, $\beta_1 = 0.55$ and 0.53; and in the North, $\beta_1 = 0.54$).
and 0.49—in all cases, two-tailed $p \leq 0.05$). In the South, net migration to farms was also positively associated with the percentage of the unemployed seeking work “more than three months but less than six months,” controlling for average daily farm wage ($\beta_1 = 0.78$, two-tailed $p < 0.05$), but in the other regions, the associations were not significant. Evidently, then, migration to farms was particularly sensitive to unemployment in the South. In all regions, net migration to farms was negatively associated with the percentage of the unemployed in the shortest duration-of-job-search category, those seeking work “less than one month,” controlling for average daily farm wage (in the non-South, $\beta_1 = -0.37$, one-tailed $p < 0.05$; in the South, $\beta_1 = -0.59$, two-tailed $p = 0.05$; and in the North, $\beta_1 = -0.45$, two-tailed $p < 0.05$). These inverse associations imply that, throughout the nation, those who had recently lost their jobs tended to move from farms to nonfarm areas—the opposite direction of those who had been jobless for the longest time periods.

A comparison of these results with those of Table 2 suggests that using the simple unemployment rate as an explanatory variable, a standard practice of migration studies, understates the effect of joblessness on geographic mobility. Consider two cases in point. (1) In the non-South, the partial β of the association of net migration to farms with the rate of unemployment (0.37, in Table 2) was much less than the partial β of the association of net migration to farms with the percentage of the unemployed who had been seeking

<table>
<thead>
<tr>
<th>Duration</th>
<th>Non-South</th>
<th>South</th>
<th>North</th>
<th>Non-South</th>
<th>South</th>
<th>North</th>
</tr>
</thead>
<tbody>
<tr>
<td>\geq 1 year</td>
<td>0.67^{***}</td>
<td>0.08</td>
<td>0.49c</td>
<td>0.55^+</td>
<td>0.14</td>
<td>0.39a</td>
</tr>
<tr>
<td></td>
<td>(4.82)</td>
<td>(0.56)</td>
<td></td>
<td>(2.16)</td>
<td>(0.51)</td>
<td></td>
</tr>
<tr>
<td>< 1 year, \geq 6 months</td>
<td>0.57^{***}</td>
<td>0.12</td>
<td>0.38c</td>
<td>0.53^*</td>
<td>0.20</td>
<td>0.41a</td>
</tr>
<tr>
<td></td>
<td>(3.77)</td>
<td>(0.78)</td>
<td></td>
<td>(2.28)</td>
<td>(0.86)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.27</td>
<td>0.09</td>
<td>0.78*</td>
<td>-0.12</td>
<td>0.50a</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(1.39)</td>
<td></td>
<td>(2.88)</td>
<td>(0.44)</td>
<td></td>
</tr>
<tr>
<td>> 3 months</td>
<td>-0.10</td>
<td>0.29</td>
<td>0.09</td>
<td>0.01</td>
<td>0.42</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(1.62)</td>
<td></td>
<td>(0.02)</td>
<td>(1.59)</td>
<td></td>
</tr>
<tr>
<td>1–3 months</td>
<td>$-0.37^#$</td>
<td>0.13</td>
<td>0.19a</td>
<td>-0.59^+</td>
<td>0.06</td>
<td>0.39a</td>
</tr>
<tr>
<td></td>
<td>(1.99)</td>
<td>(0.72)</td>
<td></td>
<td>(2.16)</td>
<td>(0.23)</td>
<td></td>
</tr>
</tbody>
</table>

*aF-test is significant, $p < 0.05$.
*bF-test is significant, $p < 0.01$.
*cF-test is significant, $p < 0.001$.
*dF-test is significant, $p < 0.10$.
*$^+$p = 0.05, *$^p < 0.05$, **$^p < 0.01$, ***$^p < 0.001$ (two-tailed tests); $^#p < 0.05$ (one-tailed test).
work a year or more (0.67, in Table 3). (2) In the South, net migration to farms was not associated with the rate of unemployment (Table 2), yet it was significantly associated with the percentage of the unemployed in the longest duration-of-job-search categories, as hypothesized (Table 3). Taking account of the length of joblessness, therefore, can substantially illuminate the migration-unemployment relationship.

Table 3 further shows that only in the North were farm wages a pull factor, controlling for time of joblessness. In this region, where these wages were highest, the positive association of net migration to farms with average daily farm wage increased in strength from the lowest duration-of-job-search level ($\beta_2 = 0.36$, one-tailed $p < 0.05$) to the next higher levels ($\beta_2 = 0.46$ and 0.50, respectively, two-tailed $p < 0.05$) but then decreased at the highest levels ($\beta_2 = 0.36$ and 0.31, respectively, one-tailed $p < 0.05$). This pattern indicates that as the length of unemployment increased, those in the North who moved to farms were influenced less by the pull of wages and more by the push of joblessness. Accordingly, one might surmise that, as those searching for work in the northern states became more desperate, pull factors declined in relative importance to push factors.4

In the last analysis, shown in Table 4, net migration to farms is regressed on the employment-population ratio and average daily farm wage. Zero-order and partial standardized slope coefficients are displayed. The objective is to examine the association of migration with nonparticipation in the la-

4It is noteworthy that, at the highest level of duration-of-job-search, the test statistic of β_2 for the North ($t = 1.77$) was barely greater than the critical value ($t = 1.734$, one-tailed $\alpha = 0.05$), implying that for those northerners who had been looking for work for more than a year, farm wages almost ceased to affect migration significantly.
bor force, keeping in mind that the employment-population ratio reflects, in part, the extent to which people have left the economic mainstream. Thus, high values of this ratio indicate that labor force dropout was low, while low values of the ratio indicate that labor force dropout was high.

Outside the South, the findings are partly consistent with the hypothesis that migration to farms was lowest in those places where dropout from the labor force was highest, that is, migration to farms was highest where dropout from the labor force was lowest, i.e., where the employment-population ratio was highest (Hypothesis 3). In the non-South, the zero-order association of net migration to farms with the employment-population ratio was positive ($\beta_1 = 0.28$), suggesting that, as predicted, net migration to farms tended to be high where labor force dropout was low, i.e., where the employment-population ratio was high. But this association was only marginally significant (one-tailed $p < 0.07$), and the partial association was not significant. However, in the North, the zero-order association ($\beta_1 = 0.72$, two-tailed $p < 0.001$) and the partial association ($\beta_1 = 0.63$, two-tailed $p < 0.01$) were both positive, in accord with the hypothesis.5

The results for the South, in contrast, tally with the hypothesis that migration to farms was highest in places where labor force dropout was highest, i.e., where the employment-population ratio was lowest (Hypothesis 4). Both the zero-order association ($\beta_1 = -0.65$, two-tailed $p < 0.01$) and partial association ($\beta_1 = -0.57$, two-tailed $p < 0.02$) were negative, indicating that net migration to farms tended to be highest in those places where the employment-population ratio was lowest. In the South, then, the movement to farms was related to nonparticipation in the labor force and, by inference, the discouragement of workers.

Furthermore, a comparison of the findings for the South with the comparable results in Table 2 underscores a point made earlier about the appropriate explanatory variable to use in studies of migration and joblessness. The analysis in Table 2, which examined the simple rate of unemployment, showed that in the South, migration to farms was unrelated to joblessness. Yet, the analysis in Table 4, which took account of labor force dropout by using the employment-population ratio, indicated that migration to farms in the South was significantly affected by joblessness, as was hypothesized. These discrepant findings imply that the standard practice of analyzing the simple rate of unemployment can lead to erroneous or misleading conclusions about the relationship of migration to joblessness.

5In the North, the employment-population ratio was positively associated with the rate of unemployment ($r = 0.82$, two-tailed $p < 0.001$). Thus, in places where the largest proportions of the population were employed, those who were jobless had the greatest tendency to stay in the mainstream, searching for work, rather than to exit the labor force.
Discussion

The results address the four questions raised earlier. First, the rate of migration to farms was greatest in the places where the search for work by the unemployed was most intense. Net migration to farms was highest in the North, the region with the highest rate of unemployment and the highest rates of long-term unemployment. Moreover, the positive association of net migration to farms with the rate of unemployment was also strongest in this region, supporting the hypothesis, based on the push-pull model, that the jobless will move to find work. Conversely, in the South, relatively low rates of both unemployment and long-term unemployment resulted in lower net migration to farms and in a weaker relationship between this migration and unemployment. Second, the push of economic dislocation was a more significant factor in migration to farms than was the pull of the anticipated payoff to the movement. Outside the North, net migration to farms was unrelated to farm wages. Evidently, the low wages of farms in the West and South were unattractive even to the most desperate segments of the labor force. The push-pull model, then, seems most applicable to the North, where both unemployment and farm wages were highest. Third, those who moved to farms tended to be the long-term unemployed. In all regions, as hypothesized, net migration to farms was positively associated with the percentage of the unemployed who had been looking for work six months or more. Thus, consistent with past research, migration in response to joblessness was most sensitive to long spells of unemployment. Fourth, the relationship between migration to farms and labor force dropout was ambiguous. The association of net migration to farms with the employment-population ratio was positive in the North, implying that those outside the labor force were disinclined to move to farms. Perhaps they tended to be distressed persons who, owing to urban family origins, lacked kinship ties to farms that could shelter them from joblessness. In contrast, the association was negative in the South, suggesting that those not in the labor force—who, in this heavily agricultural region, would likely be of rural origins—were inclined to relocate to farms, a finding that casts doubt on the notion that labor force dropouts are sedentary.

The results imply that research on the relationship between migration and joblessness should examine short-distance moves. I mentioned that contemporary studies of the movement to farms at the beginning of the Great Depression were, for the most part, descriptive accounts. By extending these largely forgotten studies, my analysis shows that the migration was, indeed, significantly related to joblessness. Future research on geographical mobility and labor market conditions should, therefore, revisit the relatively neglected topic of short-distance moves, which are most likely to be undertaken by the economically destitute who tend to lack the resources needed to move long distances. Future studies might also explore the possible asso-
cation between short- and long-distance migration by analyzing how the movement to farms may have been related to the major interregional migrations of the time, such as the Dust Bowl migration, which were noted in the introduction. Unfortunately, the data I examined cannot address this topic.

The findings also imply that analyses of migration that use the simple rate of unemployment as an explanatory variable can lead to faulty conclusions about the relationship of migration to joblessness. A comparison of Tables 2 and 3 showed that the rate of unemployment understated the effect of joblessness on migration to farms and, furthermore, suggested that the duration of unemployment was a better explanatory variable. In addition, the analysis of the rate of unemployment in Table 2 indicated that in the South, migration to farms and joblessness were unrelated, but the analysis of the employment-population ratio in Table 4 revealed that in the region, these variables were associated, as predicted. Accordingly, I recommend that migration studies not only analyze the rate of unemployment, but also the duration of unemployment and the employment-population ratio, in order to fully take account of those who are most desperate to relocate for the purpose of finding work or some other means of sustenance.

REFERENCES

